Самодельный блок питания для аккумуляторного шуруповёрта. Сетевой блок питания шуруповерта Самодельный блок питания для шуруповерта 14в схема

На просторах интернета встречается множество схем импульсных блоков питания для шуруповертов. Они или сложны и врятли поместятся в батарейный отсек, или слишком сырые, недоработанные и ненадежные. Глядя на подобные схемы возникает много вопросов, ответов на которые нет.

Данный блок питания адаптируется под любой батарейный шуруповерт путем подбора вторичной обмотки, помещается в корпус батарейного NiCd отсека и самое главное - уверенно переносит "холодный" старт двигателя. Известно, что двигатель шуруповерта имеет значительный стартовый ток, который способен вывести из строя даже мощные ИБП или как минимум спровоцировать срабатывание защиты. Описываемое устройство справляется с большими импульсами тока, обладая при этом довольно простой конструкцией.

Схема

Вот несложная схема блока, схема была нарисована на скорую руку, может позже уделю ей время и перерисую в более понятный вид. Картинка увеличивается по нажатию.

Прототипом взята схема из советских времен и усовершенствована с помощью советов обитателей форума "Радиокот". По сути это схема электронного трансформатора с "лишними" для китайских производителей деталями. Добавлен узел обратной связи по напряжению, он выделен красным. В идеале эта часть схемы не задействована, но это в процессе наладки.

Транзисторы взяты SBW13009 с запасом, это повышает надежность блока в целом. Схема обладает весьма полезным свойством: благодаря резисторам в эмиттерных цепях, блок во время холодных пусков, когда токи значительно превышают номинальные - повышает частоту преобразования. Благодаря этому импульсы больших токов ему не страшны. Запуск выполнен на VS1 и блокируется диодом VD5, когда устройство выходит на автогенераторный режим. В процессе опытов с блоком было решено отказаться от узла защиты, которая блокирует запуск при перегрузке - с шуруповертом она будет только мешать.

По совету "радиокотов" был введен снаббер C5R3, он снижает обший уровень помех от блока, уменьшает потери на коммутацию транзисторов и предотвращает появление сквозных токов. Выпрямление во вторичной цепи происходит по схеме со средней точкой, благодаря такому решению количество диодов уменьшено до 2 (диодная сборка) и уменьшены потери на тепло. Так же, для уменьшения потерь взята сборка из диодов Шоттки.

В отличие от электронного трансформатора (ЭТ) в схеме реализованы две обратные связи, по току и по напряжению. Благодаря этому блок запускается без нагрузки. Однако практика показывает, при работе вхолостую нагреваются силовые ключи, поэтому если удается добиться уверенного пуска шуруповерта без ОС по напряжению - C15 попросту не впаивается в схему.

Конденсаторный баян на выходе, вместо одного электролита необходим по причине тех же больших пусковых токов. Когда у меня стоял один конденсатор, его выводы плавились при определенном положении кнопки шурика. То есть выводы одного конденсатора не рассчитаны на такие токи, в принципе, как и сам одиночный конденсатор.

Резистор R8 выполняет две роли: первая - это не позволяет на холостом ходу развиться напряжению выше номинального, вторая - с отключенной ОС по напряжению дает пусковой ток во вторичной цепи и позволяет запуститься ШИМ-у шуруповерта.

Перемычка "П" используется в процессе наладки блока, при первом пуске и настройке вместо нее подключается лампа накаливания 100Вт, при испытании на шуруповерте просто замыкается перемычкой или предохранителем.

Детали

Рассмотрим используемые детали и возможность их замены.

Транзисторы

В качестве силовых ключей VT1-VT2 использованы биполярные n-p-n транзисторы SBW13009 в корпусе TO-3PN. Встречаются они в качественных АТХ-блоках, иных мощных импульсниках. В компьютерных АТХ обычного качества чаще встречаются MJE13009 в корпусах TO-220, их токовые параметры в два раза меньше. Их так же можно использовать, но нужно 4 транзистора вместо 2 и включать их нужно попарно, с индивидуальным резистором в эмиттере.

Данные транзисторы используются в мощных ИБП, поэтому снять их откуда-либо получится редко. А использовать MJE13009 как замену я бы не рекомендовал. Лучше раскошелиться на мощные, стоимость их в районе ста рублей за штуку.

Коммутирующий трансформатор

Трансформатор Тр2 намотан на колечке из феррита с прямоугольной петлей намагничивания. Такие кольца встречаются в подобных автогенераторных преобразователях - ЭТ, балласт энергосберегающей люминесцентной лампы. В светодиодных лампах таких колец нет! Категорически не рекомендую использовать обычный феррит, блок будет работать, но очень ненадежно, на транзисторах будет рассеиваться много тепла, сквозные токи будут обычным делом. Желтые кольца из компьютерной техники так же не подойдут!



Вариант извлечения из ЛДС энергосберегающей лампы мне кажется самым доступным - колечко можно взять из сгоревшей лампы. Так как обмотки будут выполнены обмоточным эмалированным проводом, нужно покрыть кольцо парой слоев цапонлака, на крайняк лаком для ногтей без блесток. Главное проследить чтобы лак попал на всю поверхность, в том числе на внутреннюю сторону. Лак выступает в качестве дополнительной изоляции.

Все обмотки выполнены эмалированным проводом ПЭЛ или подобным, если имеется ПЭЛШО (в дополнительной шелковой оплетке) это еще лучше. Обмотка 1 содержит один законченный виток провода не тоньше 0.8 мм. Для дополнительной изоляции его лучше поместить в отрезок изоляции монтажного провода. Обмотки 2,3,4 содержат по 4 витка 0.3-0.4 мм. Очень важно мотать все обмотки в одну сторону и помечать начало, и конец!

Силовой трансформатор

Трансформатор Тр1 намотан на двух сложенных вместе ферритовых кольцах К31х18.5х7 М2000НМ. Первичная обмотка содержит 82 витка провода 0.6 мм. Обмотка намотана по всей окружности кольца. Кольца изначально изолированы от обмотки, так же между обмотками следует выполнить надежную изоляцию. Я использовал изоленту, но лучше использовать более термостойкую, например лакоткань.

Сетевую обмотку следует аккуратно уложить виток к витку по всей окружности. Если провод не влез в один слой - нужно изолировать первый и домотать вторым слоем. Для намотки удобно использовать челнок-мотовило из более толстой проволоки.

Данные вторичной обмотки зависят от рабочего напряжения шуруповерта, для 12-вольтового 8+8 витков (16 витков в одну сторону с отводом от середины) провода не тоньше 1.4 мм. Вообще диаметр провода вторичной обмотки следует брать максимально возможный. Лучше мотать жгутом из нескольких жил (4-5 шт) провода 0.8-1 мм. Главное, чтобы обмотка уместилась в окно колец. Я к примеру, взял провод с дросселя АТХ. Про точный подбор витков для шуруповертов более 12 В или меньше немного ниже.

Во время намотки вторичной обмотки следует оставить свободное место под 2 витка обмотки номер три. Выполнить ее можно как эмалевым проводом 0.3, так и монтажным. Обмотки один и три следует помечать, где начала.

Два витка обмотки 3 должны находиться на свободном от вторичной обмотки месте.

Для трансформатора можно использовать ферритовые кольца проницаемостью 2000 других, близких размеров, главное, чтобы площадь поперечного сечения колец была не меньше. В магазине я нашел кольцо R36x23x15 PC40, в недалеком будущем испытаю его. Такое колечко может заменить два К31х18.5х7. Аналогично коммутирующему трансу, желтые комповские кольца неприменимы!

Некоторые умельцы на форумах утверждают, что мотали данный трансформатор на кольце К28Х15Х11. Возможно так и было с другими намоточными данными (первичка 100+ витков), я не рекомендую рассматривать такой вариант - нужно обладать нехилым мастерством, чтобы уложить все обмотки на маленькое кольцо!

Если для обмоток используется б/у-шный провод, следует пристально следить, чтобы лаковая изоляция не была повреждена!

Дроссель

А вот для дросселя L1 желтое колечко наоборот в самый раз! Точнее не любое желтое, а именно с дросселя групповой стабилизации (ДГС) из компьютерного блока питания. Я применил кольцо с внешним диаметром 27 мм. Намотать нужно не менее 20 витков проводом, сечением не ниже, чем у вторичной обмотки Тр1.

Конденсаторы

Все конденсаторы "горячей" части схемы должны быть рассчитаны не менее чем на 400В. В качестве C3-C4 я применил пленочные из АТХ, они на 250В, терпимо, но лучше ставить на 400. Емкость их может быть ниже, но тогда может произойти снижение мощности. Так же можно снизить C2 с 200 мкф до 100, возможно, тогда падение напряжения на нагрузке будет более крутым.

Конденсатор снаббера C5 минимум на 1000В, изначально берется 3.3n и подбирается по нагреву резистора. C15 достаточно на напряжение 50В.

В низковольтной части C6-C7 не ниже 50В, электролитические C8-C14 не ниже 25В. Количество электролитических кондеров не принципиально, главное не меньше 5 шт, номиналом 100-1000 мкф.

Резисторы

Резисторы берутся согласно указанных на схеме номиналов и мощностей. R3 взят из снаббера АТХ, габариты его несколько больше стандартных 2ВТ, поэтому не могу сказать о его мощности точно. Данный резистор может прилично греться, поэтому мощность его лучше брать побольше.

В качестве R1 взят термистор из того же АТХ, он очень малогабаритный. В крайнем случае его можно заменить на резистор 3-5 Ом 5Вт, но он занимает много места.

Диоды

Диодный мост VDS1 на 3-4А из полюбившегося АТХ, можно заменить на четыре диода 400В 3А. Диоды FR107 взяты оттуда же, меняются на любые другие с обратным напряжением не менее 1000В. Динистор VS1 можно взять из сгоревшей лампы вместе с кольцом, как правило, динистор целый.

Диодная сборка из двух диодов Шоттки VD3-VD4 - S30D40C взята с 5-вольтовой шины АТХ. Держит она 40В и 30А. Вообще, эти диоды можно взять на свое усмотрение, напряжение должно превышать рабочее в два раза и ток 15-20А. Для не слишком мощных шуруповертов можно брать сборку с 12-вольтовой шины АТХ, это актуально, когда напряжение питания шуруповерта превышает 20В, 40-вольтовая S30D40C становится не так надежна. Запас по напряжению необходим, ибо на выходе силового трансформатора могут присутствовать выбросы, превышающие номинальные значения.

Налаживание

Для налаживания следует собрать схему на макетной плате, категорически не советую собирать сразу рабочую конструкцию. Слишком большой разброс параметров трансформаторов может потребовать дополнительных решений.

Первый пуск

Для первого включения вместо перемычки "П" подключается лампа накаливания 220В 100Вт. Так же, на выход нужно подключить лампу 20-30Вт, автомобильную или галогенку 12В. Перед пуском C15 выпаивается. Правильно собранный блок начинает работать сразу: при включении галогенка на выходе светится (напряжение около 14В), защитная лампа слабо тлеет. При включении без нагрузки в трансформаторе Тр1 слышен слабый писк - это попытки пуска VS1. Защитная лампа не должна вспыхивать при включении, без нагрузки на выходе блока лампа даже не тлеет.

Работа без нагрузки

Если все совпадает с описанным - можно продолжать, если нет - ищем ошибки в монтаже или неисправные компоненты. Далее нужно определить надобность ОС по напряжению - на выход следует подключить шуруповерт. При включении шура, он должен запускаться, защитная лампа вспыхивать. Возможно, пусковых импульсов будет недостаточно для старта электроники шуруповерта. На выход подключают вольтметр и контролируют напряжение, оно должно быть в районе рабочего. При напруге в 2-3В следует уменьшить сопротивление R8, чтобы на выходе появилось устойчивое 13-15В. Резистор R8 не должен греться, максимум чуть теплым, для меньшего нагрева можно увеличить его рассеиваемую мощность. Если удалось подобрать резистор и шурик работает без дополнительной нагрузки - ОС по напряжению не нужна и C15 не понадобится вообще. При включенном блоке и не нажатой кнопке шуруповерта из блока слышен слабый писк.

При работе на галогенку транзисторы практически не греются, при работе без нагрузки нагрева нет. Максимум, что должно греться во всей схеме - резистор снаббера R3, но это пока не важно.

Если все-таки шуруповерт не запускается из-за низкого начального напряжения и подбор R8 ничего не дал, в пределах разумного, без нагрева - придется делать ОС по напряжению. Следует подключить цепь с C15, и включить блок без нагрузки. Напряжение на выходе должно быть 13-14В (при указанных намоточных данных вторички). Если блок не хочет запускаться, следует увеличить емкость C15. Так же, следует попробовать поменять местами выводы обмотки 3 силового транса. В итоге нужно добиться стабильного пуска без нагрузки с минимальной емкостью C15. При включениях защитная лампа не должна вспыхивать и даже тлеть. Недостатком ОС по напряжению может стать небольшой нагрев транзисторов на холостом ходу. Нужно погонять блок 5-10 минут для определения приемлемости нагрева.

Альтернативой для холостого запуска может стать дроссель от ЛДС энергосберегайки, включенный параллельно первичной обмотке силового трансформатора. Данный метод обладает высокой стабильностью, однако на предмет нагрева мной не исследовался.

Результатом налаживаний должен стать стабильный пуск блока (с ОС по напр.) или попытки пуска с напряжением на выходе, достаточным для запуска электроники кнопки. На холостом ходу ничего не должно греться, ну или греться незначительно. Исключение может составлять резистор снаббера R3, но это уже следующим этапом.

Вольтаж шуруповерта

Намоточные данные вторичной обмотки 8+8 витков рассчитаны на шуруповерт 12В. Могу с уверенностью сказать, что данная обмотка подойдет к профессиональны моделям 14,4В. Я подключал блок к своему рабочему шуруповерту 14,4В на литиевой батарее, который без проблем закручивает саморезы 4Х80 мм в сырое дерево без предварительного сверления. Такие саморезы от блока конечно не закручивал, но кожу подсодрал, пытаясь остановить вал.

Если вольтаж вашего отличается от 12В, то следует подкорректировать намоточные данные обмотки 2. Доматывая или отматывая витки, нужно мерить напряжение с нагрузкой - галогенной лампой 30Вт, без нагрузки напряжение будет немного больше. Я ориентировался на напряжение питания (12В) + 1В на просадку (можно не учитывать). Вообще, если шуруповерт 14,4В, не следует сразу мотать лишние витки, возможно все будет работать с должной мощностью без добавления витков. Так же хочу отметить 18В шуруповерты - несмотря на надписи на корпусе, зачастую там стоят двигатели на 12В. Про испытания на мощность немного ниже.

Так же нужно иметь в виду, что без нагрузки блок может развивать немного большее напряжение, поэтому хорошим делом будет поискать датащиты на кнопку и максимальное напряжение ее ШИМ-а. Самое главное, чтобы напруга на ХХ не превышала этот максимум. Между прочим, на аккумуляторной батарее шуруповерта без нагрузки так же напряжение немного выше номинального, для 14,4В батареи это 16 с небольшим вольт. Однако, из-за сложности подобрать напряжение обмотки точно, блок может выдавать немного больше или меньше, чем на батарее. В общем здесь все подбирается экспериментально и с головой, а если вы собрали макетный блок - голова работает.

Рабочий пуск

Теперь следует снять защитную лампу и заменить ее перемычкой или предохранителем 3-4А. Не уверен, что от предохранителя есть толк, я его ставил для самоуспокоения. Попробовать пуск с галогенкой на выходе, холостом ходу - все должно быть стабильно и без перегрева.

Теперь можно подключать шуруповерт и оценить мощность вращения. Мой зеленый бош работал так, что наверное с новой батареей было меньше мощности, при этом не перегревался. Для защиты шуруповетра от слишком больших токов в разрыв цепи можно воткнуть ограничительный шунт, заодно и померить токи. Защиту на полевом транзисторе делать я не стал, да и толку от нее не вижу: напряжение падает пропорционально увеличению тока, импульсы тока при слабом нажатии кнопки огромны (хоть и очень короткие) и будут заставлять защиту включаться.

Необходимо проверить конденсаторный баян на выходе на нагрев при больших нагрузках. У меня фиксировалась самая большая нагрузка в момент слабого нажатия кнопки, когда двигатель пищит. При этом ноги одиночного конденсатора обгорали.

Я не смог остановить шуруповерт рукой никак! Зато натер приличные мозоли! Все-таки ограничительный шунт не помешает в рабочем блоке, здесь следует руководствоваться ощущением силы вращения, а не измерениями, и контролировать нагрев двигателя. Я шунт не поставил в конечную версию, слишком много места он занимает. Ориентировочно, шунт, ограничивающий ток в 20А это: 12В(по факту просядет ниже)/20А=0,6 Ом. Взять щунт 0,6 Ом и ориентируясь на мощность вращения корректировать в сторону уменьшения, пока не появится излишнего нагрева.

Китайским мультиметром и шунтом я намерял максимальный ток где-то между 15 и 20А, это при торможении, на сколько хватало сил и руки. При слабо нажатой кнопке, когда двигатель пищит еще не запускаясь, токи были более 20А. Стоит отметить, что измерения очень приблизительные и могут сильно отличаться от реальности - цифровой мультиметр не в состоянии адекватно измерить пульсирующее напряжение на шунте. Если вы совсем новичок и не знаете, как измерить большой ток шунтом и мультиметром - про это будет небольшой обзорчик, а пока... Зачем оно вам надо?

Снаббер

Как я писал выше, цепочка C5R3 может сильно греться, точнее именно резистор. И даже если нагрева нет на ХХ или малых нагрузках, при большой нагрузке резистор может аж вонять. Объясняется это повышением частоты преобразования с повышением выходного тока, следовательно, сопротивление конденсатора уменьшается. Изначально C5 следует брать 3.3 нанофарада (3300 пФ) и подбирать по нагреву резистора, уменьшая емкость. Я остановился на 1000 пФ. Обратите внимание, что щупать детали следует на выключенном блоке и разряженном конденсаторе C2. Выпрямленное и отфильтрованное сетевое напряжение составляет около 310В!

Не стоит уменьшать емкость конденсатора с запасом, чтобы нагрева не было вообще! Тогда от него будет мало толку. Нагрев должен быть терпимым для длительного использования.

Печатная плата

Я плохой проектировщик печаток, поэтому плата у меня получилась громоздкой, двухэтажной. Если кто будет разрабатывать свою печатную плату - буду благодарен если предоставите рисунок, контакты в подвале сайта.

Два уровня платы сделаны из двух кусков стеклотекстолита 70Х70 мм. На первом этаже находятся фильтрующие конденсаторы, силовой трансформатор и мягкими проводами подпаяны транзисторы. Печатка прорезана острым резаком без всякого травления. Монтаж деалей обычный, в отверстие, рисунок со стороны медной фольги. Подпаянные транзисторы находятся на радиаторе под платой вместе с диодной сборкой Шоттки VD3, VD4.

Платы соединены между собой медным одножильным монтажным проводом, перемычка с эмиттера VT1 лишняя, она задумывалась для работы защиты, от которой я отказался.

Вторая плата выполнена поверхностным монтажем. У меня влезли не все выходные конденсаторы, пришлось их добавлять в корпус батареи.

На вторую плату подается сетевое напряжение, с нее же берется выходное. С диодной сборки приходит +, на которую в свою очеред приходят крайние выводы вторички Тр1. При уверенной работе без ОС по напряжению, цепь с С15 не нужна, как и соответствующие этой цепи обмотки.

На плату не влезли все конденсаторы выходного конденсаторного баяна, поэтому несколько конденсаторов пришлось расположить в клеммном углублении батарейного отсека.

Дно батарейного корпуса пришлось вырезать, так как плата не влезла полностью, к тому же для надежности был использован радиатор. В конечном итоге у меня получился такой блок:

При грамотном проектировании и использовании подходящих компонентов, блок все-таки можно поместить в родной корпус батареии не вылазия за его пределы. Мне это почти удалось. С другой стороны, если использовать блок отдельно от шуруповерта, можно вообще не переживать за габариты. Однако в таком случае придется использовать провод от преобразователя до шурика сечением не менее 2,5 мм2. На 4-х метровом проводе 1,5 мм2 мощность немного падает.

Данное решение является интересным с точки зрения применения: никаких ШИМ-ов и сложных схем, его можно применять для питания различных мощных приборов. Не зря ведь эту схему широко используют для питания галогенных ламп!

На этом мы закончим описание, позднее здесь же дам объективную оценку использования блока в реальных, рабочих условиях стройки. Предварительная оценка по мощности вращения: 5+!

Аккумуляторный шуруповёрт - прекрасный помощник в хозяйстве. Инструмент вместе с мастером работает в доме и в саду, трудится в гараже или в поле. До тех пор, пока не сядет аккумулятор. Количество циклов заряд-разряд у аккумулятора ограничено, батарея портится и от безделья: саморазряд разрушает элементы. В среднем аккумулятор живёт 3 года, после чего его приходится заменять. Спасти инструмент можно, переделав его в сетевой. Переделка выполняется разными способами.

Действительно ли стоит переделывать?

Без аккумуляторов шуруповёрт превращается в железку. Когда батареи перестают держать заряд, приходится искать новые элементы питания. Во-первых, это дорого - цена аккумуляторов составляет до 80% стоимости шуруповёрта, эффективнее купить новый инструмент. Во-вторых, батареи не всегда бывают в продаже, например, если модель снята с производства. В-третьих, рачительный хозяин стремится использовать все возможности для экономии средств.

Переделка аккумуляторного шуруповёрта для работы от электрической сети - хороший выход. Что это даёт:

  1. Инструмент получает новую жизнь.
  2. Больше не нужны батареи, требующие заряда.
  3. Крутящий момент инструмента не зависит от заряда батареи.

Недостаток переделанной конструкции - зависимость от розетки и длины сетевого кабеля.

Внимание! Работы на высоте, превышающей два метра, переделанным шуруповёртом не допускаются.

Как переделать аккумуляторный шуруповёрт для работы от сети 220 Вольт

Мастера придумали несколько способов, чтобы переделать шуруповёрт для работы от электрической сети. Все они заключаются в том, чтобы предоставить мотору требуемое напряжение питания с помощью промежуточного источника или преобразователя.

Таблица: варианты источников питания для сетевого шуруповёрта

Источник питания Достоинства Недостатки
Комплектное зарядное устройство шуруповёрта.
  • Несложная переделка.
  • Используется существующее зарядное устройство.
  • Не требуется подбирать напряжение блока питания.
Зарядное устройство занимает место на столе.
Готовый блок питания, помещённый в корпус старого аккумулятора.
  • Несложная переделка.
  • Не требуется вмешательство в электрическую схему шуруповёрта.
  • Поиск готового компактного блока питания на требуемое напряжение.
  • Блок питания греется в закрытом корпусе, надо делать перерывы в работе.
Самодельный блок питания, помещённый в корпус старого аккумулятора.
  • Красивое инженерное решение - из шуруповёрта выходит только сетевой шнур.
  • Нет потерь в кабеле с низким напряжением.
  • Не требуется вмешательство в электрическую схему шуруповёрта.
  • Требуется подобрать схему и найти радиодетали.
  • Мастер должен иметь опыт пайки, сборки и отладки электрических схем.
Внешний блок питания Несложная переделка.
  • Блок питания занимает место на столе.
  • Нужно найти походящий блок питания.
Блок питания от компьютера
  • Несложная переделка.
  • Компьютерный блок питания легко найти.
  • Подойдёт любой блок питания от 300 Вт.
  • Требуется разбирать шуруповёрт и подключаться к его схеме.
  • Блок питания занимает много места на столе.

Подключение шуруповёрта к зарядному устройству

Внимание! При низком напряжении велики потери в проводе, поэтому кабель между зарядным устройством и инструментом должен быть не длиннее 1 метра, сечением не менее 2,5 кв. мм.

Последовательность действий:

    Припаять или прицепить зажимами «крокодил» к клеммам зарядного устройства два провода.

  1. Разобрать старый аккумулятор и вынуть из него севшие элементы.
  2. Просверлить в корпусе аккумулятора отверстие для кабеля, продеть кабель в отверстие. Желательно уплотнить соединение изолентой или термоусадочной трубкой, чтобы провод не вырвался из корпуса.
  3. Удалённые из аккумулятора элементы нарушат развесовку шуруповёрта - рука будет уставать. Чтобы восстановить баланс, в корпус следует поместить груз - это может быть плотное дерево или кусок резины.
  4. Припаять кабель к клеммам бывшего аккумулятора, подключаемым к шуруповёрту.
  5. Собрать корпус аккумулятора.
  6. Остаётся испытать обновлённый инструмент в работе.

Монтаж готового блока питания в корпусе старого аккумулятора

Внимание! В закрытом корпусе блок питания плохо охлаждается. Рекомендуется проделать отверстия в стенках корпуса. Не работайте инструментом без перерыва дольше 15 минут.

Порядок действий:

  1. Разобрать старый аккумулятор и вынуть из него неработающие элементы.
  2. Установить блок питания в корпус аккумулятора. Подключить контакты высокого напряжения и клеммы низкого напряжения.
  3. Собрать и закрыть корпус аккумулятора.
  4. Установить аккумулятор в шуруповёрт.
  5. Включить вилку блока питания в розетку и проверить обновлённый сетевой инструмент в работе.

Самодельный блок питания

Внимание! Соблюдайте правила электробезопасности. Пайку и подключение проводите при обесточенном устройстве.

Пошаговая инструкция:

  1. Разобрать корпус старого аккумулятора, вынуть из него севшие батареи.
  2. Установить элементы электрической схемы блока питания на монтажную плату, припаять контакты.
  3. Установить собранную плату в корпус. Проверить тестером наличие напряжения на выходе.

    Блок питания в корпусе

  4. Подключить провода низкого напряжения к клеммам старого аккумулятора. Собрать корпус.

    Останется только собрать корпус аккумулятора

  5. Подключить шуруповёрт к электрической сети и проверить его работу.

Видео: самодельный литиевый аккумулятор для шуруповёрта

Подключение к внешнему блоку питания

Внимание! В процессе доработки потребуется разобрать корпус шуруповёрта и вмешаться в электрическую схему. Запомните последовательность разборки, чтобы собрать все части в обратной последовательности.

Что делать:


Подключение к блоку питания от компьютера

Инструкция:

  1. Найти или купить блок питания от компьютера, мощностью не менее 300 Вт.
  2. Разобрать корпус шуруповёрта. Найти внутри провода питания двигателя. Припаять к проводам разъёмы для компьютерного блока питания.
  3. Вывести из корпуса разъёмы для подключения компьютерного блока питания.
  4. Подключить шуруповёрт к новому блоку питания.
  5. Включить блок питания в сеть и проверить работу прибора.

Видео: блок питания для шуруповёрта из компьютерного БП

Как запитать шуруповёрт, сохранив его автономность

Если мастер работает в здании, к которому не подведено электричество, а аккумуляторы уже испортились, есть способы запитать шуруповёрт:

  • заменить старые банки аккумуляторов на новые;
  • подключить шуруповёрт к автомобильному аккумулятору;
  • подключить инструмент к другому аккумулятору, например, взятому от источника бесперебойного питания.

Замена старых элементов

Внимание! Заменяя батареи, обращайте внимание на правильную полярность подключения элементов.

Порядок действий:


Внимание! Заряжать переделанный аккумулятор следует только специально подобранным зарядным устройством.

  • Подсоединить клеммы. Опробовать инструмент в работе.
  • Подключение к внешнему аккумулятору

    Последовательность действий:

    1. Купить или найти внешний аккумулятор, например, взять от ненужного источника бесперебойного питания.
    2. Взять провод сечением не менее 2,5 кв. мм. Снять изоляцию и установить на медные концы зажимные клеммы, подходящие для крепления на аккумуляторе.
    3. Второй конец кабеля поместить в корпус старого аккумулятора и припаять к клеммам, вставляющимся в шуруповёрт.
    4. Вставить корпус аккумулятора в шуруповёрт, подключить кабель клеммами к аккумулятору.
    5. Опробовать восстановленный инструмент в работе.

    Электрический аккумуляторный инструмент служит в несколько раз дольше, чем питающие его батареи. Выбрасывать на помойку шуруповёрт с негодными элементами - неразумно. Настоящий хозяин сможет отремонтировать прибор, переведя его на другой источник питания, тем самым дав ему новую жизнь.

    Знакомый попросил собрать внешний блок питания для шурупоповёрта. Вместе с шуруповёртом (рис.1 ) принес трансформатор питания от старого советского выжигателя-гравёра «Орнамент-1» (рис.2) – посмотреть, нельзя ли его использовать?

    Сначала, конечно, разобрали аккумуляторный отсек, посмотрели на «банки» (рис.3 и рис.4 ). Проверили зарядным устройством на работоспособность каждую «банку» несколькими циклами заряда-разряда – из 10 штук только 1 хорошая и 3 более-менее нормальные, а остальные совсем «сдохли». Значит, точно придётся делать внешний блок питания.

    Чтобы собирать блок питания, надо знать какой ток потребляет шуруповёрт при работе. Подключив его к лабораторному источнику, узнаём, что двигатель начинает вращаться при 3,5 В, а при 5-6 В появляется приличная мощность на валу. Если нажать пусковую кнопку при подаче на него 12 В, срабатывает защита у блока питания – значит, ток потребления превышает 4 А (защита настроена на это значение). Если шуруповёрт запустить на низком напряжении, а потом его повысить до 12 В – работает нормально, ток потребления около 2 А, но в тот момент, когда вкручиваемый шуруп входит наполовину в доску, защита у блока питания опять срабатывает.

    Чтобы посмотреть полную картину потребляемых токов, шуруповёрт подключили к автомобильному аккумулятору, поставив в разрыв плюсового провода резистор сопротивлением 0,1 Ом (рис.5 ). Напряжение падения с него подавали в компьютерную , для просмотра использовали программу . Получившийся график показан на рисунке 6 .

    Первый импульс слева – пусковой при включении. Видно, что максимальное значение достигает 1,8 В и это говорит о протекающем токе 18 А (I=U/R). Затем, по мере набора двигателем оборотов, ток падает до 2 А. В средине второй секунды головка шуруповёрта зажимается рукой до срабатывания «трещётки» - ток в это время возрастает примерно до 17 А, затем падает до 10-11 А. В конце 3-ей секунды пусковая кнопка отпущена. Получается, что для работы шуруповёрта требуется блок питания с возможностью отдавать мощность 200 Вт и ток до 20 А. Но, учитывая, что на аккумуляторном отсеке написано, что он на 1,3 А/ч (рис.7 ), то, скорее всего, всё не так плохо, как кажется на первый взгляд.

    Вскрываем блок питания выжигателя, меряем выходные напряжения. Максимальное – около 8,2 В. Мало, конечно. Учитывая падение напряжения на диодах выпрямителя, выходное напряжение на фильтрующем конденсаторе будет около 10-11 В. Но деваться некуда, пробуем собрать схему по рисунку 8 . Диоды использованы марки КД2998В (Imax=30 А, Umax=25 В). Крепление диодов VD1-VD4 выполнено навесным монтажом на лепестках контактных гнёзд выжигателя (рис.9 и рис.10 ). В качестве конденсатора большой ёмкости использовано параллельное включение 19-ти штук меньшей ёмкости. Вся «батарея» обмотана малярным скотчем и конденсаторы подобраны таких размеров, чтобы вся связка с лёгким усилием входила в аккумуляторный отсек шуруповёрта (рис.11 и рис.12 ).

    В выжигателе очень неудобно стоит предохранительная колодка, поэтому она была убрана, а предохранитель подпаян «напрямую» между одним из проводов 220 В и выводом помехоподавляющего конденсатора С1 (рис.13 ). При закрывании корпуса сетевой провод туго обжимается проходным резиновым кольцом и это не позволяет проводу болтается внутри при изгибании его снаружи.

    Проверка работоспособности шурупововёрта показала, что всё работает нормально, трансформатор после получасового сверления и закручивания саморезов нагревается примерно до 50 градусов по Цельсию, диоды нагреваются до такой же температуры и в радиаторах не нуждаются. Шуруповёрт с таким блоком питания имеет меньшую мощность в сравнении с запиткой его от автомобильного аккумулятора, но это понятно – напряжение на конденсаторах не превышает 10,1 В, а во время увеличения нагрузки на валу ещё дополнительно уменьшается. Кстати, прилично «теряется» на питающем проводе длиной около 2 метров, даже применяя его сечением 1,77 кв.мм. Для проверки падения на проводе была собрана схема по рисунку 14 , в ней контролировалось напряжение на конденсаторах и напряжение падения на одном проводнике питающего провода. Результаты в виде графиков при разных нагрузках показаны на рисунке 15 . Здесь в левом канале – напряжение на конденсаторах, в правом – падение на «минусовом» проводе, идущем от выпрямительного моста к конденсаторам. Видно, что во время остановки головки шуруповёрта рукой, напряжение питания просаживается до уровней ниже 5 В. На шнуре питания при этом падает примерно 2,5 В (2 раза по 1,25 В), ток носит импульсный характер и связан с работой выпрямительного моста (рис.16 ). Замена шнура питания на другой, с сечением около 3 кв.мм привела к повышению нагрева диодов и трансформатора, поэтому вернули назад старый провод.

    Посмотрели ток в цепи между конденсаторами и самим шуруповёртом, собрав схему по рисунку 17 . Получившийся график – на рисунке 18 , «лохматость» - это пульсации 100 Гц (то же, что и на предыдущих двух рисунках). Видно, что пусковой импульс превышает значение 20 А – скорее всего, это связано с меньшим внутренним сопротивлением источника питания за счёт использования параллельного включения конденсаторов.

    В конце замеров посмотрели ток через диодный мост, включив между ним и одним из выводов вторичной обмотки резистор 0,1 Ом. График на рис.19 показывает, что при торможении двигателя ток достигает значения 20 А. На рис.20 – растянутый по времени участок с максимальными токами.

    В результате, пока решили поработать с шуруповёртом с описанным блоком питания, если же будет "не хватать мощности", то придётся искать более мощный трансформатор и ставить диоды на радиаторы или менять на другие.

    И, конечно же, не стоит воспринимать этот текст как догму - абсолютно нет никаких препятствий для изготовления БП по любой другой схеме. Например, трансформатор можно заменить на ТС-180, ТСА-270, или можно попробовать запитать шуруповёрт от компьютерного импульсного БП, но, скорее всего, понадобится проверка возможности отдачи цепи +12 В тока 25-30 А...

    Андрей Гольцов, г. Искитим

    Список радиоэлементов

    Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
    Рисунок №8
    VD1-VD4 Диод КД2998В 4 В блокнот
    C1 Конденсатор 1.0 мкФ 1 400 В В блокнот
    C2 Конденсатор 0.47 мкФ 1 160 В В блокнот
    C3 Конденсатор электролитический 2200 мкФ 15 16 В

    Аккумуляторный шуруповерт – удобный и необходимый в хозяйстве инструмент. При эксплуатации «от случая к случаю», он может верой и правдой служить многие годы. К сожалению, через 2-3 года, даже при не очень интенсивной эксплуатации, аккумуляторы шуруповерта практически полностью теряют свою емкость. Исправный инструмент, а пользоваться нельзя… Что делать?

    Выбросить и купить новый. Самое разумное решение, если Вы эксплуатируете щуруповерт профессионально. А если он бывает нужен всего лишь несколько раз в году – починить забор, повесить полку и т.п. Рука не поднимается выбросить исправный аккумуляторный шуруповерт. Поиск в Интернете показал, что эта проблема волнует многих. Как же предлагают поступить в данной ситуации экономные россияне и жители братских республик.

    Первое, самое очевидное решение - использовать внешний аккумулятор для питания шуруповерта. Старый автомобильный или герметичный свинцово-кислотный от ИБП. Но проблема в том, что шуруповерт даже на холостом ходу потребляет 1,5…3 А, а под полной нагрузкой потребляемый ток превышает 10 А. Придется использовать либо толстые, либо короткие соединительные провода. И то и другое неудобно. Разве что работать с аккумулятором в рюкзаке…

    Второе решение – сетевой блок питания шуруповерта. Ведь в большинстве случаев работы ведутся в пределах досягаемости электрической розетки. Несколько теряется мобильность, но зато щуруповерт постоянно готов к работе. В качестве блока питания можно использовать обычный трансформатор с выпрямителем. Просто, но тяжело и громоздко. Компьютерный блок питания легче, но проблема с проводами остается. Кроме того, стабилизированный блок питания при работе на коллекторный электродвигатель с резко меняющейся нагрузкой и искрящими щетками может вести себя непредсказуемо.

    Самое разумное, на мой взгляд, смонтировать сетевой блок питания в аккумуляторном отсеке шуруповерта. Кабель питания в этом случае может быть небольшого сечения, гибкий и легкий. При необходимости можно использовать стандартный сетевой удлинитель. Сложность в том, что места в аккумуляторном отсеке очень мало. Тем не менее, задача вполне выполнима. Подобная конструкция описана в журнале «Радио» №7 за 2011г. – К. Мороз. Сетевой блок питания для шуруповерта. Эта статья растиражирована на многих сайтах, но практическая проверка описанной в ней конструкции показала, что электронный трансформатор для галогенных ламп, который предлагает использовать автор, – не лучшее, в данном случае решение.

    Генератор с самовозбуждением на двух транзисторах хорошо работает на активную нагрузку, а вот искрящий коллектор и резко меняющаяся нагрузка – тяжелое испытание для него. В общем, после выгорания нескольких транзисторов я отказался от дальнейших экспериментов с электронным трансформатором.

    Лучшее решение мне удалось найти, на форуме http://forum.easyelectronics.ru/viewtopic.php?f=17&t=1773 . Его предлагает Дмитрий (dimm.electron) - под таким именем он зарегистрировался на форуме. Собранный по предложенной им схеме блок питания предназначен для установки в аккумуляторный отсек шуруповерта на 12 или 14 В, в котором находилось 10 или 12 никель-кадмиевых аккумуляторов. Схема блока показана на рисунке.

    Учитывая, что это должна быть простая и дешевая конструкция «выходного дня» я слегка доработал авторский вариант. С целью экономии места исключил сетевой фильтр. Это конечно плохо, но учитывая, что пользоваться шуруповертом планирую не часто, и в основном вдали от радиоаппаратуры, вполне допустимо. Не хватило места также и для резистора, ограничивающего зарядный ток конденсаторов в момент включения в сеть. Тоже не очень хорошо, но оправдания те же самые…

    В схеме максимально использованы детали от старого компьютерного блока питания. Это выпрямительный мостик VD1, конденсаторы C1, C2, трансформатор T1 и диодная сборка VD4. Силовые транзисторы тоже можно использовать от компьютерного блока питания, но они должны быть обязательно полевыми. В моем блоке они оказались биполярными, пришлось приобрести рекомендованные автором IRF840.

    Еще одно упрощение – использование обычного выпрямителя VD4 на диодах Шоттки, вместо предлагаемого автором «хитрого» синхронного выпрямителя. Замечу, что необходимо использовать диодную сборку именно из диодов с барьером Шоттки. Отличить ее от обычной можно, если измерить мультиметром в режиме прозвонки прямое падение напряжения на диодах. На диодах Шоттки падает не более 0,2 В, тогда как на обычных диодах около 0,6 В. Учитывая ограниченные размеры радиатора нагрев обычных диодов будет недопустимым.

    Ну и, наконец, питание микросхемы DD1 осуществляется через обычный гасящий резистор R3. Автор использует для этого еще одну «хитрую» схему – питание берется с точки соединения транзисторов VT3, VT4 через гасящий конденсатор и дополнительный выпрямитель на диодах. Сложно в наладке – надо довольно точно подбирать емкость конденсатора, он должен быть высоковольтным и термостабильным. Есть вероятность сжечь DD1.

    В процессе обсуждения на форуме родился еще один вариант схемы питания – с дополнительной обмотки трансформатора. Это самый лучший вариант, бесполезный нагрев элементов минимален. Но на трансформаторе нужна дополнительная изолированная обмотка на 20-30 В.

    Трансформатор – это самый важный элемент схемы блока питания шуруповерта, от качества его изготовления на 90% будет зависеть Ваше мнение об умственных способностях автора разработки. Если использовать первое попавшееся ферритовое кольцо неизвестной марки, ничего хорошего не получится. Кроме магнитной проницаемости у феррита есть и другие параметры, которые очень важны в данном случае. Необходимо использовать специально предназначенный для работы в сильных магнитных полях феррит, например от трансформаторов импульсных блоков питания компьютеров, телевизоров и др. аппаратуры мощностью не менее 200 Вт. Технология намотки тоже очень важна, автор подробно описывает, как должны быть расположены обмотки на сердечнике.

    Я поступил проще – использовал готовый трансформатор от старого компьютерного блока питания. Он как раз подходит по всем параметрам. Лучше раскурочить старый блок мощностью 200-250 Вт, в нем высота трансформатора равна 35 мм – как раз помещается в аккумуляторном отсеке. Трансформаторы от более мощных блоков имеют большую высоту и не помещаются в моем корпусе.

    Перед выпаиванием трансформатора нужно внимательно рассмотреть, как соединяются его обмотки и с каких выводов запитан выпрямитель +5 В. Тут возможны варианты, может потребоваться небольшая коррекция чертежа печатной платы блока питания шуруповерта. Обращаю внимание, что используется именно 5-и вольтовая обмотка, амплитуда напряжения на ней как раз около 12 В. Другие обмотки не используются.

    А вот намотать на такой трансформатор дополнительную обмотку или изменить число витков существующих, к сожалению не получится. Трансформатор залит эпоксидкой и при его разборке велика вероятность сломать сердечник.

    В микросхеме IR2153D между выводами 1 и 4 установлен стабилитрон на 15,6 В, поэтому питание нужно подавать обязательно через токоограничивающий резистор. Показанный на схеме пунктиром диод VD5 необходим только при использовании IR2153 без индекса «D». Конденсаторы C1, C2 можно заменить одним – 100…150 МК, 400 В. При его приобретении определяющий параметр – высота, желательно не более 35 мм, иначе может не поместиться в корпус.

    Резистор R3 составлен из 4-х последовательно включенных по 8,2К, 2 Вт. Его номинал желательно подобрать при наладке так, чтобы при минимально возможном напряжении в сети, напряжение на конденсаторе C4 не падало ниже 11 В. Для уменьшения бесполезного нагрева номинал этого резистора должен быть максимально возможным, если его уменьшить, просто увеличится ток через этот резистор и внутренний стабилитрон микросхемы.

    Элементы R5, R6, VD2, VD3, VT2, VT4 защищают полевые транзисторы от пробоя в случае аварийных режимов работы. Номинал C9 увеличивать не следует, т.к. это увеличит и без того большой бросок тока при включении в сеть. Мостик VD1 должен выдерживать ток не менее 5 А при напряжении 400 В. VD4 – сборка из диодов Шоттки с допустимым током не менее 30А. VD1 и VD4 отлично подходят от компьютерного блока питания. Вентилятор на 12 В, его внешние размеры 40х40 или 50х50 мм. Элементы в корпусах для поверхностного монтажа типоразмеров 0805 или 1206. DD1 в DIP корпусе, обратите внимание на надежность изоляции на плате между выводами 5 и 6.

    Чертеж печатной платы показан на рисунке, вид со стороны печатных проводников. Перед ее изготовлением нужно разобрать имеющийся аккумуляторный отсек шуруповерта и убедиться, что плата в него вписывается. Скорее всего потребуется небольшая коррекция, т.к. отсеки у разных производителей имеют небольшие конструктивные отличия.

    Силовые транзисторы VT1, VT3 и диодная сборка VD4 монтируются на небольших алюминиевых пластинках. Их габариты – по месту. В корпусе необходимо просверлить вентиляционные отверстия. Вентилятор придется разместить снаружи корпуса – без него длительная работа не гарантируется. Естественной вентиляции в данном случае недостаточно. И не забудьте про предохранитель FU1.

    При первом включении блок лучше запитать от источника питания 20-25 В с током 100…200 МА. При этом резистор R3 временно шунтируется другим, с номиналом 1К. Если все нормально, на выходе будет 0,6…1 В. Можно посмотреть форму и частоту импульсов на вторичной обмотке трансформатора. Там должны быть прямоугольные импульсы со скважностью 50% и частотой 50…100 КГц. Частота определяется номиналами R4, C5.

    Если все нормально, убираем временно установленный резистор 1К, включаем последовательно с блоком питания шуруповерта лампу накаливания на 60…100 Вт и включаем все это в сеть. В момент включения лампа кратковременно вспыхнет и погаснет, на выходе должно установиться напряжение около 12 В. Если все работает, убираем лампу и проверяем работу блока под нагрузкой около 1 Ом. Наконец, выбрасываем аккумуляторы, устанавливаем блок питания в корпус и проверяем работу шуруповерта в разных режимах.

    Если эта конструкция Вас заинтересовала, можете ознакомиться с вариантами схемы от автора и его рекомендациями по самостоятельному изготовлению трансформатора. Также доступны для скачивания два моих варианта чертежа печатной платы в Sprint Layout.

    Мобильный шуруповерт на аккумуляторной батарее получил широкое распространение в строительстве. Одним из существенных недостатков модели является износ аккумулятора, при износе которого приходится покупать новый шуруповерт или искать аккумулятор. Нестандартное решение предлагают радиолюбители — сделать своими руками блок питания для шуруповерта 18 В.

    Простое восстановление инструмента

    Основным преимуществом аккумуляторного шуруповерта является его мобильность. Применяется в таких инструментах литий-ионный аккумулятор, который защищен от перегрузки и полной разрядки. Кроме того, существует защита и от перезарядки в виде отдельной схемы, встроенной в сам элемент. Основным источником питания (первичным) является 220 В, выполняется и подзарядка аккумуляторной батареи.

    В зависимости от модели шуруповерта на аккумулятор поступает напряжение зарядки от 14 В до 21 В. На выходе батареи получается напряжение питания от 12 до 18 В. Этот тип АКБ служит долго, но если инструментом не пользоваться продолжительное время, не поможет и встроенная защита от разрядки элементов батареи: разрядка происходит постоянно.

    Для увеличения срока службы необходимо постоянно разряжать и заряжать батарею. Если по какой-то причине не удалось «уследить» за инструментом, часто выходит из строя какой-либо конкретный элемент аккумулятора. Существуют основные способы решения этой проблемы:

    1. Заменить батарею на новую.
    2. Приобрести новый инструмент.
    3. Переделать шуруповерт с питанием от сети.

    При замене аккумулятора необходимо учесть, что новый достаточно сложно найти. Инструменты делают так, чтобы тяжело было найти для них запчасти. Фирме невыгодно производить свое изделие с высокой ремонтоспособностью, так как ей нужны доходы от покупки продукции. Найти новый аккумулятор возможно только у дилеров. Кроме того, возможен еще вариант: разобрать аккумуляторную батарею и поменять неисправный элемент питания.

    При покупке нового инструмента пользователь стремится купить модель более качественного образца, забывая о правилах эксплуатации аккумуляторов литий-ионного типа. Основные правила, которые помогут надолго сохранить срок службы инструмента:

    1. При покупке в зимний период «запускать» инструмент сразу категорически запрещается. Нужно подождать около часа, пока он не «прогреется» до уровня комнатной температуры.
    2. Поставить батарею на зарядку.
    3. Цикл зарядки и разрядки АКБ выполнить около 3 раз.

    Если ни один из вариантов решения проблемы не подходит, нужно приступить к переделке шуруповерта на сетевой своими руками. Сделать это просто. Существует множество простых и сложных способов. Изменение модели инструмента имеет несколько положительных сторон:

    1. Нет необходимости подзарядки батареи.
    2. Множество вариантов блоков питания.
    3. Увеличение качественных характеристик изделия.

    Другие способы модернизации

    Радиолюбители предлагают много вариантов модернизации инструмента. Одни из них очень просты и сводятся к применению готовых блоков питания, а другие требуют знаний в области электротехники и придают устройству универсальность. Классификация способов:

    1. Адаптер питания для ноутбука.
    2. Подключение компьютерного импульсного БП (блок питания).
    3. Применение автомобильный аккумулятор на 12 В.
    4. Сборка самодельного источника питания.

    Использование зарядника для ноутбука является оптимальным решением проблемы. Кроме того, необходимо знать параметры шуруповерта и зарядника (есть на 12 В и 19 В), а также учесть габариты последнего (для монтажа в аккумуляторный отсек). Нужно припаять выход адаптера питания ноута, к клеммам которого подсоединяется батарея.

    При использовании импульсного БП (мощность от 350 Вт и выше) для персоналки (форм-фактор АТ) необходимо найти напряжение питания 12 В на разъемах, питающих винчестер или привод для чтения компакт-дисков. Вывести провода, а остальные аккуратно обрезать и заизолировать. Можно собрать корпус для БП, что позволит получить ток до 16 А. Кроме того, необходимо снять защиту от запуска. Для этого нужно соединить зеленый провод с черным из этого разъема. Эти два способа являются очень простыми и не требуют дополнительного описания.

    Автомобильный аккумулятор является оптимальным источником электрической энергии. При модернизации модели ничего не изменилось, кроме подключения другой батареи. Существенным недостатком является его масса. Кроме того, нужно собрать зарядное устройство или приобрести в специализированном магазине.

    Сборка своего БП является оптимальным решением для тех, кто поддерживает качество. Предыдущие варианты хороши, но не позволяют добиться гибкости применения. Например, они применимы только для шуруповертов с напряжением 12, а не 18 В. Есть зарядные устройства, рассчитанные на напряжение 19 В. Получение 18 В достигается путем последовательного соединения аккумуляторных батарей, например, 12 и 6 В. Следует учесть, что по характеристикам батареи должны отличаться только в плане напряжения. Именно поэтому часто и возникает необходимость собрать источник питания самостоятельно.

    Схемы и их описание

    Вариант самостоятельной сборки БП необходимо производить при условии знаний в области радиотехники. Кроме того, перед сборкой нужно хорошо все обдумать, найти корпус для монтажа и соответствующие радиоэлементы.

    Простой вариант БП

    Простая схема 1 БП (шуруповерта от сети 220 вольт), состоящая из трансформатора питания (вход диодного моста), выпрямителя и конденсаторного фильтра.

    Схема 1 — Блок питания для шуруповерта 18 В

    Трансформатор нужно подобрать с мощностью от 300 Вт и выше, напряжение на II обмотке должно быть в диапазоне от 20 до 24 В и силой тока свыше 15 А. Для диодного моста следует использовать мощные диоды, подобранные под ток вторичной обмотки. Сложнее будет подобрать соответствующее питание для шуруповерта. На выходе выпрямителя необходимо поставить конденсатор емкостью от 2000 мкФ (можно ограничиться емкостью на 470) и напряжением от 25 В и выше. Детали необходимо брать с запасом по току и напряжению. Все радиоэлементы монтируются на гетинаксовую плату, которая крепится в корпусе.

    Универсальный адаптер питания

    Предложенный вариант универсального БП обладает отличными характеристиками и выдерживает ток нагрузки до 10 А. Напряжение на выходе составляет 18 В, хотя можно произвести расчеты и сделать блок питания для шуруповерта 12 В. Этот БП можно применять в качестве зарядного устройства для аккумуляторной батареи (АКБ) и резервного источника питания при обесточивании сети (схема 2).

    Адаптер собран на стабилизаторе напряжения, состоящего из транзистора VT3 и VD2-VD5 (стабилитроны). При помощи тумблера SB1 включается питание и замыкает свои контакты реле К1. Питание идет на трансформатор, который преобразует переменный ток до необходимого номинала. Выходной ток с трансформатора поступает на выпрямитель. Далее выпрямленное напряжение поступает на стабилизатор. Присутствует в схеме и усилитель тока, собранный на транзисторах VT1 и VT2. К этому усилителю подключается нагрузка. Режим подзарядки аккумулятора (резервный источник питания) осуществляется через VD6 и ограничитель в виде резистора R4. При помощи SB2 можно отключить подзарядку батареи.

    Схема 2 — Универсальный БП для шуруповерта и зарядки АКБ

    При отсутствии напряжения питания 220 В реле обесточивается, и напряжение с батареи подается на другие контакты реле (питание напрямую от АКБ). Для защиты от токов КЗ и перегрузок используются предохранители. Такую систему можно использовать без резервного источника питания. Дополнительная наладка не требуется.

    Перечень радиодеталей указан на соответствующей схеме 2, однако возможны и замены аналогами, например:

    После сборки осуществляется монтаж и приведение изделия к соответствующему виду, дизайн выбирается самостоятельно.

    Адаптер на 12 В

    Адаптер собирается на микросхеме 7912 и представляет собой линейный регулятор. Транзистор увеличивает мощность БП (схема 3). Этой самоделкой можно запитать и шуруповерт на 18 В, для чего необходимо рассчитать трансформатор.

    Схема 3 — Блок питания для шуруповерта 12 В

    Вторичный источник питания представляет собой трансформатор, на выходе которого 16 В (для модели с питанием на 12 В постоянного тока) или 22 В (питание шуруповерта 18 В). Выпрямитель собирается из обычных диодов с обратным напряжением свыше 50 В (возможно использовать уже готовые варианты). Сглаживающий фильтр представляет собой конденсатор высокой емкости около 10000 мкФ, но чем больше эта величина, тем лучше.

    Микросхему нужно приобрести в специализированном магазине радиодеталей. Кроме того, в схеме использованы светодиоды, позволяющие производить диагностику при неисправностях БП. Радиоэлемент 2N3055 является транзистором p-n-p структуры и его можно заменить любым (аналог нужно подбирать из справочной литературы с напряжением около 50 В и током более 5 А). Возможно применение ЛУТ для изготовления монтажной платы. В интернете подробно описан процесс изготовления печатной платы по лазерно-утюжной технологии (ЛУТ).

    Регулируемая модификация

    Регулируемый БП очень удобен в использовании и является универсальным. Благодаря регулируемым значениям напряжений можно запитать любую технику, использовать для зарядки аккумулятора. Основным элементом является микросхема типа LM317. Усиление происходит при помощи двух транзисторов типа 2N3055, но можно применять и более мощные, ведь от этого мощность БП возрастает и позволяет получить ток до 20 А. Транзисторы устанавливаются на радиатор, и желательно применить в конструкции еще и вентилятор для охлаждения (кулер с персонального компьютера на 12 В).

    Схема 4 — Регулируемый БП

    Перечень деталей:

    При сборке нужно изолировать транзисторы применением теплопроводящих прокладок. Кроме того, при любых сборках мощных БП следует использовать толстые провода.

    Правила эксплуатации

    Если шуруповерт обладает сравнительно небольшой мощностью, нужно произвести монтаж самодельного БП в аккумуляторном отсеке. При отдельной сборке во всех БП нужно обеспечить охлаждение, использовав вентилятор или двигатель с крыльчаткой. Корпус не должен быть герметичным, так как произойдет перегрев (горячему воздуху некуда будет выходить). При готовности БП нужно проверить шуруповерт в комплексе с источником питания. Основные требования к использованию инструмента, позволяющие продлить эксплуатационный период:

    1. Время работы: 30-40 минут, после чего необходимо сделать паузу до полного остывания.
    2. Избегать работ на больших высотах.
    3. Следить за состоянием питающего кабеля, аккумулятора (если он используется), температурой инструмента и самодельного БП.

    Таким образом, при выходе из строя аккумулятора шуруповерта на 18 В можно избежать лишних затрат. Если важна мобильность, то имеет смысл приобрести новый аккумулятор или сам инструмент. Существует множество вариантов, предложенных радиолюбителями для продления его срока службы. Необходимо выбрать оптимальный из них для конкретного случая применения устройства.

    Loading...Loading...