Крупнейший на планете адронный коллайдер закрыт на модернизацию. А что будет после открытия? Большой адронный коллайдер - зачем он нужен

похимичить? это скорее физика и техника. т.к. вопрос не особо серьезен, то вылаживаю подробную инструкцию. НО помните, изготовление андронных коллайдеров преследуется по закону, по воздуху и по утрам.

Краткое руководство по постройке карманного адронного коллайдера для чайников.
Итак, предупреждаю вас - свойства коллайдера до сих пор не полностью выяснены, и куда девается примерно половина энергии коллайдера, неизвестно. Из-за этого коллайдер был запрещен в 2034 Дартом Херохито. Так что стройте коллайдер на свой страх и риск.
Ну что ж, приступим.
Для начала надо кое-что разъяснить - адронные коллайдеры бывают нескольких видов:

Респерспективненькие - коллайдеры с последующей возможностью респерспективнизации

Экспрааприаторные - боевой коллайдер с возможность экспрааприирования.

С подвыперизподвыпертом - новая модель коллайдера со встроенным подвыперизподвыпертом.

Марки «Siemens» - самые страшные коллайдеры, производство которых строжайше запрещено, так как этот вид коллайдеров, не нанося никаких внешних повреждений, напрямую разрушает мозг человека. Этот вид коллайдеров был изобретен Дартом Херохито в V веке нашей эры, во время его пребывания в Восточной Римской Империи. Соединив коробку из-под масла, требуху из огромного боевого робота и грязный платок Чака Норриса, он получил простейший коллайдер «Siemens». Попытавшись испробовать его, Дарт адронизировал мозги более чем 20 миллионам жителей Земли (приземленные смертные назвали это эпидемией чумы, и с тех пор у землян проходит вакцинация - процесс, безболезненно удаляющий мозг и позволяющий существовать без его помощи. Именно поэтому для большинства людей коллайдеры «Siemens» не опасны).

Технология производства в домашних условиях

Респерспективненькие коллайдеры

Делается очень легко: берётся пластиковая бутылка 1.5 литра, в нижней части прожигается дырка, на верхнюю часть надевается фольга и протыкается иголкой. (Последнее действие необходимо повторять в цикле не менее 3000 раз)

Экспрааприаторный коллайдер

Технология производства экспрааприаторного колайдера немного сложнее технологии производства респерспективненького, вам понадобится ведро воды, ножницы, фольга и пластиковая 1.5 литровая бутылка. Отрезаем дно бутылки, одеваем сверху фольгу, протыкаем, и коллайдер готов.

Подвыперизподвыпертый коллайдер

Подвыперизподвыпертый коллайдер делается сложнее всех! Берется экспрааприаторный и респерспективненький коллайдер. Очищаем бутылки от всей ентой дряни, затыкаем дырки фольгой, берем сигарету, закуриваем и прожигаем дырочку в боковой поферхности корпуса нашего подвыперизподвыпертого коллайдера. Теперь при помощи гашишевого топлива мы можем разгонять свой мозг до скорости приближающейся к скорости света, где в последствии образуются черные дыры.

Топливо для коллайдера
Все перечисленные в данном обзоре коллайдеры работают на биотопливе. Как правило, поставщиком оного является Средняя Азия. Но правительство многих стран не дремлет, из-за запрета на “временные переходы в другие миры” топливо для колайдеров под бооольшим запретом. Данный запрет был введён по предварительному сговору правительств многих стран с инопланетным разумом, так как представителей внеземного разума задолбали гастарбайтеры-земляне, появляющиеся в их параллельных мирах после применения адронного коллайдера.

Продолжу свой рассказ про посещение дня открытых дверей в CERN.

Часть 3. Вычислительный центр.

В этой части я расскажу о месте, где хранят и обрабатывают то, что является продуктом работы CERN - результаты экспериментов. Речь пойдет про вычислительный центр, хотя правильнее, наверное, его назвать дата центром. Но сначала я немного коснусь проблематики вычислений и хранения данных в CERN. Каждый год один только Большой Адронный Коллайдер производит такое количество данных, что если их записать на CD, получится стопка высотой 20 километров. Это происходит из-за того, что при работе коллайдера пучки сталкиваются 30 миллионов раз в секунду и при каждом столкновении возникает примерно 20 событий, каждое из которых производит большое количество информации в детекторе. Конечно, эта информация обрабатывается сначала в самом детекторе, затем поступает в локальный вычислительный центр и только потом передается в главный центр хранения и обработки данных. Тем не менее, приходится обрабатывать примерно петабайт данных каждый день. К этому надо добавить то, что эти данные надо не только хранить но и распределять между исследовательскими центрами по всему миру, а кроме того, поддерживать примерно 4000 пользователей WiFi сети в самом CERN. Необходимо добавить, что существует вспомогательный центр хранения и обработки данных в Венгрии, с которым существует 100 гигабитный линк. При этом внутри CERN проложено 35000 километров оптического кабеля.
Однако, таким мощным компьютерный центр был не всегда. На фотографии видно, как менялось используемое оборудование с течением времени.

Сейчас произошел переход от мейнфреймов к гриду обычных РС. В настоящее время центр обладает 90000 процессорных ядер в 10000 серверов, которые работают 24 часа в сутки 7 дней в неделю. В среднем на этом гриде одновременно работает 250000 заданий по обработке данных. Этот вычислительный центр находится на пике современных технологий и, часто, двигает вычислительную технику и IT вперед для решения задач, необходимых для хранения и обработки таких больших объемов данных. Достаточно упомянуть то, что в здании, находящемся недалеко от вычислительного центра Тимом Бернерсом-Ли был изобретен World Wide Web (расскажите об этом тем идиотам альтернативно одаренным, которые, сидя в интернете, говорят, что фундаментальная наука не приносит пользы).

Однако вернемся к проблеме хранения данных. На фотографии видно, что в допотопные времена раньше данные хранились на магнитных дисках (Да, да, я помню эти диски объемом 29 мегабайт на ЕС ЭВМ).

Чтобы посмотреть, как обстоят дела сегодня, я иду к зданию, где находится вычислительный центр.

Там, на удивление, народу не очень много и я довольно быстро прохожу внутрь. Нам показывают небольшой фильм, а затем ведут к запертой двери. Наш гид открывает дверь и мы оказываемся в достаточно большом зале, где находятся шкафы с магнитными лентами, на которых и записана информация.

Большая часть зала занята этими самыми шкафами.

В них хранится порядка 100 петабайт информации (что эквивалентно 700 годам Full HD видео) в 480 миллионах файлов. Интересно, что к этой информации имеют доступ примерно 10000 физиков по всему миру в 160 вычислительных центрах. Эта информация содержит все экспериментальные данные начиная с 70-х годов прошлого века. Если присмотреться повнимательнее, видно, как эти магнитные ленты расположены внутри шкафов.

В некоторых стойках находятся процессорные модули.

На столе располагается небольшая выставка того, что используется для хранения данных.

Этот вычислительный центр потребляет 3.5 мегаватта электрической энергии и имеет свой дизель-генератор на случай отключения электричества. Надо также сказать про систему охлаждения. Она расположена снаружи здания и гонит холодный воздух под фальш-полом. Водяное охлаждение используется лишь на небольшом числе серверов.

Если взглянуть внутрь шкафа, видно, как происходит автоматическая выборка и загрузка магнитных лент.

Вообще-то этот зал является не единственным залом, где расположена вычислительная техника, но то, что посетителей пустили хотя-бы сюда уже вызывает уважение к организаторам. Я сфотографировал то, что демонстрировалось на столе.

После этого появилась другая группа посетителей и нас попросили на выход. Делаю последнюю фотографию и покидаю вычислительный центр.

В следующей части я расскажу про мастерские, где создается и собирается уникальное оборудование, которое используется в физических экспериментах.

Многие простые жители планеты задают себе вопрос о том, для чего нужен большой адронный коллайдер. Непонятные большинству научные исследования, на которые потрачено много миллиардов евро, вызывают настороженность и опаску.

Может, это и не исследования вовсе, а прототип машины времени или портал для телепортации инопланетных существ, способной изменить судьбу человечества? Слухи ходят самые фантастичные и страшные. В статье мы попытаемся разобраться, что такое адронный коллайдер и для чего он создавался.

Амбициозный проект человечества

Большой адронный коллайдер на сегодня является мощнейшим на планете ускорителем частиц. Он находится на границе Швейцарии и Франции. Точнее под нею: на глубине 100 метров залегает кольцевой тоннель ускорителя длиной почти 27 километров. Хозяином экспериментального полигона стоимостью, превышающей 10 миллиардов долларов, является Европейский центр ядерных исследований.

Огромное количество ресурсов и тысячи физиков-ядерщиков занимаются тем, что ускоряют протоны и тяжёлые ионы свинца до скорости, близкой к световой, в разных направлениях, после чего сталкивают их друг с другом. Результаты прямых взаимодействий тщательно изучаются.

Предложение создать новый ускоритель частиц поступило ещё в 1984 году. Десять лет велись различные дискуссии насчет того, что будет собой представлять адронный коллайдер, зачем нужен именно такой масштабный исследовательский проект. Только после обсуждения вопросов особенностей технического решения и требуемых параметров установки проект был утверждён. Строительство начали только в 2001 году, выделив для его размещения прежнего ускорителя элементарных частиц - большого электрон-позитронного коллайдера.

Зачем нужен большой адронный коллайдер

Взаимодействие элементарных частиц описывается по-разному. Теория относительности вступает в противоречия с квантовой теорией поля. Недостающим звеном в обретении единого подхода к строению элементарных частиц является невозможность создания теории квантовой гравитации. Вот зачем нужен адронный коллайдер повышенной мощности.

Общая энергия при столкновении частиц составляет 14 тераэлектронвольт, что делает устройство значительно более мощным ускорителем, чем все существующие сегодня в мире. Проведя эксперименты, ранее невозможные по техническим причинам, учёные с большой долей вероятности смогут документально подтвердить или опровергнуть существующие теории микромира.

Изучение кварк-глюонной плазмы, образующейся при столкновении ядер свинца, позволит построить более совершенную теорию сильных взаимодействий, которая сможет кардинально изменить ядерную физику и звёздного пространства.

Бозон Хиггса

В далёком 1960 году физик из Шотландии Питер Хиггс разработал теорию поля Хиггса, согласно которой частицы, попадающие в это поле, подвергаются квантовому воздействию, что в физическом мире можно наблюдать как массу объекта.

Если в ходе экспериментов удастся подтвердить теорию шотландского ядерного физика и найти бозон (квант) Хиггса, то это событие может стать новой отправной точкой для развития жителей Земли.

А открывшиеся управляющего гравитацией, многократно превысят все видимые перспективы развития технического прогресса. Тем более что передовых учёных больше интересует не само наличие бозона Хиггса, а процесс нарушения электрослабой симметрии.

Как он работает

Чтобы экспериментальные частицы достигли немыслимой для поверхности скорости, почти равной в вакууме, их разгоняют постепенно, каждый раз увеличивая энергию.

Сначала линейные ускорители делают инжекцию ионов и протонов свинца, которые после подвергают ступенчатому ускорению. Частицы через бустер попадают в протонный синхротрон, где получают заряд в 28 ГэВ.

На следующем этапе частицы попадают в супер-синхротрон, где энергия их заряда доводится до 450 ГэВ. Достигнув таких показателей, частицы попадают в главное многокилометровое кольцо, где в специально расположенных местах столкновения детекторы подробно фиксируют момент соударения.

Кроме детекторов, способных зафиксировать все процессы при столкновении, для удержания протонных сгустков в ускорителе используют 1625 магнитов, обладающих сверхпроводимостью. Общая их длина превышает 22 километра. Специальная для достижения поддерживает температуру −271 °C. Стоимость каждого такого магнита оценивается в один миллион евро.

Цель оправдывает средства

Для проведения таких амбициозных экспериментов и был построен самый мощный адронный коллайдер. Зачем нужен многомиллиардный научный проект, человечеству рассказывают с нескрываемым восторгом многие учёные. Правда, в случае новых научных открытий, скорее всего, они будут надёжно засекречены.

Даже можно сказать, наверняка. Подтверждением сему является вся история цивилизации. Когда придумали колесо, появились Освоило человечество металлургию - здравствуйте, пушки и ружья!

Все самые современные разработки сегодня становятся достоянием военно-промышленных комплексов развитых стран, но никак не всего человечества. Когда учёные научились расщеплять атом, что появилось первым? Атомные реакторы, дающие электроэнергию, правда, после сотен тысяч смертей в Японии. Жители Хиросимы однозначно были против научного прогресса, который забрал у них и их детей завтрашний день.

Техническое развитие выглядит насмешкой над людьми, потому что человек в нём скоро превратится в самое слабое звено. По теории эволюции, система развивается и крепнет, избавляясь от слабых мест. Может получиться в скором времени так, что нам не останется места в мире совершенствующейся техники. Поэтому вопрос "зачем нужен большой адронный коллайдер именно сейчас" на самом деле - не праздное любопытство, ибо вызван опасением за судьбу всего человечества.

Вопросы, на которые не отвечают

Зачем нам большой адронный коллайдер, если на планете миллионы умирают от голода и неизлечимых, а порой и поддающихся лечению болезней? Разве он поможет побороть это зло? Зачем нужен адронный коллайдер человечеству, которое при всём развитии техники вот уже как сто лет не может научиться успешно бороться с раковыми заболеваниями? А может, просто выгоднее оказывать дорогие медуслуги, чем найти способ исцелить? При существующем миропорядке и этическом развитии лишь горстке представителей человеческой расы весьма необходим большой адронный коллайдер. Зачем он нужен всему населению планеты, ведущему безостановочный бой за право жить в мире, свободном от посягательств на чью-либо жизнь и здоровье? История об этом умалчивает...

Опасения научных коллег

Есть другие представители научной среды, высказывающие серьёзные опасения по поводу безопасности проекта. Велика вероятность того, что научный мир в своих экспериментах, в силу своей ограниченности в знаниях, может утратить контроль над процессами, которые даже толком не изучены.

Такой подход напоминает лабораторные опыты юных химиков - всё смешать и посмотреть, что будет. Последний пример может закончиться взрывом в лаборатории. А если такой «успех» постигнет адронный коллайдер?

Зачем нужен неоправданный риск землянам, тем более что экспериментаторы не могут с полной уверенностью сказать, что процессы столкновений частиц, приводящие к образованию температур, превышающих в 100 тысяч раз температуру нашего светила, не вызовут цепной реакции всего вещества планеты?! Или просто вызовут способную фатально испортить отдых в горах Швейцарии или во французской Ривьере...

Информационная диктатура

Для чего нужен большой адронный коллайдер, когда человечество не может решить менее сложные задачи? Попытка замалчивания альтернативного мнения только подтверждает возможность непредсказуемости хода событий.

Наверное, там, где впервые появился человек, в него и была заложена эта двойственная особенность - делать благо и вредить себе одновременно. Быть может, нам ответ дадут открытия, которые подарит адронный коллайдер? Зачем нужен был этот рискованный эксперимент, будут решать уже наши потомки.

Год назад, в рамках фестиваля «Весна науки», который ежегодно проходит в Льеже, мы с женой сконструировали механическую модель коллайдера элементарных частиц. Это очень простая модель, в которой катаются, сталкиваются и разлетаются металлические шарики. Но с помощью нее можно продемонстрировать с десяток физических явлений, которые происходят в реальных ускорителях и детекторах. Демонстрация модели школьникам шла на ура, они после объяснений сами лезли запускать шарики и регистрировать столкновения.

Сейчас у меня наконец-то дошли руки до того, чтоб снять ее в действии и рассказать, что интересного можно с помощью нее показывать.

Наша механическая модель состоит из С-образной трубы из плексигласа, металлической вставки хитрой формы, двух желобов, которые через окошки ведут в трубу, и поддона с мелким песочком, который играет роль детектора. Если одновременно отпустить два шарика, то, скатившись по желобам и влетев в кольцо, они столкнутся в центре металлической секции, вылетят наружу, и прочертят следы в тонком слое песка.

Все эти явления — чисто механические, здесь нет ни электричества, ни магнетизма, ни какого-то виртуального моделирования столкновений. Несмотря на кажущуюся примитивность, эта модель подкупает своей «настоящестью». Все явления происходят на наших глазах, они осязаемы — и тем не менее они в кое в чем похожи на процессы в реальных коллайдерах элементарных частиц.


Технические подробности

Если кто-то захочет самостоятельно сделать подобную модель, то вот несколько замечаний и советов.

1) Самая сложная в изготовлении часть — это труба. Мы заказывали ее в фирме, которая как раз гнет трубы из плексигласа. Главная трудность — сделать так, чтоб внутренняя поверхность была гладкой и ровной, без морщин. При таком соотнощении радиуса трубы и радиуса закругления это оказалось не так уж и просто, фирма сделала это вовсе не с первой попытки. Для примера выкладываю чертеж трубы с параметрами, которые я запросил у фирмы. Можно, конечно, сделать трубу из чего-то другого, надо только убедиться, что материал достаточно жесткий — иначе шарик не будет долго катиться (на нашей модели он делает 3-4 оборота, это достаточно для демонстрации).

2) В окрестности места столкновений труба должна быть максимально плоской, чтобы позволить частицам вылетать вбок без подпрыгивания. Поэтому центральная секция у нас выполнена в виде металлической вставки, которая вначале повторяет кривизну трубы, а к центру распрямляется. Поскольку нереально просчитать заранее все параметры, надо дать себе свободу действий для настройки этой секции. Кроме того, надо сделать так, чтобы на месте стыка трубы и вставки не было ступеньки.

3) Опять же, трудно заранее просчитать, под каким углом и с какой скоростью шарики должны влетать в трубу, чтобы попасть на хорошую траекторию и не вылететь в центральной секции. Здесь тоже надо предоставить себе свободу маневров, как по высоте, так и по углу. Мы использовали для этого липучки-велкро на концах желобов, на их держателе, и на окошках трубы.

Большой адронный коллайдер, работающий в Швейцарии – самый известный ускоритель в мире. Этому немало способствовала шумиха, поднятая мировой общественностью и журналистами вокруг опасности этого научного проекта. Многие полагают, что это единственный коллайдер в мире, но это далеко не так. Кроме закрытого в США теватрона, на данный момент в мире существует пять работающих коллайдеров.

В Америке, в Брукхейвенской лаборатории работает ускоритель РКТИ (релятивистский коллайдер тяжелых ионов), начавший работу в 2000 году. Для его ввода в строй потребовалось вложение 2 миллиардов $. Кроме чисто теоретических экспериментов, физики, работающие на РКТИ (RHIC), разрабатываю вполне практические проекты. Среди них:

  • устройство для диагностирования и лечения рака (используются направленные ускоренные протоны);
  • использование лучей тяжелых ионов для создания фильтров на молекулярном уровне;
  • разработка все более эффективных устройств для аккумулирования энергии, что открывает новые перспективы в использовании солнечной энергии.

Подобный этому, ускоритель тяжелых ионов, строится в России в Дубне. На этом коллайдере NICA российские физики намерены исследовать кварк-глюонную плазму.

Сейчас российские ученые проводят исследования в ИЯФ, где расположены сразу два коллайдера – ВЭПП-4М и ВЭПП-2000. Их бюджет составляет 0,19 млрд. $ - для первого и 0,1 – для второго. Первые испытания на ВЭПП-4М начались еще в 1994 году. Здесь разработана методика измерения массы наблюдаемых элементарных частиц с самой высокой точностью во всем мире. Кроме того, ИЯФ единственный в мире институт, зарабатывающий на фундаментальные исследования в области физики собственными силами. Ученые этого института разрабатывают и продают оборудование для ускорителей другим государствам, желающим иметь свои экспериментальные установки, но не имеющих таких наработок.

В 1999 году был запущен коллайдер Дафне в лаборатории Фраскатти (Италия), стоимость его была примерно 1/5 млрд. дол., а максимальная мощность – 0, 51 ТэВ. Это был один из первых ускорителей высоких энергий, с помощью только одного эксперимента на нем было получено более ста тысяч гиперионов (частиц атома). За это Дафне окрестили фабрикой частиц или ф-фабрикой.

За два года до запуска БАК, в 2006 году Китай запустил собственный коллайдер ВЕРС II, с мощностью 2,5 ТэВ. Стоимость этого строительства была рекордно низкой и составила 0,08 млрд. дол. Но для бюджета этой развивающейся страны такая сума была немалой; правительство Китая выделило эти средства, понимая, что без развития фундаментальных отраслей науки невозможно развитие современной промышленности. Тем более актуально вложение средств в эту область экспериментальной физики в свете истощения природных ресурсов и увеличивающейся потребности в энергоносителях.

Ваш комментарий

Loading...Loading...