Температура солнца и протекающая термоядерная реакция

Ближайшая к нам звезда – это конечно Солнце. Расстояние от Земли до него по космическим параметрам совсем небольшое: от Солнца до Земли солнечный свет идет всего лишь 8 минут.

Солнце – это не обычный желтый карлик, как считали ранее. Это центральное тело солнечной системы, возле которой вертятся планеты, с большим количеством тяжелых элементов. Это звезда, образовавшаяся после нескольких взрывов сверхновых, около которой сформировалась планетная система. За счет расположения, близкого к идеальным условиям, на третьей планете Земля возникла жизнь. Возраст Солнца насчитывает уже пять миллиардов лет. Но давайте разберемся, почему же оно светит? Какое строение Солнца, и каковы его характеристики? Что ждет его в будущем? Насколько значительное влияние оно оказывает на Землю и ее обитателей? Солнце – это звезда, вокруг которой вращаются все 9 планет солнечной системы, в том числе и наша. 1 а.е. (астрономическая единица) = 150 млн. км – таким же является и среднее расстояние от Земли до Солнца. В Солнечную систему входят девять больших планет, около сотни спутников, множество комет, десятки тысяч астероидов (малых планет), метеорные тела и межпланетные газ и пыл. В центре всего этого и находится наше Солнце.

Солнце светит уже миллионы лет, что подтверждают современные биологические исследования, полученные из остатков сине-зелено-синих водорослей. Изменись температура поверхности Солнца хотя бы на 10 %, и на Земле, погибло бы все живое. Поэтому хорошо, что наша звезда равномерно излучает энергию, необходимую для процветания человечества и других существ на Земле. В религиях и мифах народов мира, Солнце постоянно занимало главное место. Почти у всех народов древности, Солнце было самым главным божеством: Гелиос – у древних греков, Ра – бог Солнца древних египтян и Ярило у славян. Солнце приносило тепло, урожай, все почитали его, потому что без него не было бы жизни на Земле. Размеры Солнца впечатляют. Например, масса Солнца в 330 000 раз больше массы Земли, а его радиус в 109 раз больше. Зато плотность нашего звездного светила небольшая – в 1,4 раза больше, чем плотность воды. Движение пятен на поверхности заметил еще сам Галилео Галилей, таким образом доказав, что Солнце не стоит на месте, а вращается.

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют — феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру — грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Фотосфера Солнца

Тонкий слой (400 км) — фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца

Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Характеристики Солнца

Масса Солнца: 2∙1030 кг (332 946 масс Земли)
Диаметр: 1 392 000 км
Радиус: 696 000 км
Средняя плотность: 1 400 кг/м3
Наклон оси: 7,25° (относительно плоскости эклиптики)
Температура поверхности: 5 780 К
Температура в центре Солнца: 15 млн градусов
Спектральный класс: G2 V
Среднее расстояние от Земли: 150 млн. км
Возраст: 5 млрд. лет
Период вращения: 25,380 суток
Светимость: 3,86∙1026 Вт
Видимая звездная величина: 26,75m

В космическом пространстве много мелких и крупных звёзд. И если говорить о жителях Земли, то самой главной звездой для них является Солнце. Оно состоит на 70% из водорода и на 28% из гелия, на долю металлов приходится менее 2%.

Если бы не Солнце, возможно, не было бы жизни на Земле. Наши предки знали, как сильно их быт и жизнь зависит от небесного светила, поклонялись и обожествляли его. Солнце греки называли Гелиос, а римляне величали его Соль.

Солнце оказывает огромное влияние на нашу жизнь. Это огромный стимул к изучению того, как происходят изменения внутри этого "огненного шара", и как эти изменения могут влиять на нас сейчас и в будущем. Многочисленные научные изыскания дают нам возможность заглянуть в далёкое прошлое планеты. Солнцу около 5 миллиардов лет. Через 4 миллиарда лет оно будет светить намного ярче, чем сейчас. Кроме увеличения светимости и размеров на протяжении многих миллиардов лет, Солнце изменяется и за более короткие промежутки времени.

Известен такой период изменения как солнечный цикл, в моменты которого, наблюдаются минимумы и максимумы Благодаря наблюдениям в течение нескольких десятков лет установлено, что увеличение световой активности и размеров Солнца, начавшееся в далёком прошлом, существует и сейчас. За последние несколько циклов световая активность возросла примерно на 0,1 %. Эти изменения, будь они быстрые или постепенные, определённо, оказывают огромное влияние на землян. Однако механизмы этого влияния изучены еще далеко не в полном объеме.

Температура Солнца в центре звезды очень высокая, около 14 миллиардов градусов. В ядре планеты происходят термоядерные реакции, т.е. реакции деления водородных ядер под давлением, в результате чего выделяется одно ядро гелия и огромное количество энергии. С углублением внутрь температура Солнца должна быстро возрастать. Определить ее можно только теоретически.

Температура Солнца в градусах составляет:

  • температура короны - 1500000 градусов;
  • температура ядра - 13500000 градусов;
  • температура Солнца по Цельсию на поверхности - 5726 градусов.

Огромное количество ученых из разных стран производят исследования строения Солнца, пытаются воссоздать процесс термоядерного синтеза в земных лабораториях. Это делается с той целью, чтобы узнать, как ведёт себя плазма в реальных условиях, чтобы повторить эти условия на Земле. Солнце, на самом деле, огромнейшая естественная лаборатория.

Атмосфера Солнца толщиной около 500 км называется фотосферой. Благодаря конвекционным процессам в атмосфере планеты потоки тепла из низких слоев перемещаются в фотосферу. Солнце вращается, но не так, как Земля, Марс… Солнце в основе своей нетвердое тело.

Аналогичные эффекты вращения Солнца наблюдаются у газовых планет. В отличие от Земли, слои на Солнце имеют различные скорости вращения. Быстрее всего вращается экватор, вращение в один оборот выполняется примерно за 25 дней. При удалении от экватора скорость вращения снижается, и где-то на полюсах Солнца вращение занимает примерно 36 дней. Мощность Солнца составляет около 386 миллиардов мегаватт. Каждую долю секунды около 700 миллионов тонн водорода становятся 695 миллионами тонн гелия и 5 миллионами тонн энергии в виде гамма-лучей. Благодаря тому, что температура Солнца столь высока, успешно идет реакция перехода водорода в гелий.

Солнце также испускает поток низкой плотности заряженных частиц (в основном, это протоны и электроны). Этот поток называется солнечным ветром, который распространяется по всей солнечной системе со скоростью около 450 км/сек. Потоки непрерывно текут от Солнца в космос, соответственно, и в сторону Земли. Солнечный ветер несёт в себе смертельную угрозу для всей жизни на нашей планете. Может иметь драматические последствия для Земли: от скачков линии электропередачи, радиопомех до красивых полярных сияний. Если бы на нашей планете не существовало магнитного поля, то жизнь прекратилась бы за считанные секунды. Магнитное поле создает непроходимый барьер для быстрых заряженных частиц солнечного ветра. В районах северного полюса магнитное поле направлено внутрь Земли, из-за чего ускоренные частицы солнечного ветра проникают гораздо ближе к поверхности нашей планеты. Поэтому на северном полюсе мы наблюдаем полярные Солнечный ветер также может вызывать опасность, взаимодействуя с земной магнитосферой. Это явление называется оказывают сильное влияние на здоровье людей. Особенно эти реакции заметны у пожилых людей.

Солнечный ветер - это ещё не всё, чем может навредить нам Солнце. Большую опасность представляют часто происходящие на поверхности светила. Вспышки излучают огромное количество ультрафиолетового и рентгеновского излучения, которое направлено в сторону Земли. Эти излучения полностью способна поглотить земная атмосфера, но они несут в себе большую опасность для всех объектов, находящихся в космосе. Излучения могут принести вред искусственным спутникам, станциям и другой космической технике. Также излучение неблагоприятно влияет на здоровье космонавтов, работающих в космическом пространстве.

С момента появления Солнце уже использовало около половины водорода в ядре, и будет продолжать излучать ещё в течение 5 миллиардов лет, постепенно увеличиваясь в размерах. Через этот промежуток времени, оставшийся водород в ядре звезды полностью будет исчерпан. К этому времени Солнце достигнет своих максимальных размеров и увеличится в диаметре примерно в 3 раза (по сравнению с нынешней величиной). Оно будет напоминать красный гигантский Часть планет, близко расположенных к Солнцу, сгорят в его атмосфере. В их число войдёт и Земля. К тому времени человечеству придется найти себе новую планету для обитания. После чего температура Солнца начнет падать и, остыв, оно превратится со временем в Однако это все дело весьма далекого будущего...

Температура - очень важная характеристика состояния вещества, от которой зависят основные его физические свойства. Ее определение - одна из труднейших астрофизических задач. Это связано как со сложностью существующих методов определения температуры, так и с принципиальной неточностью некоторых из них. За редким исключением, астрономы лишены возможности измерять температуру с помощью какого-либо прибора, установленного на самом исследуемом теле. Однако даже если бы это удалось сделать, во многих случаях тепло-измерительные приборы оказались бы бесполезными, так как их показания сильно отличались бы от действительного значения температуры. Термометр дает правильные показания только в том случае, когда он находится в тепловом равновесии с телом, температура которого измеряется. Поэтому для тел, не находящихся в тепловом равновесии, принципиально невозможно пользоваться термометром, и для определения их температуры необходимо применять специальные методы. Рассмотрим основные методы определения температур и укажем важнейшие случаи их применения.

Определение температуры по ширине спектральных линий . Этот метод основан на использовании формулы (7.43), когда из наблюдений известна доплеровская ширина спектральных линий излучения или поглощения. Если слой газа оптически тонкий (самопоглощения нет), а его атомы обладают только тепловыми движениями, то таким путем непосредственно получается значение кинетической температуры. Однако очень часто эти условия не выполняются, о чем прежде всего говорит отклонение наблюдаемых профилей от кривой Гаусса, изображенной на рис. 90. Очевидно, что в этих случаях задача определения температуры на основании профилей спектральных линий сильно усложняется.

Определение температуры на основании исследования элементарных атомных процессов, приводящих к возникновению наблюдаемого излучения . Этот метод определения температуры основан на теоретических расчетах спектра и сравнении их результатов с наблюдениями. Проиллюстрируем этот метод на примере солнечной короны. В ее спектре наблюдаются линии излучения, принадлежащие многократно ионизованным элементам, атомы которых лишены более чем десятка внешних электронов, для чего требуются энергии по крайней мере в несколько сотен электрон-вольт. Мощность солнечного излучения слишком мала, чтобы вызвать столь сильную ионизацию газа. Ее можно объяснить только столкновениями с энергичными быстрыми частицами, главным образом свободными электронами. Следовательно, тепловая энергия значительной доли частиц в солнечной короне должна равняться нескольким сотням электрон-вольт. Обозначая через е энергию, выраженную в электрон-вольтах и учитывая (7.13), имеем Т = 11 600 в.

Тогда энергию в 100 эв большинство частиц газа имеет при температуре более миллиона градусов.

Определение температуры на основании применения законов излучения абсолютно черного тела . На применении законов излучения абсолютно черного тела (строго говоря, справедливых только для термодинамического равновесия) к наблюдаемому излучению основан ряд наиболее распространенных методов определения температуры. Однако по причинам, упомянутым в начале этого параграфа, все эти методы принципиально неточны и приводят к результатам, содержащим большие или меньшие ошибки. Поэтому их применяют либо для приближенных оценок температуры, либо в тех случаях, когда удается доказать, что эти ошибки пренебрежимо малы. Начнем именно с этих случаев.

Оптически толстый, непрозрачный слой газа в соответствии с законом Кирхгофа дает сильное излучение в непрерывном спектре. Типичным примером могут служить наиболее глубокие слои атмосферы звезды. Чем глубже находятся эти слои, тем лучше они изолированы от окружающего пространства и тем ближе, следовательно, их излучение к равновесному. Поэтому для внутренних слоев звезды, излучение которых до нас совсем не доходит, законы теплового излучения выполняются с высокой степенью точности.

Совсем иначе обстоит дело с внешними слоями звезды. Они занимают промежуточное положение между полностью изолированными внутренними слоями и совсем прозрачными самыми внешними (имеется в виду видимое излучение). Фактически мы видим те слои, оптическая глубина которых не слишком сильно отличается от 1. Действительно, более глубокие слои хуже видны вследствие быстрого роста непрозрачности с глубиной, а самые внешние слои слабо излучают (напомним, что излучение оптически тонкого слоя пропорционально его оптической толщине). Следовательно, излучение, выходящее за пределы данного тела, возникает в основном в слоях. Иными словами, те слои, что мы видим, расположены на глубине, начиная с которой газ становится непрозрачным, Для них законы теплового излучения выполняются лишь приблизительно. Так, например, для звезд, как правило, удается подобрать такую планковскую кривую, которая, хотя и очень грубо, все же напоминает распределение энергии в ее спектре. Это позволяет с большими оговорками применить законы Планка, Стефана - Больцмана и Вина к излучению звезд.

Рассмотрим применение этих законов к излучению Солнца, На рис. 91 изображено наблюдаемое распределение энергии в спектре центра солнечного диска вместе с несколькими планковскими кривыми для различных температур. Из этого рисунка видно, что ни одна из них в точности не совпадает с кривой для Солнца. У последней максимум излучения выражен не так резко. Если принять, что он имеет место в длине волны max = 4300 Å, то температура, определенная по закону смещения Вина, окажется равной Т ( шах) = 6750°.

Полная энергия, излучаемая 1 см 2 поверхности Солнца, равна

e ¤ = 6,28×10 10 эрг/см 2 × сек.

Подставляя это значение в формулу (7.33) закона Стефана - Больцмана, получаем так называемую эффективную температуру

Итак, эффективной температурой тела называется температура такого абсолютно черного тела, каждый квадратный сантиметр которого во всем спектре излучает такой же поток энергии, как и 1 см 2 данного тела.

Аналогичным образом вводятся понятия яркостной и цветовой температуры. Яркостной температурой называется температура такого абсолютно черного тела, каждый квадратный сантиметр которого в некоторой длине волны излучает такой же поток энергии, как и данное тело в той же длине волны. Чтобы определить яркостную температуру, надо применить формулу Планка к наблюдаемой монохроматической яркости излучающей поверхности. Очевидно, что в различных участках спектра реальное тело может иметь различную яркостную температуру. Так, например, из рис. 91 видно, что кривая для Солнца пересекает различные планковские кривые, соответствующие температуры которых показывают изменение яркостной температуры Солнца в различных участках видимого спектра.

Определение яркостной температуры требует очень сложных измерений интенсивности излучения в абсолютных единицах. Гораздо проще определить изменение интенсивности излучения в некоторой области спектра (относительное распределение энергии).

Температура абсолютно черного тела, у которого относительное распределение энергии в некотором участке спектра такое же, как и у данного тела, называется цветовой температурой тела. Возвращаясь снова к распределению энергии в спектре Солнца, мы видим, что в области длин волн 5000-6000 Å наклон кривой для Солнца на рис. 91 такой же, как и у планковской кривой для температуры 7000° в той же области спектра.

Введенные выше понятия эффективной, яркостной и цветовой температуры являются таким образом лишь параметрами, характеризующими свойства наблюдаемого излучения. Чтобы выяснить, с какой точностью, и на какой глубине они дают представление о действительной температуре тела, необходимы дополнительные исследования

Проанализируем результаты. Определяемая полным потоком излучения эффективная температура Солнца оказалась равной 5760°, в то время как положение максимума излучения в спектре Солнца соответствует температуре, определенной по закону Вина, около 6750°. Относительное распределение энергии в различных участках спектра позволяет найти цветовые температуры, значение которых весьма сильно меняется даже в пределах одной только видимой области. Так, например, в интервале длин волн 4700-5400 Å цветовая температура составляет 6500°, а рядом в области длин волн 4300-4700 Å - около 8000°. В еще более широких пределах меняется по спектру яркостная температура, которая на участке спектра 1000-2500 Å возрастает от 4500° до 5000°, в зеленых лучах (5500 Å) близка к 6400°, а в радиодиапазоне метровых волн достигает миллиона градусов! Для наглядности все перечисленные результаты сведены в табл. 4.

Различие между данными, приведенными в табл. 4, имеет принципиальное значение и приводит к следующим важным выводам:

1. Излучение Солнца отличается от излучения абсолютно черного тела. В противном случае все значения температур, приведенные в табл. 4, были бы одинаковыми.

2. Температура солнечного вещества меняется с глубиной. Действительно, непрозрачность сильно нагретых газов неодинакова для различных длин волн. В ультрафиолетовых лучах поглощение больше, чем в видимых. Вместе с тем сильнее всего такие газы поглощают радиоволны. Поэтому радио-, ультрафиолетовое и видимое излучения соответственно относятся ко все более и более глубоким слоям Солнца. Учитывая наблюдаемую зависимость яркостной температуры от длины волны, получаем, что где-то вблизи видимой поверхности Солнца расположен слой, обладающий минимальной температурой (около 4500°), который можно наблюдать в далеких ультрафиолетовых лучах. Выше и ниже этого слоя температура быстро растет.

3. Из предыдущего следует, что большая часть солнечного вещества должна быть весьма сильно ионизована. Уже при температуре 5-6 тысяч градусов ионизуются атомы многих металлов, а при температуре выше 10-15 тысяч градусов ионизуется наиболее обильный на Солнце элемент - водород. Следовательно, солнечное вещество представляет собой плазму, т.е. газ, большинство атомов которого ионизовано. Лишь в тонком слое вблизи видимого края ионизация слабая и преобладает нейтральный водород

Из табл. 5 видно, что в недрах Солнца температура превышает 10 миллионов градусов, а давление - сотни миллиардов атмосфер (1 атм = 103 дин/см2). В этих условиях отдельные атомы движутся с огромными скоростями, достигающими, например, для водорода, сотен километров в секунду. Поскольку при этом плотность вещества очень велика, весьма часто происходят атомные столкновения. Некоторые из таких столкновений приводят к тесным сближениям атомных ядер, необходимым для возникновения ядерных реакций.

В недрах Солнца существенную роль играют две ядерные реакции. В результате одной из них, схематически изображенной на рис. 130, из четырех атомов водорода образуется один атом гелия. На промежуточных стадиях реакции образуются ядра тяжелого водорода (дейтерия) и ядра изотопа Не 3 . Эта реакция называется протон-протонной.

Другая реакция в условиях Солнца играет значительно меньшую роль. В конечном счете она также приводит к образованию ядра гелия из четырех протонов. Процесс сложнее и может протекать только при наличии углерода, ядра которого вступают в реакцию на первых ее этапах и выделяются на последних. Таким образом, углерод является катализатором, почему и вся реакция носит названия углеродного цикла.

Исключительно важным является то обстоятельство, что масса ядра гелия почти на 1% меньше массы четырех протонов. Эта кажущаяся потеря массы называется дефектом массы и является причиной выделения в результате ядерных реакций большого количества энергии.

Описанные ядерные реакции являются источником энергии, излучаемой Солнцем в мировое пространство.

Так как наибольшие температуры и давление создаются в самых глубоких слоях Солнца, ядерные реакции и сопровождающее их энерговыделение наиболее интенсивно происходит в самом центре Солнца. Только здесь наряду с протон-протонной реакцией большую роль играет углеродный цикл. По мере удаления от центра Солнца температура и давление становятся меньше, выделение энергии за счет углеродного цикла быстро прекращается и вплоть до расстояния около 0,2-0,3 радиуса от центра существенной остается только протон-протонная реакция. На расстоянии от центра больше 0,3 радиуса температура становится меньше 5 миллионов градусов, а давление ниже 10 миллиардов атмосфер. В этих условиях ядерные реакции происходить совсем не могут. Эти слои только передают наружу излучение, выделившееся на большей глубине в виде гамма-квантов, которые поглощаются и переизлучаются отдельными атомами. Существенно, что вместо каждого поглощенного кванта большой энергии атомы, как правило, излучают несколько квантов меньших энергий. Происходит это по следующей причине. Поглощая, атом ионизуется или сильно возбуждается и приобретает способность излучать. Однако возвращение электрона на исходный энергетический уровень происходит не сразу, а через промежуточные состояния, при переходах между которыми выделяются кванты меньших энергий. В результате этого происходит как бы “дробление” жестких квантов на менее энергичные. Поэтому вместо гамма-лучей излучаются рентгеновские, вместо рентгеновских - ультрафиолетовые, которые в свою очередь уже в наружных слоях дробятся на кванты видимых и тепловых лучей, окончательно излучаемых Солнцем.

Та часть Солнца, в которой выделение энергии за счет ядерных реакций несущественно и происходит процесс переноса энергии путем поглощения излучения и последующего переизлучения, называется зоной лучистого равновесия. Она занимает область примерно от 0,3 до 0,7 r ¤ от центра Солнца. Выше этого уровня в переносе энергии начинает принимать участие само вещество, и непосредственно под наблюдаемыми внешними слоями Солнца, на протяжении около 0,3 его радиуса, образуется конвективная зона, в которой энергия переносится конвекцией.

Солнцем называется звезда, вырабатывающая тепло в результате происходящих в ней термоядерных реакций по преобразованию молекул водорода в инертный газ — гелий. Измеряется температура в градусах и различается в разных его слоях . Благодаря тому, что Земля находится на огромном расстоянии от светила, мы защищены от его испепеляющего воздействия. Чтобы чувствовать себя в безопасности, человечеству необходимо разгадать все его секреты.

Вконтакте

Строение светила

Как выглядит Солнце и из чего состоит. В своей основе это многослойная плазменно-газовая сфера, внутренний объем которой можно разделить на несколько зон с различным составом, свойствами, поведением и характеристиками вещества.

Строение Солнца можно представить следующим образом:

  • ядро — гигантская термоядерная «печь», которая генерирует тепло и энергию в виде фотонов. Именно они несут свет на Землю. Радиус ядра не превышает четверти общего радиуса небесного светила; температура в центре солнца достигает 14 миллионов Кельвинов;
  • радиационная (излучающая) зона, имеет толщину около трехсот тысяч километров и характеризуется высокой плотностью. Здесь энергия медленно перемещается к поверхности . По сути это и есть область термоядерного синтеза;
  • конвективная зона, где энергия перемещается значительно быстрее на поверхность или в фотосферу;
  • над поверхностью начинается зона вихревых газов солнечной атмосферы.

Сферы и их особенности

Фотосфера — самый тонкий и глубинный слой, расположенный выше поверхности Солнца, его можно наблюдать в непрерывном спектре видимого света. Высота фотосферы приблизительно 300 км. Чем глубже слой фотосферы, тем он становится горячее.

Хромосфера — внешняя оболочка , окружающая фотосферу. Ее толщина составляет примерно 10 000 км, и она отличается неоднородной структурой. Корона — внешняя и потому необычайно разреженная часть атмосферы, которую можно увидеть в период полного затмения. Имеет температуру более миллиона градусов.

Атмосфера подвержена постоянным резонансным колебаниям примерно каждые 5 минут . Распространяясь в верхних слоях атмосферы, волны передают им часть энергии, газы других слоев (хромосферы и короны) нагреваются. Поэтому верхняя часть фотосферы на Солнце оказывается самой «холодной».

Внимание! Плотность, температура и давление внутри гигантского термоядерного реактора уменьшаются по мере удаления от ядра.

Температура солнца в градусах различна в каждой из его сфер, так температура Солнца на поверхности составляет 5 800 градусов Цельсия, солнечной короны – 1 500 000 , температура ядра солнца – 13 500 000.

Сила излучения

Мощность излучения очень большая: примерно 385 миллиардов мегаватт. Почти мгновенно 700 млн тонн водорода превращаются в 695 млн тонн гелия и 5 млн тонн гамма-лучей. Из-за высокой температуры звезды синтез, трансформирующий водород в гелий протекает с формированием солнечной энергии и излучением потока фотонов. Такой поток принято называть солнечным ветром , который распространяется со скоростью более 450 км/с.

Благодаря излучению поддерживается жизненные процессы на Земле, определяется ее климат. Формально свечение имеет практически белый цвет, однако, приближаясь к земной поверхности, становится желтого оттенка - это результат рассеивания света и поглощения коротковолновой части спектра .

Солнечный ветер имеет и другое определение — корональные выбросы массы (КВМ), представляющие собой колоссальный фронт радиоактивных ионизированных заряженных частиц , направляемых в космическую бездну и испепеляющих все на своем пути.

Когда фотоны добираются до поверхностных слоев, они заставляют вращаться внешние слои звезды, в результате чего образуются мощные магнитные противостояния и ударные волны.

Разогнавшись до невероятных скоростей газы также генерируют сильные магнитные поля, которые при вращении звезды сталкиваются и вырываются с поверхности.

В космическое пространство извергаются магнитные петли огромного размера . Некоторые из этих образований настолько большие, что Земля смогла бы пройти через них с огромным запасом.

От них отрывается и уносится на огромной скорости сгусток высокорадиоактивной ионизированной плазмы. Это и есть КВМ. Он может повредить космические аппараты и даже угрожать жизни астронавтов. Такой убийственный фронт иногда достигает Земли за 16 часов. Для сравнения: на быстром космическом корабле полет занял бы годы, а солнечному ветру на этот путь нужны всего лишь считанные часы.

Важно! Солнечный ветер представляет смертельную угрозу для существования всего живого на нашей планете. Если бы не было у Земли магнитного поля, создающего непроходимый барьер для частиц, жизнь прервалась бы за пару секунд.

Возникновение

Существуют разные теории возникновения солнца. Вот одна из них. В безграничном пространстве миллионы лет собирались пыль и газ, под действием гравитации и давления произошел рост тепла, что привело к ядерному синтезу и взрыву. Сначала из огромного скопления материала сформировалась звезда , затем близкие к ней планеты.

Многие задаются вопросом, сколько же нашему Солнцу лет и как оно образовалось. Точный возраст светила, конечно, выяснить невозможно. Считается, что единственная звезда в системе появилась 4,57 млрд лет назад.

Существует гипотеза, что срок существования звезды на главной последовательности не превышает 10 млрд лет . Это значит, что сейчас она находится практически посередине своего жизненного периода и по истечении срока своего существования ее свечение станет намного ярче, а температура будет стремительно падать, и светило достигнет этапа красного гиганта. Затем его внешняя оболочка начнет расширяться, а после терять массу. Это может привести к тому, что поверхностные слои могут достигнуть орбиты Земли.

Диаметр диска

Поскольку звезда — это газовый шар, который вращается, то его форма чуть сплюснута по полюсам. Согласно научным исследованиям, на поверхности солнца вообще не имеется твёрдых участков, поэтому термин «диаметр» характеризует размер одного из слоев атмосферы.

Основываясь на астрономических наблюдениях при помощи оптического эффекта «Четок Бейли», этот параметр определяют как диаметр фотосферы - зоны лучистой передачи энергии .

Полученный таким методом средний радиус Солнца составляет 695 990 км. Следовательно, диаметр солнца в километрах составляет 1 млн 392 тыс.

Существует и другой способ вычисления размеров солнечного светила — использование методов гелиосейсмологии с изучением поверхностных гравитационных f-волн, образованных на солнце.

Данные, полученные «сейсмическим» методом показывают иное значение радиуса - 695 700 км , а диаметр солнца в километрах — 1 391 400. Данная величина меньше радиуса фотосферы примерно на 300 км.

Важно! Несмотря на незначительные отличия между двумя значениями (около 0,04%), изменение установленной ранее величины может привести к переоценке других параметров, за исключением плотности и температуры.

Скорость вращения

Нетвердое тело вращается совсем не так, как планеты. У разных слоев звезды свои скорости вращения. Самая большая – в районе экватора, один оборот занимает около 25 дней. Чем дальше расположен слой от экватора, тем скорость его вращения меньше. Так, полюса совершают один оборот примерно за 36 дней . Именно поэтому светило обладает миллионами магнитных полюсов, а не двумя, как наша планета.

Внимание ! Восход и заход в тропических странах вблизи происходит словно по графику - в одно время, каждый день, в течение года. Поэтому сутки в тропиках делятся поровну: продолжительность дня и ночи равна 12 часам.

Внешняя оболочка и ее строение

Поверхностью у принято называть внешние слои, которые сотрясаются чудовищной силы взрывами, выбросами и извержениями Температура солнца в градусах здесь составляет 6000 С⁰.

На поверхности Солнца существует множество необычных образований разного размера, наиболее известные из которых пятна — участки темного цвета , обозначающие места выхода сильных магнитных полей в атмосферу солнца. Вся поверхность солнца покрыта, так называемыми конвективными клетками.

Внимание! На поверхности Солнца случаются частые вспышки, сопровождаемые выбросами высокотемпературной плазмы и газа.

Такая солнечная активность может иметь негативные последствия для нашей планеты. Тем более, что такой процесс носит внезапный и непредсказуемый характер и может длиться от нескольких часов до нескольких суток. То, что многие люди привыкли называть магнитными бурями , негативно влияющие на состояние человека.

Ученым важно знать не только температуру Солнца в градусах по Цельсию и его диаметр в километрах, но и другие характеристики, чтобы отслеживать активность небесной звезды.

Температура на поверхности Солнца в градусах по Цельсию составляет в среднем 5726 градусов, короны – 1500 тысяч и ядра 13,5 млн градусов.

Сегодня можно наблюдать за космической погодой в режиме онлайн , узнавать какова температура Солнца в градусах. Состояние светила оказывает значительное влияние на космическую погоду в нашей системе. Ее определяют по нескольким параметрам:

  • потокам ионизированной плазмы,
  • жесткого излучения и вспышек,
  • силе солнечного ветра.

Температура разных слоев солнца

Строение солнца и другие интересные факты

Вывод

Развитие астрономии дало возможность определять далекую перспективу небесных тел и облегчило сбор информации для метеослужб . Сегодня появилась возможность проводить исследование новых планет, растет уровень безопасности Земли, разрабатываются способы защиты от возможных столкновений с астероидами и другими небесными телами.

Солнце перегревается, и вскоре взрыв поглотит не только Землю, но и всю остальную часть Солнечной системы.

Солнце перегревается, и вскоре взрыв поглотит не только Землю, но и всю остальную часть Солнечной системы.

Ученые забили тревогу после того, как международный спутник зафиксировал крупную вспышку на поверхности Солнца. Диаметр гигантского протуберанца при этом превысил 30 диаметров Земли, длина - 350 тыс км. Правда, выброс солнечной энергии произошел не в сторону нашей планеты, иначе последствия были бы более ощутимы - опасные сбои электронного и коммуникационного оборудования. Вспышка произошла 1 июля, ее наблюдали астрономы NASA и Европейского космического агентства с помощью орбитальной солнечно-гелиосферической обсерватории SOHO.

Голландский астрофизик Пирс Ван дер Меер (Piers Van der Meer), эксперт Европейского космического агентства (ESA), склонен считать этот колоссальный протуберанец верным признаком того, что Солнце готово взорваться в самое ближайшее время. Разумеется, Земля при этом будет сожжена вместе со всей жизнью на ней, и спастись при этом будет абсолютно невозможно. "Подобно тому, как если бы зефир поднесли к огню, - он чернеет и тает", - так предает слова специалиста Weekly World News.

Весь ужас в том, что Солнце постепенно разогревается. Внутренняя температура Солнца обычно составляла 27 млн градусов по шкале Фаренгейта (15 млн по Цельсию). Но теперь она поднялась до 49 млн (27 млн C). За последние 11 лет Солнце проходит путь, тревожно напоминающий то, что происходило со Звездой Кеплера, иначе говоря, новой звездой, вспыхнувшей в 1604 году, говорит доктор Ван дер Меер.

Возможно, и глобальное потепление на Земле, расплавляющее льды Антарктиды, связано вовсе не с антропогенном загрязнением, как думали раньше, а с процессами, происходящими на Солнце.

НАСА отказалось подтвердить прогнозы европейских ученых, а источник, связанный с Белым домом, заявил: "Мы не желаем какого-либо распространения панических настроений сейчас".

Комментарий: Гигантский протуберанец 1 июля действительно имел место быть. Но особой тревоги он ни у кого тогда не вызвал. Вспышки на Солнце - не редкость, эта - одна из самых мощных за последнее время, но вовсе не самая мощная. Допустим, некий голландский астрофизик, впечатленный космическим катаклизмом, действительно предсказал конец света. Говорится о том, что внутренняя температура Солнца, иначе говоря, температура его ядра, растет. Но эта та вещь, которая не может быть непосредственно измерена. Температура в центре Солнца "определяется" исключительно по теоретическим моделям его внутреннего строения. Разные модели дают немного разные значения, но наиболее общепринятые цифры - 15 или 16 млн Кельвинов (соответственно, примерно столько и по Цельсию). Такую температуру дает синтез ядер гелия из ядер водорода. Солнце считается стационарной звездой, практически не меняющей своей светимости в течение многих миллиардов лет.

Аналогия со вспышкой сверхновой 1604 года по меньшей мере чудна. Вот уж вряд ли кто смог тогда изучить предшествующее вспышке внутреннее состояние звезды.

Если уж говорить о каких-то зафиксированных на Солнце катастрофических изменениях, то логичнее указывать изменения температуры ее поверхности или светимость. Поток солнечного излучения - очень постоянная величина, эта вещь так и называется - солнечная постоянная. Ее вариации - не более десятых долей процента даже в пределах обычного 11-летнего цикла солнечной активности, а уже 0,1 % способна вызвать изменение климата на нашей планете.

Разумеется, если бы такое произошло, на уши встал бы не один голландский астрофизик, а сотрудники сотен лабораторий по всей Земле. Так что говорить о никем не отмеченном чуть ли не двукратном увеличении параметров - нонсенс. Или это такой всемирный заговор молчания астрофизиков.

Забавен типичный способ проникновения подобных сенсаций в самые солидные российские интернет-издания. Например, Cnews.ru передает эту новость под названием "Голландский астрофизик полагает, что до взрыва Солнца осталось лет шесть".

Loading...Loading...