Цифровая стоматология. Возможности цифровых технологий Цифровые технологии в стоматологии

Медицина не стоит на месте, и особенно активно развивается стоматология. Что логично, информационные технологии тоже задействованы, как мощные и точные средства. В последние годы появилось даже понятие «компьютерной стоматологии». Вероятно, все новейшие технологии в стоматологии, какие появятся в будущем, будут связаны именно с компьютерной техникой.

Машины в помощь людям

Цифровые технологии, в первую очередь, актуальны в ортопедическом лечении, на всех его этапах. Уже разработаны и внедряются системы, которые полностью самостоятельно заполняют необходимые документы. Автоматизированная работа включает моделирование полости рта конкретного клиента с рекомендациями, какие именно пути лечения в данной ситуации должны стать оптимальными.

Новейшие технологии в стоматологии позволяют графические данные анализировать и обрабатывать предельно быстро, а обследование больного производить детально, без упущений. Результаты, получаемые в ходе исследований, можно продемонстрировать как больному, так и коллегам.

Надо сказать, первые подобные устройства стоили огромных денег, но быстро выросшая конкуренция изменила ситуацию. Есть камеры для фото- и видеосъемки в полости рта, которые можно подключить к ПК. Пользоваться подобной техникой просто. В передовых клиниках практически не обращаются к традиционному рентгену, вместо него применяются радиовизиографы, не облучающие пациента.

Трехмерная медицина: будущее уже в наших руках

Эффективность показали компьютерные программы, записывающие и анализирующие мимику больного. Это тоже новые технологии в стоматологии. Протезирование становится намного проще, требует меньше времени, если предварительно врач имеет полноценную анимированную модель полости рта на экране своего компьютера, где он может повернуть ее и изучить под любым углом. Подобные программы называются 3D-артикуляторами.

Чтобы подобрать наилучший вариант лечения в конкретном случае, можно воспользоваться компьютерным планированием лечения. Кстати говоря, были разработаны специальные программы контроля анестезии - компьютер теперь может справиться даже с задачей обезболивания.

Нейромышечная стоматология: новые технологии

Только самый современный институт стоматологии новых технологий может позволить себе нейромышечный подход. Преимущество его в том, что учитывается также нейрофизиология ротовой полости пациента. Были разработаны методы изучения, насколько активна жевательная мускулатура, какова идеальная окклюзия.

Наилучший эффект обеспечивается тем, что врач может смоделировать траекторию, по которой движется нижняя челюсть, и работать над протезом с учётом этой информации. Если речь идет о больном с дисфункцией ВНЧС, то именно нейромышечная стоматология - это самый разумный вариант.

Пионером в этой области является американская фирма "Миотроникс". Специалистами компании была разработана система К7, получившая распространение по всему миру. Она применяется в наиболее прогрессивных российских клиниках.

Ортопедия против проблем с зубами

Нашли себе применение новейшие технологии в стоматологии и в работе врачей-ортопедов. Современные материалы и принципиально новый подход к протезированию помогли сократить сроки устранения дефектов полости рта при сохранении высокого уровня надежности.

В первую очередь новые технологии в ортопедической стоматологии - это, конечно, материалы. Поврежденные зубы наращивают при помощи композитов - это наиболее эффективный путь. Материал создается искусственно, в его состав входят:

  • стекло;
  • кварц;
  • мука фарфора;
  • кремниевый оксид.

Преимущество композита - обширная цветовая карта. Пациент может подобрать материал, максимально близкий к родному оттенку зубов. Итак, обновленный зуб будет выглядеть один в один как «родной».

Зачастую применяют в ортопедической Она позволяет сделать действительно красивые и долговечные протезы, поэтому используется в первую очередь для передних зубов. будут похожи на настоящие, даже покрытие их - будто бы эмаль. Керамика совершенно безопасна для здоровья. Укрепление обеспечивается каркасом из металла.

Новинки стоматологии: охвачены все этапы протезирования

Современная ортопедическая стоматология - это еще и новые решения в следующих областях:

  • соединение материалов;
  • облицовка протезов;
  • методы изготовления материалов.

Была разработана методика прочного соединения композита и металла. Она базируется на новых методах обработки металлов: механическом, физико-химическом, совмещенном. В последние годы велик спрос на адгезивные технологии. При обращении к ним можно гарантировать сверхпрочное прилипание.

Применяются новейшие технологии в стоматологии и при работе над винирами и протезами, накладками. Из материалов действительно распространен композит, как наиболее качественный. Посетить стоматолога, чтобы установить такой протез, больше не страшно, да и боли никакой пациент испытывать не будет.

Новинки на вооружении терапевтов-стоматологов

Наиболее актуальны новые технологии в в лечении корневых каналов. Занимается этим направление стоматологии, которое носит название эндодонтия. Главные болезни, изучаемые этой отраслью:

  • пульпиты;
  • периодонтиты.

Если корневые каналы были хорошо пролечены, зуб будет служить еще долго, несмотря на удаление нерва. Но могут возникнуть осложнения, когда патологические процессы распространяются в кости челюсти. Тогда говорят о кистах и гранулемах. Эффективные современные технологии помогут избежать подобной беды.

Одна из наиболее эффективных технологий - это депфорез. Она используется, если предстоит перелечить зуб, который уже лечили ранее устаревшим методом. Незаменима эта технология, если у пациента диагностированы гранулема или киста.

Ну и, конечно, нельзя не сказать о новых материалах, используемых стоматологами-терапевтами. В последнее время распространение получили стеклоиономерные цементы, показавшие себя наиболее перспективными. Эти материалы отличаются минимальным уровнем токсичности, но они прочны и красивы. Кроме того, подобные цементы за счет повышенной концентрации фторидов эффективно борются с кариесом.

Зубные коронки: новые технологии на страже здоровья полости рта

Современные зубные коронки изготавливают из специального материала, создаваемого на основе металла и керамики. Удалось автоматизировать процесс проектирования коронок и их изготовления.

CAD/CAM - такое название получили эти прогрессивные технологии в стоматологии. Коронки, изготовленные таким образом, подходят пациенту идеально, а обеспечивается это компьютерным моделированием полости рта, благодаря чему в любой момент врач может изучить самые труднодоступные участки со всех сторон.

CAD/CAM используется для создания протезов и накладок, коронок самых сложных видов и форм. Технология стоит достаточно дорого, но существенно сокращает сроки пребывания у врача и позволяет получить идеальные коронки, чего не скажешь о более старых методах.

На своем здоровье экономить нельзя

Ни для кого не секрет, что стоматология новых технологий в Москве будет стоить недешево. Гораздо меньше денег можно потратить, если обратиться к старым, «дедушкиным» методам, а то и вовсе съездить специально в небольшой городок на периферии Московской области, рассчитывая найти низкий ценник.

Поступать так строго не рекомендуется. Плохие зубные протезы могут испортить всю будущую жизнь и привести ко множеству проблем. Поэтому действительно разумное поведение - это обращение к специалистам, практикующим наиболее современные методы.

Обязательно нужно удостовериться, что в работе используются современные и эффективные материалы.

Если есть возможность посетить клинику, предлагающую компьютерное моделирование, стоит позволить себе это, на ценник.

Опыт пациентов: применить с пользой

Выбирая стоматологическую клинику, обязательно нужно изучить отзывы: узнать у друзей и знакомых, где они лечили зубы, каковы общие впечатления. Собирая информацию, анализировать необходимо не только то, насколько отзывы положительны, но и то, насколько им можно доверять.

Новейшие технологии в стоматологии - это залог безупречной улыбки, о чем и свидетельствуют отзывы довольных пациентов.

КЛКТ и протокол сканирования

Заключение

Усовершенствования в цифровой стоматологии напрямую зависят от прогресса технологий в компьютерной сфере, даже если они связаны с разработкой какого-то особого транзистора или микрочипа.

Цифровая революция, которая продолжает набирать обороты, началась еще в далеком 1947 году, когда инженеры Walter Brattain и William Shockley компании Bell Laboratory John Bardeen, изобрели первый в мире транзистор, за что впоследствии получили нобелевскую премию. Транзисторы тех времён, кроме того, что были довольно медленными, были еще и чрезмерно большими, по этой причине сложно было включить такую конструкцию в состав какой-то интегральной схемы, не говоря уже о микрочипе. В отличие от своих архисородичей, размер современных транзисторов может не превышать размера нескольких атомов (толщиной в 1 атом и шириной в 10), при этом подобные элементы работают очень быстро на частоте нескольких гигагерц, и могут компактно помещаться в структуре какой-то небольшой платы или компьютерной схемы. Например, Core-процессор (из серии i-series), выпущенный в 2010 году, содержит около 1,17 млрд. транзисторов (!), хотя в средине 70-х аналогичные процессоры могли содержать не более 2300 таких структурных элементов. Но это не предел. Согласно закону Мура, каждые 1-2 года на свет появляется новый микрочип, который по мощности вдвое превышает показатели своего предшественника. Поэтому неудивительно, что в настоящее время в стоматологии наблюдается своеобразный бум, а сканирующие, анализирующие и производственные возможности отрасли продолжают стремительно развиваться. Цифровой рентгенографией уже никого не удивишь, ведь все чаще врач пользуется полностью виртуальными протоколами диагностики и планирования лечения, которые помогают добиться желаемых результатов.

Одним из нововведений, которое уже буквально стало обыденной процедурой, является получение и анализ цифровых оттисков. Впервые подобную процедуру пробовали провести еще в 1973, когда аспирант Francois Duret в университете Клода Бернара (Лион, Франция), предложил получить оттиски с помощью лазера, чтобы в дальнейшем использовать их в ходе комплексной диагностики, планирования лечения, изготовления и припасовки будущих реставраций.

Почти через десять лет в 1983 году Werner Mörmann и Marco Brandestini удалось изобрести первый интраоральной сканер для терапевтической стоматологии, который обеспечивал точность оттисков на уровне 50-100 микрон. Принцип работы сканера базировался на возможностях триангуляции для получения мгновенных трехмерных (3D) изображений зубов, по которым можно было бы произвести фрезеровку будущих терапевтических конструкций. Последние в форме вкладок типа inlay получали при помощи CEREC (CERamic REConstruction или Chairside Economical Restoration of Esthetic Ceramics), но постоянный прогресс технологий в дальнейшем определил возможности для изготовления полноценных одиночных реставраций и даже целых ортопедических протезов. Усовершенствовался и сам CEREC. Так, обычный фрезерный станок модернизировался до системы CEREC OmniCam (Sirona Dental), которая обеспечивает получение наиболее прецизионных конструкций. Повышенное внимание именно к данной системе обусловлено ролью CEREC как пионера подобных аппаратов на рынке, который занимал лидирующую позицию на протяжении нескольких десятков лет, пока остальные аналоги становились на ноги и совершенствовались до уровня уже популярной установки. В настоящее время существует несколько довольно точных и мощных систем для получения внутриротовых оптических оттисков и изготовления CAD / CAM реставраций, но все они используют один и тот же принцип триангуляции для формирования изображения. Наиболее известны из них TRIOS (3Shape), iTero Element (Align Technology), True Definition Scanner 3M (3M ESPE).

Преимущества современных цифровых систем

Для всех современных цифровых систем получения оттисков характерны высокая точность реплик структур зубочелюстного аппарата, и, конечно же, полная неинвазивность манипуляции. В отличие от обычных оттисков, полученные изображения легко могут быть адаптированы ко всем условиям в процессе планирования и лечения, а техника их получения является настолько простой, что ей можно обучиться за несколько приемов. Таким образом, указанные оттиски являются не только более эффективными, но и более удобными для самих пациентов, а также повышают рентабельность стоматологических процедур в целом.

Большим преимуществом является также то, что благодаря цифровым оттискам врач имеет возможность получить не негативное изображение протезного ложа, а реальную копию зубов в формате 3D, которую легко можно оценить на наличие дефектов съемки и точности отдельных границ.

Также такие оттиски, это лишь объем цифровой информации, который в прямом значении экономит физическое пространство как в кабинете врача-стоматолога, так и у зубного техника в лаборатории. Исследования, проведенные для сравнения обычных и цифровых оттисков, доказали лучшую точность последних, при этом их отличие от обычных состоит в том, что их не надо дезинфицировать, а также нет надобности учитывать время получения оттиска для того, чтобы минимизировать эффекты усадки и изменения первичного размера оттискного материала.

Основным преимуществом цифровых оттисков является также то, что они легко могут быть включены в процесс комплексного планирования и лечения с возможностью прогнозирования будущих результатов стоматологической реабилитации. Прямые копии зубов и смежных анатомических структур визуализируются в прямой проекции сразу же после проведения процедуры сканирования, а высокое разрешение полученных изображений помогает оценить состояние существующих реставраций, дефектов, размер и форму участков адентии, тип окклюзионных контактов, а также полноценность бугорково-фиссурного смыкания.

Новые цифровые системы, как например, TRIOS, CEREC Omnicam, обеспечивают даже имитацию цвета структур ротовой полости на полученных репликах, помогая, таким образом, более естественно воспринимать рельеф, форму и цвет зубов и десен. Кроме того, такие возможности помогают врачу более дифференцировано и основательно подойти к вопросу выбора реставрационного материала (металла, керамики, композита), а также учесть наличие кровоточащих и воспаленных участков, областей с накоплением зубного налета и камня, учесть цветовые переходы между зубами, что крайне важно для высокоэстетических реставраций. Оптические оттиски также являются эффективным инструментом для обсуждения исходной клинической ситуации и возможных вариантов лечения с самим пациентом. После получения трехмерного изображения пациенту можно доступно объяснить проблемы с дефектными реставрациями, влияние факторов стирания, суперокклюзии или ангуляции зубов на будущий результат лечения, не дожидаясь при этом получения гипсовых моделей (фото 1).

Фото 1. Окклюзионный вид оптического оттиска верхней челюсти: изображение позволяет детально изучить присущие композитные и амальгамные реставрации, перелом язычного бугорка второго премоляра верхней челюсти слева, металло-керамическую коронку в области первого моляра верхней челюсти справа, и протез с опорой на имплантаты во фронтальном участке.

Все это стимулирует пациента активно включаться в процесс лечения и вести активный диалог с врачом, понимая все возможные риски и изменения собственного стоматологического статуса. Цифровые файлы оптических оттисков сохраняются в формате файлов тесселяции поверхностей (surface tessellation files - STL), и при необходимости из них можно произвести физические модели методом субстратных или аддитивных технологий.

Подготовка к получения оптических оттисков

Как и обычные оттиски, их цифровые аналоги также чувствительны к наличию крови или слюны в области тканей протезного ложа, поэтому поверхность зубов должна быть адекватно очищена и высушена перед сканированием. Следует также учесть эффект отражения поверхностей, риск возникновения которого может быть спровоцирован специфическими условиями освещения рабочего поля. Использование световых палочек помогает добиться адекватного уровня освещенности в области жевательных зубов, но при этом доступ фотоэлемента к этому участку все же остается затруднительным, а раздражение неба может спровоцировать рвотный рефлекс.

Тем не менее, цифровые оттиски – это лишь часть комплексного обследования пациента, которое, кроме всего прочего, должно также включать сбор общего анамнеза и анамнеза болезни, результаты клинического вне- и внутриротового обследования, а также четкое понимание жалоб пациента и его персональных ожиданий относительно будущих результатов вмешательства. Именно анализируя все вышеперечисленные данные, можно составить комплексный план лечения, ориентированный на конкретного пациента и особенности его клинической ситуации. Последние технологические возможности помогают стоматологу самостоятельно проводить имитацию будущих реставраций в области дефектных участков, согласовывая дизайн, контуры, положение, размеры, величину проксимальных контактов и профиль визуализации с пациентом, учитывая индивидуальные особенности окклюзии, и, таким образом, обеспечивая получения наиболее адаптированных и ожидаемых временных конструкций.

Тем не менее, главное ограничение существующих стоматологических цифровых технологий состоит в том, что с их помощью довольно сложно полностью учесть параметры эксцентричных движений челюсти и значение основных окклюзионных детерминант по будущему дизайну реставрации. В связи с тем, что регистрация точного соотношения верхней челюсти к плоскости дефектного участка является весьма затруднительным заданием, так же трудно установить объективный наклон окклюзионной плоскости относительно группы фронтальных зубов в момент их физиологического смыкания.

Такими же трудными задачами является анализ суставного пути, размаха трансверсальных движений и т.д., то есть использование цифровых оттисков – это своего рода тоже вызов для построения протетических конструкций с учетом всех физиологических или измененных параметров окклюзии. Получение точных оттисков с мягких тканей является также весьма проблематичным, особенно на участках полностью беззубых резидуальных гребней. Но как бы там ни было, возможность трехмерной визуализации, а также исключение необходимости отливки гипсовых моделей и формирования восковых шаблонов, значительно ускоряет и адаптирует процесс лечения, помогая достичь наиболее пациент-ориентированных результатов стоматологической реабилитации.

Протокол цифрового планирования продемонстрирован на фото 2-7. Пациент обратился за помощью с адентией верхнего правого центрального резца (фото 2).

Фото 2. Пациент обратился за помощью по поводу адентии латерального резца. В ходе лечения планировалось изготовить конструкцию с опорой на центральный резец и клык.

В ходе анализа индивидуальных пожеланий пациента, результатов комплексного обследования и прогноза будущего лечения было принято решение использовать несъемный литий-дисиликатный протез в качестве замещающей конструкции. Виртуальный макет будущей реставрации помог определить нужную длину, ширину и профиль контактных поверхностей для достижения максимально возможной мимикрии натуральных тканей (фото 3).

Фото 3. Цифровой mock-up протеза, замещающего отсутствующий зуб.

После этого провели препарирование опорных зубов (фото 4), а затем методом сканирования получили виртуальные оттиски отпрепарированных единиц и зубов-антагонистов, которые в дальнейшем анализировали в цифровом артикуляторе (фото 5).

Фото 4. Окклюзионный вид оптического оттиска отпрепарированных зубов с ретракционными нитями.

Фото 5. Виртуальная артикуляция оптических оттисков верхней и нижней челюстей.

Данные оптического оттиска были успешно использованы также для детального анализа ширины финишной линии области препарирования, путей введения конструкции, уровня преднамеренной редукции тканей в области осевых стенок и окклюзионной поверхности, а также для верификации поднутрений, которые были промаркированы красным цветом (фото 6).

Фото 6. Анализ оптического оттиска на наличие поднутрений. Поднутрения обозначены красным цветом с губной стороны центрального резца и с мезиальной стороны клыка.

Преимущество цифровых оттисков также состоит в том, что ошибки препарирования можно исправить в тот же визит, базируясь на информации, полученной во время сканирования, а после этого провести повторную манипуляцию уже на откорректированном участке отпрепарированных зубов. После этого цифровые файлы отправляют в техническую лабораторию для производства будущей реставрации с помощью фрезерных аппаратов. Пример окончательной конструкции представлен на фото 7.

Фото 7. Реставрация, полученная с оптического оттиска, примеряется на модели.

КЛКТ и протокол сканирования

Использование цифровых возможностей на этапах диагностики и планирования лечения не является каким-нибудь новшеством, а скорее рассматривается как уже достаточно аргументированный подход к реабилитации стоматологических пациентов. В течение многих десятилетий стоматологи использовали специализированное программное обеспечение для визуализации трехмерных результатов компьютерной томографии (КТ): в ходе анализа роста анатомических структур челюстно-лицевой области; патологии суставов; архитектуры кости; размеров отдельных участков зубов и челюстей; позиции жизненно-важных органов таких как кровеносные сосуды и нервы, а также границ гайморовых пазух и положения импактных зубов; диагностики опухолей и новообразований. Но, наверное, наиболее влиятельное значение КТ-диагностика имеет в ходе подготовки к дентальной имплантации и планирования челюстно-лицевой реконструктивной хирургии. Технологический прогресс набрал новых оборотов с разработкой конусно-лучевой компьютерной томографии (КЛКТ), которая по сравнению с обычной КТ характеризируется пониженным уровнем лучевой нагрузки и меньшей стоимостью аппарата. Действительно, суммарная радиация при КЛКТ-сканировании в среднем на 20% меньше, чем при спиральной КТ, и примерно равна таковой при выполнении обычной рентгенографии методом периапикальной съемки.

Результаты КТ и КЛКТ диагностики сохраняются в цифровом виде в стандартизированном формате файлов DICOM (digital imaging and communication in medicine). В сочетании с радиографическим шаблоном, изготовленным из диагностической восковой репродукции, КЛКТ данные могут быть успешно использованы для планирования позиции и ангуляции имплантатов с учетом фиксации будущей протетической конструкции, исходя из имеющихся условий и объемов костного гребня (фото 8 – фото 11). В настоящее время существуют два различных протокола имплементации рентгенографических шаблонов в структуру DICOM-данных для планирования будущих хирургических манипуляций. Согласно первому из них, именуемому протоколом двойного сканирования, процедура съемки проводится отдельно для хирургического шаблона и отдельно для пациента, при условии, что хирургический шаблон установлен в ротовой полости. Фидуциальные маркеры в структуре самого шаблона помогают в будущем довольно точно совмещать два полученных изображения. При этом уровень погрешностей сканирования практически сводится к минимуму, а изготовление шаблонов можно производить с помощью разного адаптированного программного обеспечения (фото 12).

Фото 8. Использование конусно-лучевой компьютерной томографии и специализированного программного обеспечения для планирования процедуры имплантации. Рентген-шаблон вместе с КТ-моделью был использован для планирования будущей позиции имплантата.

Фото 9. Использование конусно-лучевой компьютерной томографии и специализированного программного обеспечения для планирования процедуры имплантации. Рентген-шаблон вместе с КТ-моделью был использован для планирования будущей позиции имплантата.

Фото 10. Использование конусно-лучевой компьютерной томографии и специализированного программного обеспечения для планирования процедуры имплантации. Рентген-шаблон вместе с КТ-моделью был использован для планирования будущей позиции имплантата.

Фото 11. Использование конусно-лучевой компьютерной томографии и специализированного программного обеспечения для планирования процедуры имплантации. Рентген-шаблон вместе с КТ-моделью был использован для планирования будущей позиции имплантата.

Фото 12. Пример хирургического шаблона, изготовленного по цифровому дизайну двойного сканирования.

Второй протокол требует проведения лишь одной процедуры сканирования пациента вместе с установленным в ротовой полости хирургическим шаблоном. Полученные данные импортируются в программу планирования имплантации без необходимости проведения дополнительной обработки изображений. Как и в случае с протоколом двойного сканирования, врач имеет возможность аргументировано спланировать позицию и ангуляцию имплантатов, базируясь на пространственном расположении хирургического шаблона, полученного в результате предварительной диагностики. Трехмерные рентгенографические изображения, полученные с использованием протокола однократного сканирования, могут быть объединены с цифровыми шаблонами будущих реставраций, которые выполняют, базируясь на внутриротовых оптических оттисках (или результатах сканирования моделей), используя при этом в качестве маркеров существующие естественные зубы. При этом графически для кости, зубов, десен и имплантатов могут быть использованы разные цифровые маски (фото 13 и фото 14), а использование зубов в качестве фидуциальных маркеров значительно повышает точность планирования позиции будущих имплантатов.

Фото 13. Оптический оттиск и цифровая репродукция были комбинированы с результатами КЛКТ-сканирования для позиционирования имплантатов в ходе комплексного лечения. У данного пациента необходимо проведение процедуры синус-лифтинга для адекватной установки имплантатов (синим обозначены контуры зубов, полученные из восковой репродукции/оптического оттиска, красным – контуры мягких тканей).

Фото 14. Оптический оттиск и цифровая репродукция были комбинированы с результатами КЛКТ-сканирования для позиционирования имплантатов в ходе комплексного лечения. У данного пациента необходимо проведение процедуры синус-лифтинга для адекватной установки имплантатов (синим обозначены контуры зубов полученные из восковой репродукции/оптического оттиска, красным – контуры мягких тканей).

Аналогичные маркерные точки в структуре хирургического шаблона, к сожалению, не могут обеспечить аналогично высокого уровня прецизионности. Независимо от используемого протокола сканирования, предоставляемые возможности цифровой 3D визуализации, оптического сканирования и программного обеспечения являются уникальными инструментами планирования будущего ятрогенного вмешательства в руках умелого врача-стоматолога. Так, учитывая позицию и контур мягких тканей, размеры и качество костного резидуального гребня, как и расположение сосудов и нервов, врач может обеспечить максимально безопасный алгоритм имплантации, прогнозируя при этом не только функциональные, но и эстетические результаты реабилитации. Хирургический шаблон независимо от протокола получения сканируемого изображения обеспечивает точность позиционирования имплантата, исключая возможные операционные погрешности, которые могут возникнуть в ходе хирургического вмешательства. Виртуальное планирование дентальной реабилитации помогает врачу добиться наиболее безопасных, и в то же время пациент-ориентируемых результатов лечения эстетических и функциональных дефектов.

Заключение

Внутриротовые оптические сканеры продолжают постоянно модифицироваться, становясь все более быстрыми, точными и миниатюрными аппаратами, которые так необходимы в стоматологической практике. Учитывая прогрессирующие развитие технологий трехмерной визуализации и адаптированного программного обеспечение для обработки изображений, можно с твердостью резюмировать, что нынешние стоматологи живут в золотой век цифровых технологий. Подобные новшества помогают добиться более точных и прецизионных результатов диагностики, планирования и проведения ятрогенных вмешательства, вместе с тем повышая комфорт в ходе стоматологического лечения. Таким образом, крайне важно, чтобы новые цифровые технологии своевременно появлялись и продолжали развиваться в стенах стоматологических кабинетов и клиник.

Москва, ул. Мишина, д. 38.
м.Динамо. Выходите из 1-го вагона из центра, выходите из метро, перед Вами стадион "Динамо". Идете налево до светофора. По пешеходному переходу переходите на противоположную сторону Театральной аллеи, идете немного вперед. На противоположной стороне остановка. Садитесь в автобус №319. Едете 2 остановки до "ул.Юннатов". Переходите на противоположную сторону улицы. Слева от вас крыльцо- вход в клинику "ЭспаДент". Вы на месте!

г. Москва, ул. Академика Анохина д.60
Выходите из первого вагона из центра в сторону "улица Академика Анохина". Из стеклянных дверей направо. Вдоль лесного массива (по правую руку) по дорожке около 250м. до ул. Академика Анохина. Переходите на противоположную сторону улицы и идете направо, около 250м., до дома №60. В доме предпоследний подъезд, вывеска "Зубы за 1 день". Вы на месте!


Выходите из метро на ст. Савеловская (первый вагон из центра). Проходите до конца подземного перехода и выходите из метро в сторону улицы «Сущевский вал». Идете мимо ресторана "Дядя Коля". Проходите под эстакадой, далее следуете по подземному переходу на противоположную сторону ул. Новослободская. Продолжаете идти по улице Новослободской около 200м, мимо магазина «Электрика». На первом этаже дома №67/69, расположен ресторан «Трактир». Поверните направо, перед вами вывеска "Зубы за 1 день", поднимитесь на второй этаж. Вы на месте!

г. Москва, ул. Новослободская, 67/69
Выходите из метро на ст. Менделеевская (первый вагон из центра). Выходите из метро в сторону ул. Лесная. Идете по ул. Новослободская из центра по направлению к ул. Лесная. Переходите улицы: Лесная, Горлов туп., Порядковый пер. Доходите до пересечения ул. Новослободская с Угловой пер. Переходите переулок, перед вами здание, на фасаде вывеска "Зубы за 1 день". Вы на месте!

г. Москва, ул. Академика Королева, д. 10
От метро доберётесь за 15 минут. До трамвая 4 минуты, 5 минут на трамвае и 3 минуты до клиники. 1-ый вагон из центра. Выходите из метро, доходите до остановки трамвая и 4 остановки на любом трамвае, до Останкино. Выходите и возвращаетесь вдоль парка до дороги, переходите и налево 80м и увидите на фасаде вывеску "Центр Хирургической Стоматологии". Вы на месте!

г. Москва, От монорельса ст. ул. Академика Королева
Выходите из станции следуете вдоль ул. Академика Королева (по левую руку), проходите магазин "Мегасфера" до пересечения с дорогой. Поворачиваете направо и мимо лесопарка идете до дома №10. На фасаде вывеска "Центр Хирургической Стоматологии". Вы на месте!

Стоматологическая клиника "Миродент" - г. Одинцово, ул. Молодежная дом 48.
От ст. Одинцово автобусы №1, 36 или маршрутное такси № 102, 11, 77 - 2 остановки до остановки "Башня". От м. Парк Победы: автобус №339 до остановки "Башня". Клиника расположена на 2 этаже бизнес-центра.

Цифровая стоматология – это направление современной стоматологии, все меньше использующий кропотливый ручной труд. Создание протезов или имплантатов всегда было самым трудоемким процессом. Оно требовало от врача серьезных практических навыков в геометрии и черчении, чтобы вручную вводить координаты всех точек. Теперь зубные механики и ортодонты, хирурги и имплантологи используют стоматологические CAD/CAM системы. Цифровые методы и специальные программы используются при лечении, протезировании, удалении зубов.

Цифровые технологии в стоматологии нуждаются в информации

Изготовление стоматологических реставраций без первоначального точного описания нереально. Считывание информации и перевод ее в цифровой формат выполняют специальные устройства. Разберемся, что необходимо для реализации цифровых технологий в стоматологии.

Цифровые радиографы

Рентгенодиагностика нужна для визуализации костей и зубов, и наглядных результатов лечения и протезирования. И все это без пленок, темных комнат, часов ожидания и изрядной порции облучения.

С Дентой вы можете управлять вашей стоматологической клиникой с телефона и планшета

Радиографы используют специальные датчики, передающие изображение на экран компьютера. Это изображение можно увеличивать – диагностика становится более точной. По уровню радиационной нагрузки цифровой радиограф совершеннее в 4 раза: 1 снимок соответствует 4 обычным.

Интраоральная (внутриротовая) камера

Интраоральная камера создает точные снимки зубов и окружающих его структур. Зачастую своими глазами увидев дефекты зуба, пациент ответственнее относится к назначенному лечению и гигиене полости рта.

Цифровое сканирование внутренней поверхности рта

Предоставляет информацию в трёхмерном формате и позволяет точно спланировать хирургические процедуры и протезирование. На базе этих снимков формируется 3D-модель зубных рядов и мягких тканей вокруг них.

Оптические сканеры создают цифровую карту зубов и их цифровой оттиск. С помощью цифровой цветовой карты можно подобрать точный цвет эстетической реставрации.

Цифровые оттиски оставили в прошлом использование слепочной массы: даже касаться зубов необязательно. Пациент спокойно может закрыть рот и не бояться приступов рвоты и тошноты. Параметры этих оттисков врач внимательно изучает и корректирует, доводя до совершенства, пока они еще в виртуальной форме.

Лабораторное сканирование моделей

Интраоральный сканер иногда применить невозможно. В этом случае можно пойти другим путем, который опять же приведет к сканированию.

Используя традиционные методы, выполнить слепки ротовой полости и зубных рядов, изготовить по ним гипсовые модели. И только потом отсканировать их в лабораторном сканере и получить виртуальные модели челюстей.

Конусно-лучевая компьютерная томография (КЛКТ)

3D томограф дает трехмерное изображение анатомических структур челюстей и лица. С ним имплантология и периодонтология обрели зрение, ведь плоское изображение объемного предмета всегда было неточным. Для эндодонтии важны точные данные длины, толщины и формы канала зуба или формы кости. Информация из центра компьютерной томографии работает и без пациента. Ортодонт видит место в кости в направлении возможного перемещения зубов. Ортопед видит насквозь и зубные ткани, и пульпу и без труда определяет глубину препарирования под коронку, винир или пломбу.

Импланты теперь не ставят вслепую, и ушли многие проблемы, связанные с их неудачным размещением.

CAD-компьютерное проектирование

Когда сканер выдает оцифрованную информацию, CAD-система начинает визуализировать её на экране монитора.Одна из самых популярных таких систем - Dental CAD. Данные КЛКТ и снимки полости рта совмещаются, анализируются и воплощаются в 3D-модели зубных рядов. Такие виртуальные модели незаменимы при дентальной реставрации и во время всего процесса имплантирования.

Сервисы предлагают врачу все возможные варианты реставрации зуба, ему остается выбрать самый оптимальный. Степень вмешательства человека в работу системы CAD/CAM может варьироваться – от минимальных пользовательских настроек до значительных корректировок в конструкции. Планирование дентальной реабилитации идет «от обратного», начиная с демонстрации окончательного результата, полностью удовлетворяющего и врача, и пациента.

Цифровое проектирование дизайна улыбки теперь обычное дело. Даже можно сделать еще шаг вперед: заказать временные протезы, вживую опробовать новую улыбку и понять, насколько она удобна. И только потом врач начнет работать с зубами в действительности.

На этом этапе часто используются интернет-консультации в режиме реального времени. Интересная программа – ImplantAssistant. Она поможет обсудить и решить многие эстетические или функциональные вопросы, исключить ненужные посещения клиники пациентом.

CAM-компьютерное управление производством

Материализируются коронки, виниры, вкладки, абатменты, балочная система для протезирования на имплантатах, мостовидные протезы и имплантаты благодаря компьютерным технологиям, объединенным одним термином – CAM. Немецкий аппарат CEREC может изготовить все эти виды реставраций и из временных материалов. Это очень удобно, если хочется проверить, к примеру, дикцию с новой формой коронок или оценить практичность сложной конструкции.

Когда виртуальная модель будущей реставрации готова, программное обеспечение преобразовывает ее в набор команд. Дальше они передаются на модуль CAM – стоматологический 3D-принтер. Он приходит на смену фрезеровальному станку, который все еще популярен и широко используется. А вот метод литья уже стремительно устаревает. ЗD-принтеры применяются в ортодонтии, хирургии, протезировании и имплантологии.

Незаметные элайнеры в исправлении прикуса

Раньше этот косметический дефект убирали пластинки, затем – брекеты, сейчас все больше набирают популярность прозрачные элайнеры (капы). Они похожи на чехлы, внутренняя поверхность которых точно повторяет форму всего зубного ряда, учитывая его микроподвижность, и оказывает на него постоянное постоянное давление. Элайнеры не портят эмаль, позволяют зубам правильно двигаться внутри челюсти. В течение всего курса лечения форму кап корректируют, чтобы с каждым разом все больше увеличивать необходимое давление.

Элайнеры производятся за счет технологии термоформирования в приборах для прессования в условиях вакуума или под давлением, с применением полимерных пластин определенной толщины. Пластины при нагревании становятся пластичными и позволяют дублировать отмоделированне или реальные объекты различной формы с помощью прессования в аппарате. В этом случае, объектом дублирования выступают “цифровые” модели челюстей, которые изготовлены по индивидуальным слепкам клиента клиники. На данном этапе производство элайнеров распространено в США, Корее, Мексике, Германии, Италии, Великобритании. С 2012 года элайнеры производятся и в России.

Имплантология

В критической ситуации, при полном разрушении зуба, на который уже невозможно сделать коронку, можно использовать имплант. При его установке нередки такие проблемы, как засверливание на большую или меньшую глубину или под неправильным углом, а также неточное позиционирование. Цена ошибки – вынужденное ожидание восстановления костной ткани от 2 до 12 месяцев.

Вот и приходит на помощь 3D-принтер, например PALTOPPilotSurgicalGuide, который изготавливает хирургический шаблон. На основании данных КТ, программа сама выбирает правильную ориентацию пропила для будущего имплантата и создает специальные ориентиры (втулки), которые вставляются в шаблон. Установив его в полости рта пациента, хирург-имплантолог быстро и точно высверлит под нужным углом отверстия по этим ориентирам. Шаблон обеспечит полный обзор операционного поля, контроль глубины погружения в кость и успех приживления имплантатов.

Имплантаты обычно имеют симметричную форму и круглое сечение, и стандартные абатменты тоже. Абатмент располагается между коронкой и имплантатом. Однако сечение натуральных зубов не круглое, а асимметричное. Чтобы не дорабатывать стандартный абатмент вручную, "на глаз", тоже используют компьютерное моделирование и изготовление.

Для прямого производства подходят машины Realizer50, 3Shape, российская система Авантис. Напечатанные с их помощью детали монолитные и однородные, и в коронках отсутствуют поры. Даже для введения анестетика сейчас используется цифровое устройство TheWand. Оно медленно, аккуратно и безболезненно вводит лекарство для анестезии. Чувство боли от иголки не сравнится с легким чувством давления жидкости на ткани.

20.04.2018

Информационные технологии прочно укрепляются во всех сферах современной жизни, не могли они не найти своего применения и в области стоматологии. Появляются даже термины «стоматологическая информатика», «компьютерная стоматология» и другие.

Цифровые технологии могут быть использованы на всех этапах стоматологического лечения – от заполнения и ведения форм медицинской документации до моделирования клинических ситуаций и предлагаемого плана лечения и так далее.

Автоматизированное проектирование и изготовление зубных протезов.

Теоретические основы данной технологии появлялись еще в начале 70-х гг XX века. Для обозначения систем автоматизированного проектирования в мире принято использовать обозначение CAD (Computer-Aided Design), а для систем автоматизации производства – CAM (Computer-Aided Manufacturing).

Технология развивается по двум направлениям. Первое – это индивидуальные CAD/CAM системы, которые позволяют работать в рамках одного медицинского учреждения, иногда даже в присутствии пациента прямо в кабинете стоматолога. Основное преимущество индивидуальных систем – оперативность изготовления, однако для полноценной работы все равно необходим весь комплекс оборудования, который стоит немало.

Второй вариант – централизованные CAD/CAM модули, которые предполагают наличие производственного центра, изготавливающего большой ассортимент конструкций для различных рабочих станций. Такой вариант позволяет каждому стоматологу не приобретать изготавливающий модуль. Однако его недостатком является то, что весь комплекс мероприятий не может быть проведен за одно посещение, а также доставка готовой конструкции усложняется и становится дороже. Ведь производственный центр может быть расположен в другом городе или даже стране.

Основной принцип работы всех современных CAD/CAM систем является неизменным с 1980-х годов и включает в себя несколько этапов:

1) сбор данных о рельефе поверхности протезного ложа с помощью специального устройства с дальнейшей оцифровкой полученной информации и приведением ее в приемлемый для компьютерной обработки вид;

2) создание виртуальной модели будущей конструкции с помощью компьютера и с учетом пожеланий дантиста;

3) изготовление самого протеза на основе данных, полученных с помощью устройства.

Различия имеются как раз в технологиях осуществления всех этих этапов, но сами они остаются неизменными.

Этап сбора данных

Основные различия систем можно обнаружить именно на этапе сбора данных. Считывание информации и перевод ее в цифровой формат может производиться с помощью механических и оптических цифровых преобразователей. Оптический слепок является трехмерным – каждая точка поверхности имеет четкие координаты в трех плоскостях. Устройство, которое создает такие слепки – это источник света и фотодатчик, который преобразует свет, отраженный от объекта, в поток электрических импульсов.

Механические системы сканирования данных считывают информацию контактным зондом, который передвигается по поверхности объекта согласно заданной траектории.

Этап компьютерного моделирования конструкции

На сегодняшний день изготовление предметов без предварительного точного описания невозможно. Данный этап создания протезов ранее был самым трудоемким и требовал от врача серьезных навыков в области геометрии и черчения. Необходимо было вручную вводить координаты всех точек. Все производители стоматологических CAD/CAM систем стремились упростить и максимально визуализировать данный процесс. Поэтому современные системы приступают к построению изображения на экране монитора, как только получают со сканера оцифрованную информацию. А затем специальные программы предлагают врачу возможные варианты реставрации зуба, из которых можно выбрать наиболее приемлемый. Степень вмешательства человека в работу системы CAD/CAM может варьироваться – от минимальных пользовательских настроек до существенных поправок в конструкции.

Непосредственное изготовление реставрации

Когда модель будущей реставрации готова, программное обеспечение преобразовывает виртуальную модель в набор команд, которые передаются на модуль CAM. Производственный модуль изготавливает спроектированную реставрацию. Самые первые системы изготавливали протезы путем вырезания из готового блока, используя алмазные или твердосплавные боры и диски. Излишки материала удалялись. При таком способе можно создать законченную форму сложной конфигурации, но это достаточно сложно, и значительная часть материала расходуется впустую. Поэтому возникли «добавляющие» методы производства зубных реставраций, которые также начали находить применение в системах CAD/CAM, при которых сложные конструкции можно изготовить без потерь материала.

Применение CAD/CAM систем

CAD/CAM системы не только помогают изготавливать зубные протезы. Их можно также применять в хирургической практике для изготовления хирургических шаблонов, которые облегчают правильное расположение зубных имплантов во время операций.

Существуют также автоматизированные системы, которые используются для обучения студентов-стоматологов и зубных техников. Их называют стоматологические симуляторы, они ускоряют приобретение навыков по восстановлению и препарированию зубов.

IT-технологии применяются на всех этапах оказания стоматологической помощи, поэтому своевременная подготовка специалистов, которые владеют такими технологиями, является важным условием их внедрения в стоматологию.

Loading...Loading...