Как по показателям крови определить воспалительный процесс в организме. Кровь и лимфа. Функция и состав крови. Структурная и функциональная характеристика эритроцитов, лейкоцитов, агранулоцитов. Возрастные особенности крови Норма в организме эритроцитов и

Глава 7. КРОВЬ И ЛИМФА. КРОВЕТВОРЕНИЕ

Глава 7. КРОВЬ И ЛИМФА. КРОВЕТВОРЕНИЕ

7.1. ПОНЯТИЕ О СИСТЕМЕ КРОВИ

Система крови включает кровь, органы кроветворения - красный костный мозг, вилочковую железу (тимус), селезенку, лимфатические узлы, лим-фоидную ткань некроветворных органов, а также клетки крови в составе соединительной и эпителиальной тканей.

Элементы системы крови связаны генетически и функционально, подчиняются общим законам нейрогуморальной регуляции, объединены тесным взаимодействием всех звеньев. Так, постоянный состав периферической крови поддерживается сбалансированными процессами новообразования (гемопоэза) и разрушения клеток крови. Поэтому понимание вопросов развития, строения и функции отдельных элементов системы возможно лишь с позиций изучения закономерностей, характеризующих систему в целом.

Система крови тесно связана с лимфатической и иммунной системами. Образование иммуноцитов происходит в органах кроветворения, а их циркуляция и рециркуляция - в периферической крови и лимфе.

Кровь и лимфа - ткани мезенхимного происхождения. Они образуют внутреннюю среду организма (вместе с рыхлой соединительной тканью), состоят из плазмы (жидкого межклеточного вещества) и взвешенных в ней форменных элементов. Обе ткани тесно взаимосвязаны, в них происходит постоянный обмен форменными элементами, а также веществами, находящимися в плазме. Установлен факт рециркуляции лимфоцитов из крови в лимфу и из лимфы в кровь. Все клетки крови развиваются из общей полипотентной стволовой клетки крови в эмбриогенезе (эмбриональный гемопоэз) и после рождения (постэмбриональный гемопоэз). Сущность и этапы гемопоэза рассмотрены ниже.

7.2. КРОВЬ

Кровь (sanguis, haema) - это циркулирующая по кровеносным сосудам жидкая ткань, состоящая из двух основных компонентов - плазмы и взве-

шенных в ней форменных элементов: эритроцитов, лейкоцитов и кровяных пластинок. Плазма составляет 55-60 % объема крови, а форменные элементы - 40-45 %. Кровь в организме человека составляет 5-9 % массы тела. В среднем в теле человека с массой тела 70 кг содержится около 5-5,5 л крови.

Функции крови. Основные функции крови: дыхательная (перенос кислорода из легких во все органы и углекислоты из органов в легкие); трофическая (доставка органам питательных веществ); защитная (обеспечение гуморального и клеточного иммунитета, свертывание крови при травмах); выделительная (удаление и транспортировка в почки продуктов обмена веществ); гомеостатическая (поддержание постоянства внутренней среды организма, в том числе иммунного статуса организма). Через кровь (и лимфу) транспортируются также гормоны и другие биологически активные вещества. Все это определяет важнейшую роль крови в организме. Потеря более 30 % крови приводит к смерти. Анализ крови в клинической практике является одним из основных в постановке диагноза.

7.2.1. Плазма крови

Плазма крови представляет собой межклеточное вещество жидкой консистенции. Это сложная смесь белков, аминокислот, углеводов, жиров, солей, гормонов, ферментов, растворенных газов. Плазма содержит 90-93 % воды и 7-10 % сухого вещества, в котором около 6,6-8,5 % белков и 1,5- 3,5 % других органических и минеральных соединений. К основным белкам плазмы крови относятся альбумины, глобулины и фибриноген. Плазма крови имеет рН около 7,36. Подробное описание химического состава плазмы крови дается в учебниках биохимии и физиологии.

7.2.2. Форменные элементы крови

К форменным элементам крови относятся лейкоциты и постклеточные структуры - эритроциты и кровяные пластинки (тромбоциты) (рис. 7.1). Популяция клеток крови обновляющаяся, с коротким циклом развития, где большинство зрелых форм являются конечными (погибающими) клетками.

Эритроциты

Эритроциты, или красные кровяные тельца, человека и большинства млекопитающих - это самые многочисленные форменные элементы крови, утратившие в фило- и онтогенезе ядро и часть органелл (постклеточные структуры). Эритроциты являются высокодифференцированными структурами, не способными к делению. Основная функция эритроцитов - дыхательная - транспортировка кислорода и углекислоты. Эта функция обеспечивается дыхательным пигментом - гемоглобином - сложным белком, имеющим в своем составе железо. Кроме того, эритроциты участвуют в

Рис. 7.1. Форменные элементы крови человека:

1 - эритроцит; 2 - сегментоядерный нейтрофильный гранулоцит; 3 - палочкоя-дерный нейтрофильный гранулоцит; 4 - юный нейтрофильный гранулоцит; 5 - эозинофильный (ацидофильный) гранулоцит; 6 - базофильный гранулоцит; 7 - большой лимфоцит; 8 - средний лимфоцит; 9 - малый лимфоцит; 10 - моноцит;

11 - тромбоциты (кровяные пластинки). Мазок, окраска по Романовскому-Гимзе

транспорте аминокислот, антител, токсинов и ряда лекарственных веществ, адсорбируя их на поверхности плазмолеммы.

Количество эритроцитов у взрослого мужчины составляет 3,9-5,5*10 12 /л, а у женщин - 3,7-4,9*10 12 /л крови. Однако число эритроцитов у здоровых людей может варьировать в зависимости от возраста, эмоциональной и физической нагрузки, действия экологических факторов и др.

Форма и строение. Популяция эритроцитов неоднородна по их форме и размерам. В нормальной крови человека основную массу (80-90 %) составляют эритроциты двояковогнутой формы - дискоциты. Кроме того, имеются планоциты (с плоской поверхностью) и стареющие формы эритроци-

Рис. 7.2. Эритроциты различной формы в сканирующем электронном микроскопе, ув. 8000 (по Г. Н. Никитиной):

1 - дискоциты-нормоциты; 2 - дискоцит-макроцит; 3, 4 - эхиноциты; 5 - стома-тоциты; 6 - сфероцит

тов - шиповидные эритроциты, или эхиноциты (~6 %), куполообразные, или стоматоциты (~1-3 %), и шаровидные, или сфероциты (~1 %) (рис. 7.2). Процесс старения эритроцитов идет двумя путями - кренированием (образование зубцов на плазмолемме) или путем инвагинации участков плазмо-леммы (рис. 7.3).

Одним из проявлений процесса старения эритроцитов служит их гемолиз, сопровождающийся выходом гемоглобина; при этом в крови обна-

Рис. 7.3. Изменение формы эритроцитов в процессе старения (схема):

I, II, III, IV - стадии развития эхиноцитов и стоматоцитов (по Т. Фуджии)

Рис. 7.4. Электронная микрофотография гемолиза эритроцитов и образование их «теней» (по Г. Н. Никитиной): 1 - дискоцит; 2 - эхиноцит; 3 - «тени» эритроцитов. Увеличение 8000

руживаются «тени» (оболочки) эритроцитов (рис. 7.4). Обязательной составной частью популяции эритроцитов являются их молодые формы (1-5 %), называемые ретикулоцитами. В них сохраняются рибосомы и эндо-плазматическая сеть, формирующие зернистые и сетчатые структуры (substantia granulofilamentosa), которые выявляются при специальной супра-витальной окраске (рис. 7.5). При обычной гематологической окраске азуром II-эозином они в отличие от основной массы эритроцитов, окрашивающихся в оранжево-розовый цвет (оксифилия), проявляют полих-роматофилию и окрашиваются в серо-голубой цвет.

При заболеваниях могут появляться аномальные формы эритроцитов, что чаще всего обусловлено изменением структуры гемоглобина (Нb). Замена даже одной аминокислоты в молекуле НЬ может быть причиной изменения формы эри-

Рис. 7.5. Ретикулоциты (по Г. А. Алексееву и И. А. Кассирскому): зернисто-сетчатая субстанция имеет вид клубка (I), отдельных нитей, розетки (II, III), зернышек (IV)

троцитов. В качестве примера можно привести появление эритроцитов серповидной формы при серповидно-клеточной анемии, когда у больного имеет место генетическое повреждение в β-цепи гемоглобина. Нарушение формы эритроцитов при заболеваниях получило название пойкилоцитоз.

Размеры эритроцитов в нормальной крови также варьируют. Большинство эритроцитов (~75 %) имеют диаметр около 7,5 мкм и называются нормоци-тами. Остальная часть эритроцитов представлена микроцитами (~12,5 %) и макроцитами (~12,5 %). Микроциты имеют диаметр менее 7,5 мкм, а макро-циты - 9-12 мкм. Изменение размеров эритроцитов встречается при заболеваниях крови и называется анизоцитозом.

Плазмолемма. Плазмолемма эритроцита - белково-липидная клеточная мембрана. Она имеет хорошо развитый гликокаликс, образованный олиго-сахарами, входящими в состав гликолипидов, гликосфинголипидов и гли-копротеинов мембраны. Распространены мембранные гликопротеины - гликофорины. С ними связывают антигенные различия между группами крови человека. Гликофорины обнаружены только в эритроцитах. В состав гликофорина входят остатки сиаловой кислоты, придающие отрицательный заряд поверхности эритроцита.

Олигосахариды гликолипидов и гликопротеинов определяют антигенный состав эритроцитов, т. е. наличие в них агглютиногенов. На поверхности эритроцитов выявлены агглютиногены АиВ, в состав которых входят полисахариды, содержащие аминосахара и глюкуроновую кислоту. Они обеспечивают агглютинацию (склеивание) эритроцитов под влиянием соответствующих белков плазмы крови - α-и β-агглютининов, находящихся в составе фракции γ-глобулинов.

По содержанию агглютиногенов и агглютининов различают 4 группы крови: в крови 0(1) группы отсутствуют агглютиногены А и В, но имеются а- и β-агглютини-ны; в крови А(П) группы имеются агглютиноген А и α-агглютинин; в крови В(Ш) группы содержатся В-агглютиноген и α-агглютинин; в крови AB(IV) группы имеются агглютиногены А и В и нет агглютининов. При переливании крови для предотвращения гемолиза (разрушение эритроцитов) нельзя допускать вливания реципиентам эритроцитов с агглютиногенами А или В, имеющим а- и β-агглютинины.

На поверхности эритроцитов имеется также антиген - резус-фактор (Rh-фактор) - агглютиноген. Он присутствует у 86 % людей; у 14 % отсут-

Рис. 7.6. Свежая кровь: 1 - эритроциты (дискоциты); 2 - эритроциты с выростами цитоплазмы (эхи-ноциты); 3 - «монетные столбики» эритроцитов (агглютинированные эритроциты); 4 - лейкоциты; 5 - тромбоциты (кровяные пластинки); 6 - нити фибрина

ствует (резус-отрицательные). Переливание резус-положительной крови резус-отрицательному пациенту вызывает образование резус-антител и гемолиз эритроцитов. Агглютинация эритроцитов свойственна нормальной свежей крови, при этом образуются так называемые «монетные столбики» (рис. 7.6). Это явление связано с потерей заряда плаз-молеммой эритроцитов.

С внутренней стороны плазмо-леммы эритроцита расположена группа белков цитоскелета.

Среди них белок спектрин формирует в примембранном пространстве сеть, которая прикрепляется к плаз-молемме с помощью белков анки-рина и белка полосы 3. Все это обеспечивает плазмолемме упругость и эластичность, а эритроциту - двояковогнутую форму (рис. 7.7, а, б). Скорость оседания (агглютинации) эритроцитов (СОЭ) в 1 ч у здоровых мужчин составляет 4-8 мм и 7-10 мм у женщин. СОЭ может значительно изменяться при заболеваниях, например при воспалительных процессах, и поэтому служит важным диагностическим признаком. В движущейся крови эритроциты отталкиваются из-за наличия на их плазмолемме одноименных отрицательных зарядов. Поверхность плазмолеммы одного эритроцита составляет около 130 мкм 2 .

Цитоплазма эритроцита состоит из воды (60 %) и сухого остатка (40 %), содержащего около 95 % гемоглобина и 5 % других веществ.

Наличие гемоглобина обусловливает желтую окраску отдельных эритроцитов свежей крови, а совокупность эритроцитов - красный цвет крови. При окрашивании мазка крови азуром II-эозином по Романовскому-Гимзе большинство эритроцитов приобретают оранжево-розовый цвет (оксифиль-ны), что связано с высоким содержанием в них гемоглобина.

В небольшой части эритроцитов (1-5 %), являющихся более молодыми формами, сохраняются остатки органелл (рибосомы, гранулярная эндоплазматическая сеть), которые проявляют базофилию. Такие эритроциты окрашиваются как кислыми красителями (эозин), так и основными (азур II) и называются полихроматофиль-ными. При специальной суправитальной окраске (бриллиант-крезилфиолетовым) в них выявляются сетевидные структуры, поэтому их называют ретикулоцитами. Эритроциты различаются по степени насыщенности гемоглобином. Среди них выделяются нормохромные, гипохромные и гиперхромные, соотношение между которыми значительно изменяется при заболеваниях. Количество гемоглобина в одном эритроците называют цветным показателем. Электронно-микроскопически

Рис. 7.7. Строение плазмолеммы и цитоскелета эритроцита: а - схема строения эритроцита и расположение белков в плазмолемме; А, В, АВ, Rh - антигены групповой совместимости крови; HbA - гемоглобин взрослого человека; HbF - гемоглобин плода (фетальный); б - плазмолемма и цито-скелет эритроцита в сканирующем электронном микроскопе. 1 - плазмолемма; 2 - сеть спектрина

гемоглобин выявляется в гиалоплазме эритроцита в виде многочисленных плотных гранул диаметром 4-5 нм.

Гемоглобин - это сложный белок (68 килодальтон), состоящий из 4 полипептидных цепей глобина и гема (железосодержащий порфирин), обладающий высокой способностью связывать кислород. В норме у человека содержится два типа гемоглобина - НbА и HbF. Эти гемоглобины различаются составом аминокислот в глобиновой (белковой) части.

У взрослых людей в эритроцитах преобладает НbА (от англ. adult - взрослый), составляя 98 %. HbF, или фетальный гемоглобин (от англ. foetus - плод), составляет у взрослых около 2 % и преобладает у плодов. К моменту рождения ребенка HbF составляет около 80 %, а НЬА только 20 %. Эти гемоглобины различаются составом аминокислот в глобино-

вой (белковой) части. В связи с этим сродство к кислороду у фетального гемоглобина выше, чем у гемоглобина взрослых. В результате кислород из крови матери легко переходит к фетальному гемоглобину плода.

Железо (Fe 2 +) в геме может присоединять О 2 в легких (в таких случаях образуется оксигемоглобин - НЬ0 2) и отдавать его в тканях путем диссоциации НЬО, на кислород (О 2) и НЬ; валентность Fe 2 + не изменяется.

При ряде заболеваний (гемоглобинозы, гемоглобинопатии) в эритроцитах появляются другие виды гемоглобинов, которые характеризуются изменением аминокислотного состава в белковой части гемоглобина.

В настоящее время выявлено более 150 видов аномальных гемоглобинов. Например, при серповидно-клеточной анемии имеет место генетически обусловленное повреждение в β-цепи гемоглобина - глутаминовая кислота заменена на аминокислоту валин. Такой гемоглобин обозначается как HbS (от англ. sickle - серп). Эритроциты в условиях понижения парциального давления О 2 приобретают форму серпов, полулуний. В ряде стран тропического пояса определенный контингент людей являются гетерозиготными для серповидных генов, а дети двух гетерозиготных родителей по законам наследственности имеют либо нормальный тип (25 %), либо бывают гетерозиготными носителями, и 25 % страдают серповидно-клеточной анемией.

Гемоглобин способен связывать О 2 в легких, при этом образуется оксигемоглобин, который транспортируется ко всем органам и тканям и там отдает О 2 . В тканях выделяемая СО 2 поступает в эритроциты и соединяется с НЬ, образуя карбоксигемоглобин. При разрушении эритроцитов (старых или при воздействии различных факторов - токсины, радиация и др.) гемоглобин выходит из клеток, и это явление называется гемолизом. Старые эритроциты разрушаются макрофагами главным образом в селезенке, а также в печени и костном мозге, при этом НЬ распадается, а высвобождающееся из железосодержащего гема железо используется для образования новых эритроцитов.

В макрофагах гемоглобин распадается на пигмент билирубин и гемосидерин - аморфные агрегаты, содержащие железо. Железо гемосидерина связывается с транс-феррином - негеминовым белком плазмы, содержащим железо, и захватывается специальными макрофагами костного мозга. В процессе образования эритроцитов (эритропоэз) эти макрофаги передают трансферрин в формирующиеся эритроциты. В цитоплазме эритроцитов содержатся ферменты анаэробного гликолиза, с помощью которых синтезируются АТФ и NADН, обеспечивающие энергией главные процессы, связанные с переносом О 2 и СО 2 , а также поддержание осмотического давления и перенос ионов через плазмолемму эритроцита. Энергия гликолиза обеспечивает активный транспорт катионов через плазмолемму, поддержание оптимального соотношения концентрации К+ и Na+ в эритроцитах и плазме крови, сохранение формы и целостности мембраны эритроцита. NАDН участвует в метаболизме НЬ, предотвращая его окисление в метгемоглобин.

Эритроциты участвуют в транспорте аминокислот и полипептидов, регулируют их концентрацию в плазме крови, т. е. играют роль буферной системы. Постоянство концентрации аминокислот и полипептидов в плазме крови

поддерживается с помощью эритроцитов, которые адсорбируют их избыток из плазмы, а затем отдают различным тканям и органам. Таким образом, эритроциты являются подвижным депо аминокислот и полипептидов.

Сорбционная способность эритроцитов связана с состоянием газового режима (парциальное давление О 2 и СО 2 - Ро 2 , Рсо 2): в частности при действии О 2 наблюдаются выход аминокислот из эритроцитов и увеличение их содержания в плазме.

Продолжительность жизни и старение эритроцитов. Средняя продолжительность жизни эритроцитов составляет от 70 до 120 сут. В организме ежедневно разрушается около 200 млн эритроцитов. При их старении происходят изменения в плазмолемме эритроцита: в частности в гликокаликсе снижается содержание сиаловых кислот, определяющих отрицательный заряд плазмолеммы. Отмечаются изменения цитоскелетного белка спектрина, что приводит к преобразованию дисковидной формы эритроцита в сферическую. В плазмолем-ме появляются специфические рецепторы аутологичных антител (IgGl, IgG2), которые при взаимодействии с этими антителами образуют комплексы, обеспечивающие «узнавание» их макрофагами и последующий фагоцитоз. В стареющих эритроцитах снижаются интенсивность гликолиза и соответственно содержание АТФ. Вследствие нарушения проницаемости плазмолеммы снижается осмотическая резистентность, наблюдаются выход из эритроцитов ионов К+ в плазму и увеличение в них содержания Na+. При старении эритроцитов отмечается нарушение их газообменной функции.

Лейкоциты

Общая характеристика и классификация. Лейкоциты (leucocytus), или белые кровяные клетки, в свежей крови бесцветны, что отличает их от окрашенных эритроцитов. Число их составляет в среднем 4-940 9 /л, т. е. в 1000 раз меньше, чем эритроцитов. Лейкоциты в кровяном русле и лимфе способны к активным движениям, могут проходить через стенку сосудов в соединительную ткань органов, где они выполняют основные защитные функции. По морфологическим признакам и биологической роли лейкоциты подразделяют на две группы: зернистые лейкоциты, или гранулоциты (granulocytus), и незернистые лейкоциты, или агранулоциты (agranulocytus).

У зернистых лейкоцитов при окраске крови по Романовскому-Гимзе смесью кислого (эозин) и основного (азур II) красителей в цитоплазме выявляются специфическая зернистость (эозинофильная, базофильная или нейтрофильная) и сегментированные ядра. В соответствии с окраской специфической зернистости различают нейтрофильные, эозинофильные и базофиль-ные гранулоциты (см. рис. 7.1). Группа незернистых лейкоцитов - лимфоциты и моноциты - характеризуется отсутствием специфической зернистости и несегментированными ядрами. Процентное соотношение основных видов лейкоцитов называется лейкоцитарной формулой. Общее число лейкоцитов и их процентное соотношение у человека могут изменяться в норме в зависимости от употребляемой пищи, физического и умственного напряжения и при различных заболеваниях. Именно поэтому исследование показателей крови необходимо для установления диагноза и назначения лечения.

Все лейкоциты способны к активному перемещению путем образования псевдоподий, при этом у них изменяется форма тела и ядра. Они способны проходить между клетками эндотелия сосудов и клетками эпителия, через базальные мембраны и перемещаться по основному веществу (матриксу) соединительной ткани. Скорость движения лейкоцитов зависит от следующих условий: температуры, химического состава, рН, консистенции среды и др. Направление движения лейкоцитов определяется хемотаксисом под влиянием химических раздражителей - продуктов распада тканей, бактерий и др. Лейкоциты выполняют защитные функции, обеспечивая фагоцитоз микробов (гранулоциты, макрофаги), инородных веществ, продуктов распада клеток (моноциты - макрофаги), участвуя в иммунных реакциях (лимфоциты, макрофаги).

Гранулоциты (зернистые лейкоциты)

К гранулоцитам относятся нейтрофильные, эозинофильные и базофиль-ные лейкоциты. Они образуются в красном костном мозге, содержат специфическую зернистость в цитоплазме и имеют сегментированные ядра.

Нейтрофильные гранулоциты (нейтрофильные лейкоциты, или нейтро-филы) - самая многочисленная группа лейкоцитов, составляющая 2,0- 5,5-10 9 /л крови (48-78 % общего числа лейкоцитов). Их диаметр в мазке крови 10-12 мкм, а в капле свежей крови 7-9 мкм. В зрелом сегментоядер-ном нейтрофиле ядро имеет 3-5 сегментов, соединенных тонкими перемычками. В ядре гетерохроматин занимает широкую зону по периферии ядра, а эухроматин расположен в центре. Для женщин характерно наличие в ряде нейтрофилов полового хроматина (Х-хромосома) в виде барабанной палочки - тельце Барра (corpusculum chromatini sexualis), которое имеет форму висячей капли и соединено с ядром тонкой перемычкой. В популяции ней-трофилов крови могут находиться клетки различной степени зрелости - юные, палочкоядерные и сегментоядерные. Первые два вида - молодые клетки. Доля юных клеток в норме не превышает 0,5 % или они вообще отсутствуют. Эти клетки характеризуются бобовидным ядром. Палочкоядерные составляют 1-6 %, имеют несегментированное ядро в форме буквы S, изогнутой палочки или подковы. Увеличение содержания в крови юных и палочкоя-дерных нейтрофилов свидетельствует о наличии кровопотери или воспалительного процесса, сопровождающихся усилением гемопоэза в костном мозге и выходом молодых форм. Цитоплазма нейтрофилов при окраске по Романовскому-Гимзе окрашивается слабооксифильно, в ней видна очень мелкая зернистость розово-фиолетового цвета (окрашивается кислыми и основными красками), поэтому называется нейтрофильной, или гетерофильной. В поверхностном слое цитоплазмы зернистость и органеллы отсутствуют. Здесь расположены гранулы гликогена, актиновые филаменты и микротрубочки, обеспечивающие образование псевдоподий для движения клетки. Сокращение актиновых филаментов обеспечивает передвижение клетки по соединительной ткани.

Во внутренней части цитоплазмы расположены органеллы (комплекс Гольджи, гранулярная эндоплазматическая сеть, единичные митохондрии),

видна зернистость. Число зерен в каждом нейтрофиле варьирует и составляет 50-200.

В нейтрофилах можно различить два типа гранул: специфические и азуро-фильные, окруженные одинарной мембраной (рис. 7.8, а). Специфические гранулы, более светлые, мелкие и многочисленные, составляют 80-90 % всех гранул. Их размер около 0,2 мкм, они электронно-прозрачны, но могут содержать кристаллоид. В них обнаружены щелочная фос-фатаза, бактерицидные ферменты (лизоцим, лактоферрин), белок, связывающий витамин В 12 , коллагеназа. Азурофильные гранулы (лизосомо-подобные) более крупные (~0,4 мкм), окрашиваются в фиолетово-красный цвет, имеют электронно-плотную сердцевину; их количество составляет 10-20 % всей популяции гранул. В них содержатся миелопероксидаза, набор разнообразных гидролитических ферментов, катионные белки, лизоцим, гликозаминогликаны. Азу-рофильные гранулы в процессе диф-ференцировки нейтрофилов в костном мозге появляются раньше, поэтому называются первичными в отличие от вторичных - специфических. Основная функция нейтрофи-лов - фагоцитоз микроорганизмов, поэтому их называют микрофагами. В процессе фагоцитоза бактерий сначала (в течение 0,5-1 мин) с образующейся фагосомой (захваченная

Рис. 7.8. Ультрамикроскопическое строение гранулоцитов (по Н. А. Юриной и Л. С. Румянцевой):

а - сегментоядерный нейтрофильный гранулоцит; б - эозинофильный (ацидофильный) гранулоцит; в - базофильный гранулоцит. 1 - сегменты ядра; 2 - тельце полового хроматина; 3 - первичные (азурофильные) гранулы; 4 - вторичные (специфические) гранулы; 5 - зрелые специфические гранулы эозинофила, содержащие кристаллоиды; 6 - гранулы базофила различной величины и плотности; 7 - периферическая зона цитоплазмы, не содержащая органелл; 8 - микроворсинки и псевдоподии

бактерия) сливаются специфические гранулы, ферменты которой убивают бактерию, при этом образуется комплекс, состоящий из фагосомы и специфической гранулы. Позднее с этим комплексом сливается лизосома, гидролитические ферменты которой переваривают микроорганизмы. При распаде нейтрофилов и бактериальных токсинов выделяются вещества, которые названы пирогенами. Последние с током крови попадают к центрам регуляции температуры тела, вызывают ее повышение. Кроме того, стимулируют образование нейтрофилов в костном мозге.

В популяции нейтрофилов у здоровых людей в возрасте 18-45 лет фагоцитирующие клетки составляют 69-99 %. Этот показатель называют фагоцитарной активностью. Фагоцитарный индекс - другой показатель, которым оценивается число частиц, поглощенных одной клеткой. Для нейтрофилов он равен 12-23. Нейтрофилы циркулируют в крови 8-12 ч, в тканях находятся 5-7 сут.

Эозинофильные (ацидофильные) гранулоциты (эозинофилы). Количество эозинофилов в крови составляет 0,02- 0,3*10 9 /л, или 0,5-5 % общего числа лейкоцитов. Их диаметр в мазке крови равен 12-14 мкм, в капле свежей крови - 9-10. Ядро эозинофилов имеет, как правило, 2 сегмента, соединенных перемычкой. В цитоплазме расположены органеллы - комплекс Гольджи (около ядра), немногочисленные митохондрии, актиновые фила-менты в цитоплазме под плазмолеммой и гранулы числом до 200. Среди гранул различают азурофильные (первичные) и эозинофильные (вторичные), являющиеся модифицированными лизосомами. Они электронно-плотные, содержат гидролитические ферменты (см. рис. 7.8, б ). Специфические эозинофильные гранулы заполняют почти всю цитоплазму, имеют размер 0,6-1 мкм. Характерно наличие в центре гранулы кристаллоида, который содержит главный основной белок, богатый аргинином (что обусловливает оксифилию гранул), лизосомные гидролитические ферменты, пероксидазу и другие белки - эозинофильный катионный белок, гистаминазу (рис. 7.9).

Плазмолемма имеет рецепторы: Fc-рецептор иммуноглобулина Е (IgE) (участвует в аллергических реакциях), IgG и IgM, а также С 3 - и С 4 -рецепторы. Эозинофилы являются подвижными клетками и способны к фагоцитозу, однако их фагоцитарная активность ниже, чем у нейтрофилов.

Эозинофилы обладают положительным хемотаксисом к гистамину, выделяемому тучными клетками (особенно при воспалении и аллергических реакциях), к лимфокинам, выделяемым стимулированными Т-лимфоцитами, и иммунным комплексам, состоящим из антигенов и антител (см. главу 14).

Выявлена роль эозинофилов в реакциях на чужеродный белок, в аллергических и анафилактических реакциях, где они участвуют в метаболизме гистамина, вырабатываемого тучными клетками. Гистамин повышает проницаемость сосудов,

Рис. 7.9. Гранулы эозинофильных гранулоцитов (по Д. Байнтону и М. Фарквару): 1 - ядро; 2 - пероксидаза в зрелых гранулоцитах; 3 - кристаллический центр зрелых гранул с отрицательной реакцией на пероксидазу. Реакция на пероксидазу. Электронная микрофотография. Увеличение 12 000

вызывает развитие отека тканей; в больших концентрациях может вызвать шок со смертельным исходом.

Эозинофилы способствуют снижению содержания гистамина в тканях различными путями. Они разрушают гистамин с помощью фермента гистаминазы, фагоцитируют гистаминсодержащие гранулы тучных клеток, адсорбируют гистамин на плазмолемме, связывая его с помощью рецепторов, и, наконец, вырабатывают фактор, тормозящий дегрануляцию и освобождение гистамина из тучных клеток.

Эозинофилы находятся в периферической крови менее 12 ч и потом переходят в ткани. Их мишенями являются такие органы, как кожа, легкие и пищеварительный тракт, где они выполняют свои функции в течение 8-12 сут. Изменение содержания эозинофилов может наблюдаться под действием медиаторов и гормонов: например, при стресс-реакции отмечается снижение числа эозинофилов в крови, обусловленное увеличением содержания гормонов надпочечников.

Базофильные гранулоциты (базофилы). Количество базофилов в крови составляет 0-0,06×10 9 /л, или 0-1 % общего числа лейкоцитов. Их диаметр в мазке крови составляет 11-12 мкм, в капле свежей крови - около 9 мкм.

Ядра базофилов сегментированы, имеют 2-3 дольки; в цитоплазме выявляются все виды органелл - эндоплазматическая сеть, рибосомы, комплекс Гольджи, митохондрии, актиновые филаменты (см. рис. 7.8, в). Характерно наличие специфических крупных метахроматических гранул числом около 400, часто закрывающих ядро, размеры которых варьируют от 0,5 до 1,2 мкм. Метахромазия (азур II окрашивает гранулы в фиолетовый цвет) обусловлена наличием гепарина - гликозаминогликана. Специфические гранулы содержат пероксидазу, гистамин, гепарин, АТФ, факторы хемотаксиса нейтрофилов и эозинофилов и др. Часть гранул представляют собой модифицированные лизосомы. При электронно-микроскопическом исследовании видны окружающая гранулы мембрана и кристаллическая область. Гранулы неоднородны по электронной плотности. Помимо специфических гранул, в базофилах содержатся и азурофильные гранулы (лизосомы). Базофилы, как и тучные клетки соединительной ткани, выделяя гепарин и гистамин, участвуют в регуляции процессов свертывания крови и проницаемости стенки сосудов. Базофилы участвуют в иммунологических реакциях организма. Дегрануляция базофилов происходит при реакциях гиперчувствительности немедленного типа (например, при астме, анафилаксии, сыпи, которая может ассоциироваться с покраснением кожи).

Базофилы образуются в костном мозге. Они циркулируют в крови до 1 сут, затем мигрируют в ткани, где в течение 1-2 сут выполняют свои функции и затем погибают.

Агранулоциты (незернистые лейкоциты)

К этой группе лейкоцитов относятся лимфоциты и моноциты. В отличие от гранулоцитов они не содержат в цитоплазме специфической зернистости, а их ядра не сегментированы.

Лимфоциты (lymphocytus). В крови взрослых людей они составляют 20-35 % общего числа лейкоцитов (1,0-4,0×10 9 /л). Величина лимфоцитов в мазке крови значительно варьирует - от 4,5 до 10 мкм. Среди них различают малые лимфоциты (диаметром 4,5-6 мкм), средние (диаметром 7-10 мкм) и большие (диаметром 10 мкм и более) (см. рис. 7.1). Большие лимфоциты встречаются в крови новорожденных и детей, у взрослых они отсутствуют. Для всех видов лимфоцитов характерно наличие интенсивно окрашенного ядра округлой или бобовидной формы, содержащего компактный гетеро-хроматин, и относительно узкого ободка базофильной цитоплазмы. В цитоплазме некоторых лимфоцитов содержится небольшое количество азуро-фильных гранул (лизосомы). Малые лимфоциты составляют большую часть (85-90 %) всех лимфоцитов крови человека. При электронной микроскопии в их ядрах выявляются небольшие впячивания; гетерохроматин расположен преимущественно по периферии ядра (рис. 7.10). В цитоплазме обнаруживаются пузырьки, лизосомы, свободные рибосомы, полисомы, митохондрии, комплекс Гольджи, центриоли, небольшое количество элементов гранулярной эндоплазматической сети. Среди малых лимфоцитов различают светлые и темные. Малые темные лимфоциты меньше светлых, имеют более плотное ядро, более узкий ободок базофильной цитоплазмы, обладающей

высокой электронной плотностью. В цитоплазме расположено большое количество рибосом.

Средние лимфоциты составляют около 10-12 % лимфоцитов крови человека. Ядра этих клеток округлые, иногда бобовидные с пальцевидным впячиванием ядерной оболочки. Хроматин более рыхлый, ядрышко хорошо выражено. В цитоплазме расположены удлиненные канальцы гранулярной эндоплазматической сети, элементы агранулярной сети, свободные рибосомы и полисомы, лизосо-мы. Центросома и комплекс Гольджи расположены рядом с областью инвагинации ядерной оболочки.

Кроме типичных лимфоцитов, в крови человека в небольшом коли-

Рис. 7.10. Ультрамикроскопическое строение лимфоцита (по Н. А. Юриной, Л. С. Румянцевой):

1 - ядро; 2 - рибосомы; 3 - микроворсинки; 4 - центриоль; 5 - комплекс Гольджи; 6 - митохондрии

честве могут встречаться лимфоплазмоциты (около 1-2 %), которые отличаются концентрическим расположением вокруг ядра канальцев гранулярной эндоплазматической сети.

Основной функцией лимфоцитов является участие в иммунных реакциях. Однако популяция лимфоцитов разнообразна по характеристике поверхностных рецепторов и роли в реакциях иммунитета.

Среди лимфоцитов различают три основных функциональных класса: В-лимфоциты, Т-лимфоциты и нулевые лимфоциты.

В-лимфоциты впервые были обнаружены в фабрициевой сумке птиц (bursa Fabricius), поэтому и получили соответствующее название. Они образуются у эмбриона человека из стволовых клеток - в печени и костном мозге, а у взрослого - в костном мозге.

В-лимфоциты составляют около 30 % циркулирующих лимфоцитов. Их главная функция - участие в выработке антител, т. е. обеспечение гуморального иммунитета. Плазмолемма В-лимфоцитов содержит множество рецепторов иммуноглобулина. При действии антигенов В-лимфоциты способны к пролиферации и дифференцировке в плазмоциты - клетки, способные синтезировать и секретировать защитные белки - иммуноглобулины (Ig), которые поступают в кровь, обеспечивая гуморальный иммунитет.

Т-лимфоциты, или тимусзависимые лимфоциты, образуются из стволовых клеток костного мозга, а созревают в тимусе, что и обусловило их название. Они преобладают в популяции лимфоцитов, составляя около 70 % циркулирующих лимфоцитов. Для Т-клеток, в отличие от В-лимфоцитов, характерен низкий уровень рецепторов иммуноглобулина в плазмолемме. Однако Т-клетки имеют специфические рецепторы, способные распознавать и связывать антигены, участвовать в иммунных реакциях. Основными функциями Т-лимфоцитов являются обеспечение реакций клеточного иммунитета

и регуляция гуморального иммунитета (стимуляция или подавление диф-ференцировки В-лимфоцитов). Т-лимфоциты способны к выработке лим-фокинов, которые регулируют деятельность В-лимфоцитов и других клеток в иммунных реакциях. Среди Т-лимфоцитов выявлено несколько функциональных групп: Т-хелперы, Т-супрессоры, Т-киллеры. Подробную характеристику В-лимфоцитов и различных групп Т-лимфоцитов, их участие в реакциях иммунитета - см. в главе 14.

В настоящее время оценка иммунного статуса организма в клинике проводится с помощью иммунологических и иммуноморфологических методов выявления различных видов лимфоцитов.

Продолжительность жизни лимфоцитов варьирует от нескольких недель до нескольких лет. Т-лимфоциты являются «долгоживущими» (месяцы и годы) клетками, а В-лимфоциты относятся к «короткоживущим» (недели и месяцы).

Для Т-лимфоцитов характерно явление рециркуляции, т. е. выход из крови в ткани и возвращение по лимфатическим путям снова в кровь. Таким образом, они осуществляют иммунологический надзор за состоянием всех органов, быстро реагируя на внедрение чужеродных агентов.

Среди клеток, имеющих строение, характерное для малых лимфоцитов, следует назвать циркулирующие стволовые клетки крови (СКК), которые поступают в кровь из костного мозга. Впервые эти клетки были описаны А. А. Максимовым и обозначены как «подвижный мезенхимный резерв». Из СКК, поступающих в кроветворные органы, дифференцируются различные клетки крови, а из СКК, поступающих в соединительную ткань, - тучные клетки, фибробласты и др. СКК составляют 0,1 % общего числа клеток крови. Диаметр клетки 8-10 мкм, ядро содержит 1-2 ядрышка. Цитоплазма без включений, в которой обнаруживаются рибосомы и небольшое количество митохондрий.

Моноциты (monocytus). В капле свежей крови эти клетки лишь немного крупнее других лейкоцитов (9-12 мкм), в мазке крови они сильно распластываются по стеклу, и размер их достигает 18-20 мкм. В крови человека количество моноцитов колеблется в пределах 6-8 % общего числа лейкоцитов.

Ядра моноцитов разнообразной и изменчивой конфигурации: встречаются бобовидные, подковообразные, редко - дольчатые ядра с многочисленными выступами и углублениями. Гетерохроматин рассеян мелкими зернами по всему ядру, но обычно в больших количествах он располагается под ядерной оболочкой. В ядре моноцита содержится одно или несколько маленьких ядрышек (см. рис. 7.1; рис. 7.11).

Цитоплазма моноцитов менее базофильна, чем цитоплазма лимфоцитов. При окраске по Романовскому-Гимзе она имеет бледно-голубой цвет, но по периферии окрашивается несколько темнее, чем около ядра; в ней содержится различное количество очень мелких азурофильных зерен (лизосом).

Характерно наличие пальцеобразных выростов цитоплазмы и образование фагоцитарных вакуолей. В цитоплазме расположено множество пино-цитозных пузырьков. Имеются короткие канальцы гранулярной эндоплаз-

Рис. 7.11. Строение моноцитов:

а - разновидности моноцитов по размерам и форме в мазке крови человека. Окраска по Романовскому-Гимзе (по Ю. И. Афанасьеву): 1 - ядро; 2 - цитоплазма; 3 - эритроцит; б - схема ультрамикроскопического строения моноцитов (по Н. А. Юриной, Л. С. Румянцевой): 1 - ядро; 2 - рибосомы; 3 - микроворсинки; 4 - лизосомы; 5 - комплекс Гольджи; 6 - митохондрии; 7 - пиноцитозные пузырьки; в - электронная микрофотография (по Н. А. Юриной, А. И. Радостиной). Увеличение 15 000

матической сети, а также небольшие митохондрии. Моноциты относятся к макрофагической системе организма, или к так называемой мононуклеарной фагоцитарной системе (МФС), объединяющей моноциты крови и макрофаги различных органов (макрофаги альвеол легкого, костного мозга, лимфатических узлов, селезенки, гистиоциты соединительной ткани, остеокласты, глиальные макрофаги ЦНС и др.). Клетки этой системы характеризуются происхождением из промоноцитов костного мозга, способностью прикрепляться к поверхности стекла, активностью пиноцитоза и иммунного фагоцитоза, наличием на плазмолемме рецепторов иммуноглобулинов и комплемента. Моноциты циркулирующей крови представляют собой подвижный пул относительно незрелых клеток, находящихся на пути из костного мозга в ткани. В кровотоке моноциты циркулируют 12-32 ч, затем выселяются в ткани. Продолжительность жизни в ткани - в пределах 1 мес. При этом они увеличиваются в размерах, появляется большое число лизосом, возникают рецепторы иммуноглобулинов (антител), повышается фагоцитарная активность, клетки могут сливаться друг с другом с обра-

Рис. 7.12. Дифференцировка моноцита в макрофаг (по А. И. Радостиной): I - моноцит; II - дифференцирующийся макрофаг; III, IV - зрелые макрофаги. 1 - ядро; 2 - рибосомы; 3 - микроворсинки и складки; 4 - лизосомы; 5 - комплекс Гольджи; 6 - митохондрии; 7 - пиноцитозные пузырьки; 8 - фаголизосомы

зованием гигантских форм. Клетки способны синтезировать и выделять множество веществ, влияющих на кроветворение, активность лейкоцитов, развитие воспалительной реакции и др. (рис. 7.12).

Кровяные пластинки

Кровяные пластинки, тромбоциты (thrombocytus), в свежей крови человека имеют вид мелких бесцветных телец округлой, овальной или веретено-видной формы размером 2-4 мкм. Они могут объединяться (агглютинироваться) в маленькие или большие группы. Количество их в крови человека колеблется от 2,0×10 9 /л до 4,0×10 9 /л. Кровяные пластинки представляют собой безъядерные фрагменты цитоплазмы, отделившиеся от мегакариоцитов - гигантских клеток костного мозга.

Тромбоциты в кровотоке имеют форму двояковыпуклого диска. При окраске мазков крови азуром II-эозином в кровяных пластинках выявляются более светлая периферическая часть - гиаломер и более темная, зернистая часть - грануломер, структура и окраска которых могут варьировать в зависимости от стадии развития кровяных пластинок. В популяции тромбоцитов находятся как более молодые, так и более дифференцированные и стареющие формы. Гиаломер в молодых пластинках окрашивается в голубой цвет (базофильный), а в зрелых - в розовый (оксифильный).

В популяции тромбоцитов различают пять основных форм: 1) юные - с голубым (базофильным) гиаломером и единичными азурофильными гранулами в гра-нуломере красновато-фиолетового цвета (1-5 %); 2) зрелые - со слабо-розовым

Рис. 7.13. Ультрамикроскопическое строение тромбоцита (кровяной пластинки) (по Н. А. Юриной):

а - горизонтальный срез; б - поперечный срез. 1 - плазмолемма с гликокаликсом; 2 - открытая система канальцев, связанная с инвагинациями плазмолеммы; 3 - актиновые филаменты; 4 - циркулярные пучки микротрубочек; 4б - микротрубочки в поперечном разрезе; 5 - плотная тубулярная система; 6 - альфа-гранулы; 7 - бета-гранулы; 8 - митохондрии; 9 - гранулы гликогена; 10 - гранулы ферритина; 11 - лизосомы; 12 - пероксисомы

(оксифильным) гиаломером и хорошо развитой азурофильной зернистостью в гра-нуломере (88 %); 3) старые - с более темным гиаломером и грануломером (4 %); 4) дегенеративные - с серовато-синим гиаломером и плотным темно-фиолетовым грануломером (до 2 %); 5) гигантские формы раздражения - с розовато-сиреневым гиаломером и фиолетовым грануломером, размерами 4-6 мкм (2 %). Молодые формы тромбоцитов крупнее старых.

При заболеваниях соотношение различных форм тромбоцитов может изменяться, что учитывается при постановке диагноза. Повышенное количество юных форм наблюдается у новорожденных. При онкологических заболеваниях увеличивается число старых тромбоцитов.

Плазмолемма имеет толстый слой гликокаликса (15-20 нм), образует инвагинации с отходящими канальцами, также покрытыми гликокаликсом. В плазмолемме содержатся гликопротеины, которые выполняют функцию поверхностных рецепторов, участвующих в процессах адгезии и агрегации кровяных пластинок (рис. 7.13).

Цитоскелет в тромбоцитах хорошо развит и представлен актиновыми микрофиламентами и пучками (по 10-15) микротрубочек, расположенными циркулярно в гиаломере и примыкающими к внутренней части плазмо-леммы. Элементы цитоскелета обеспечивают поддержание формы кровяных пластинок, участвуют в образовании их отростков. Актиновые филамен-

ты участвуют в сокращении объема (ретракции) образующихся кровяных тромбов.

В кровяных пластинках имеются две системы канальцев и трубочек, хорошо видных в гиаломере при электронной микроскопии. Первая - это открытая система каналов, связанная, как уже отмечалось, с инвагинациями плазмолеммы. Через эту систему выделяется в плазму содержимое гранул кровяных пластинок и происходит поглощение веществ. Вторая - это так называемая плотная тубулярная система, которая представлена группами трубочек с электронно-плотным аморфным материалом. Она имеет сходство с гладкой эндоплазматической сетью, образуется в комплексе Гольджи.

В грануломере выявлены органеллы, включения и специальные гранулы. Органеллы представлены рибосомами (в молодых пластинках), элементами эндоплазматической сети, комплексом Гольджи, митохондриями, лизосо-мами, пероксисомами. Имеются включения гликогена и ферритина в виде мелких гранул.

Специальные гранулы в количестве 60-120 составляют основную часть грануломера и представлены двумя главными типами. Первый тип: а-грану-лы (альфа-гранулы) - это самые крупные (300-500 нм) гранулы, имеющие мелкозернистую центральную часть, отделенную от окружающей мембраны небольшим светлым пространством. В них обнаружены различные белки и гликопротеины, принимающие участие в процессах свертывания крови, факторы роста, литические ферменты.

Второй тип гранул - δ-гранулы (дельта-гранулы) - представлен плотными тельцами размером 250-300 нм, в которых имеется эксцентрично расположенная плотная сердцевина. Главными компонентами гранул являются серотонин, накапливаемый из плазмы, и другие биогенные амины (гистамин, адреналин), Са 2 +, АДФ, АТФ в высоких концентрациях и до десяти факторов свертывания крови.

Кроме того, имеется третий тип мелких гранул (200-250 нм), представленный лизосомами (иногда называемыми λ-гранулами), содержащими лизосомные ферменты, а также микропероксисомами, содержащими фермент пероксидазу.

Содержимое гранул при активации пластинок выделяется по открытой системе каналов, связанных с плазмолеммой.

Основная функция кровяных пластинок - участие в процессе свертывания крови - защитной реакции организма на повреждение и предотвращение потери крови. Разрушение стенки кровеносного сосуда сопровождается выделением из поврежденных тканей веществ (факторов свертывания крови), что вызывает прилипание (адгезию) тромбоцитов к базальной мембране эндотелия и коллагеновым волокнам сосудистой стенки. При этом через систему трубочек из тромбоцитов выходят плотные гранулы, содержимое которых приводит к образованию сгустка - тромба.

При ретракции сгустка сокращается его объем до 10 % первоначального, изменяется форма пластинок (дисковидная становится шаровидной), наблюдаются разрушение пограничного пучка микротрубочек, полимеризация актина, появление

многочисленных миозиновых филаментов, формирование актомиозиновых комплексов, обеспечивающих сокращение сгустка. Отростки активированных пластинок вступают в контакт с нитями фибрина и втягивают их в центр тромба. Затем в сгусток, состоящий из тромбоцитов и фибрина, проникают фибробласты и капилляры, и происходит замещение сгустка соединительной тканью. В организме существуют и противосвертывающие системы. Известно, что мощным антикоагулянтом является гепарин, вырабатываемый тучными клетками.

Изменения показателя свертывания крови отмечаются при ряде заболеваний. Например, усиление свертывания крови обусловливает образование тромбов в кровеносных сосудах, например при атеросклерозе, когда изменены рельеф и целостность эндотелия. Уменьшение числа тромбоцитов (тромбоцитопения) приводит к снижению свертываемости крови и кровотечениям. При наследственном заболевании гемофилии имеют место дефицит и нарушение образования фибрина из фибриногена.

Одной из функций тромбоцитов является их участие в метаболизме серото-нина. Тромбоциты - это практически единственные элементы крови, в которых, поступая из плазмы, накапливаются резервы серотонина. Связывание тромбоцитами серотонина происходит с помощью высокомолекулярных факторов плазмы крови и двухвалентных катионов с участием АТФ.

В процессе свертывания крови из разрушающихся тромбоцитов высвобождается серотонин, который действует на проницаемость сосудов и сокращение гладких миоцитов их стенки. Серотонин и продукты его метаболизма оказывают противоопухолевое и радиозащитное действие. Торможение связывания серотонина тромбоцитами обнаружено при ряде заболеваний крови - злокачественном малокровии, тромбоцитопенической пурпуре, миелозах и др.

При иммунных реакциях тромбоциты активизируются и секретируют факторы роста и свертывания крови, вазоактивные амины и липиды, нейтральные и кислые гидролазы, принимающие участие в воспалении.

Продолжительность жизни тромбоцитов в среднем 9-10 сут. Стареющие тромбоциты фагоцитируются макрофагами селезенки. Усиление разрушающей функции селезенки может быть причиной значительного снижения числа тромбоцитов в крови (тромбоцитопения). Для устранения этого требуется операция - удаление селезенки (спленэктомия).

При снижении числа кровяных пластинок, например при кровопотере, в крови накапливается тромбопоэтин - гликопротеид, стимулирующий образование пластинок из мегакариоцитов костного мозга.

Гемограмма. Лейкоцитарная формула

В медицинской практике анализ крови играет большую роль. При клинических анализах исследуют химический состав крови, определяют количество эритроцитов, лейкоцитов, гемоглобина, резистентность эритроцитов, быстроту их оседания - скорость оседания эритроцитов (СОЭ) и др. У здорового человека форменные элементы крови находятся в определенных количественных соотношениях, которые принято называть гемограммой, или формулой крови. Большое значение для характеристики состояния организма имеет так называемый дифференциальный подсчет лейкоцитов.

Определенные процентные соотношения лейкоцитов называют лейкоцитарной формулой.

Возрастные изменения крови

Число эритроцитов в момент рождения и в первые часы жизни выше, чем у взрослого человека, и достигает 6,0-7,0×10 12 /л. К 10-14-м сут оно равно тем же цифрам, что и во взрослом организме. В последующие сроки происходит снижение числа эритроцитов с минимальными показателями на 3-6-м мес жизни (физиологическая анемия). Число эритроцитов становится таким же, как и во взрослом организме, в период полового созревания. Для новорожденных характерны наличие анизоцитоза (разнообразие размеров эритроцитов) с преобладанием макроцитов, увеличенное содержание рети-кулоцитов, а также присутствие незначительного числа ядросодержащих предшественников эритроцитов.

Число лейкоцитов у новорожденных увеличено и достигает 10,0-30,0×10 9 /л. В течение 2 нед после рождения число их снижается до 9,0-15,0×10 9 /л. Количество лейкоцитов достигает к 14-15 годам уровня, свойственного взрослым. Соотношение числа нейтрофилов и лимфоцитов у новорожденных такое же, как и у взрослых. В последующем содержание лимфоцитов возрастает, а нейтрофилов - снижается; таким образом, к 4-м сут количество этих видов лейкоцитов уравнивается (первый физиологический перекрест лейкоцитов). Дальнейшее возрастание числа лимфоцитов и снижение числа нейтрофилов приводят к тому, что на 1-2-м году жизни лимфоциты составляют 65 %, а нейтрофилы - 25 %. Новое снижение числа лимфоцитов и повышение числа нейтрофилов приводят к выравниванию обоих показателей у 4-летних детей (второй физиологический перекрест). Постепенное снижение содержания лимфоцитов и повышение числа нейтрофилов продолжаются до полового созревания, когда количество этих видов лейкоцитов достигает нормы взрослого.

7.3. ЛИМФА

Лимфа (лат. lympha - влага) представляет собой слегка желтоватую жидкость белковой природы, протекающую в лимфатических капиллярах и сосудах. Она состоит из лимфоплазмы (plasma lymphae) и форменных элементов. По химическому составу лимфоплазма близка к плазме крови, но содержит меньше белков. Среди фракций белка альбумины преобладают над глобулинами. Часть белка составляют ферменты - диастаза, липаза и глико-литические ферменты. Лимфоплазма содержит также нейтральные жиры, простые сахара, NaCl, Na 2 CO 3 и другие, а также различные соединения, в состав которых входят кальций, магний, железо.

Форменные элементы лимфы представлены главным образом лимфоцитами (98 %), а также моноцитами и другими видами лейкоцитов, иногда в ней обнаруживаются эритроциты. Лимфа накапливается в лимфатических

капиллярах тканей и органов, куда под влиянием различных факторов, в частности осмотического и гидростатического давления, из тканей постоянно поступают различные компоненты лимфоплазмы. Из капилляров лимфа перемещается в периферические лимфатические сосуды, по ним - в лимфатические узлы, затем в крупные лимфатические сосуды и вливается в кровь. Состав лимфы постоянно меняется. Различают лимфу периферическую (до лимфатических узлов), промежуточную (после прохождения через лимфатические узлы) и центральную (лимфа грудного и правого лимфатического протоков). Процесс лимфообразования тесно связан с поступлением воды и других веществ из крови в межклеточные пространства и образованием тканевой жидкости.

7.4. КРОВЕТВОРЕНИЕ (ГЕМОПОЭЗ)

Гемопоэзом (haemopoesis) называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.

Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов - гранутоцитопоэзом, тромбоцитов - тромбоцитопоэзом, развитие моноцитов - моноцитопоэзом, развитие лимфоцитов и иммуноцитов - лимфоцито-и иммуноцитопоэзом.

7.4.1. Эмбриональный гемопоэз

В развитии крови как ткани в эмбриональный период можно выделить три основных этапа, последовательно сменяющих друг друга: 1) мезобластический, когда начинается развитие клеток крови во внезаро-дышевых органах - мезенхиме стенки желточного мешка и хориона (с 3-й по 9-ю нед развития зародыша человека) и появляется первая генерация стволовых клеток крови; 2) печеночный, который начинается в печени с 5-6-й нед развития зародыша, когда печень становится основным органом гемопоэза, в ней образуется вторая генерация СКК. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют вилочковую железу (здесь, начиная с 7-8-й нед, развиваются Т-лимфоциты), селезенку (гемопоэз начинается с 12-й нед) и лимфатические узлы (гемопоэз отмечается с 10-й нед); 3) медуллярный (костномозговой) - появление третьей генерации СКК в костном мозге, где гемопоэз начинается с 10-й нед и постепенно нарастает к рождению, а после рождения костный мозг становится центральным органом гемопоэза.

Кроветворение в стенке желточного мешка. У человека оно начинается в конце 2-й - начале 3-й нед эмбрионального развития. В мезенхиме стенки желточного мешка обособляются зачатки сосудистой крови, или

кровяные островки. В них мезенхимные клетки теряют отростки, округляются и преобразуются в стволовые клетки крови. Клетки, ограничивающие кровяные островки, уплощаются, соединяются между собой и образуют эндотелиальную выстилку будущего сосуда. Часть СКК дифференцируются в первичные клетки крови (бласты), крупные клетки с базофиль-ной цитоплазмой и ядром, в котором хорошо заметны крупные ядрышки (рис. 7.14). Большинство первичных кровяных клеток митотически делятся и превращаются в первичные эритробласты, характеризующиеся крупным размером (мегалобласты). Это превращение совершается в связи с накоплением эмбрионального гемоглобина в цитоплазме бластов, при этом сначала образуются полихроматофильные эритробласты, а затем ацидофильные эри-тробласты с большим содержанием гемоглобина. В некоторых первичных эритробластах ядра подвергаются кариорексису и удаляются из клеток, в других клетках ядра сохраняются. В результате образуются безъядерные и ядросодержащие первичные эритроциты, отличающиеся большим размером от ацидофильных эритробластов и поэтому получившие название мегало-цитов. Такой тип кроветворения называется мегалобластическим. Он характерен для эмбрионального периода, но может появляться в постнатальном периоде при некоторых заболеваниях (злокачественное малокровие).

Наряду с мегалобластическим в стенке желточного мешка начинается нормобластическое кроветворение, при котором из бластов образуются вторичные эритробласты; сначала по мере накопления в их цитоплазме гемоглобина они превращаются в полихроматофильные эритробласты, далее в нормобласты, из которых образуются вторичные эритроциты (нормоци-ты); размеры последних соответствуют эритроцитам (нормоцитам) взрослого человека (см. рис. 7.14, а). Развитие эритроцитов в стенке желточного мешка происходит внутри первичных кровеносных сосудов, т. е. интраваску-лярно. Одновременно экстраваскулярно из бластов, расположенных вокруг сосудов, дифференцируется небольшое количество гранулоцитов - ней-трофилов и эозинофилов. Часть СКК остается в недифференцированном состоянии и разносится током крови по различным органам зародыша, где происходит их дальнейшая дифференцировка в клетки крови или соединительной ткани. После редукции желточного мешка основным кроветворным органом временно становится печень.

Кроветворение в печени. Печень закладывается примерно на 3-4-й нед эмбрионального развития, а с 5-й нед она становится центром кроветворения. Кроветворение в печени происходит экстраваскулярно, по ходу капилляров, врастающих вместе с мезенхимой внутрь печеночных долек. Источником кроветворения в печени служат стволовые клетки крови, из которых образуются бласты, дифференцирующиеся во вторичные эритроциты. Процесс их образования повторяет описанные выше этапы образования вторичных эритроцитов. Одновременно с развитием эритроцитов в печени образуются зернистые лейкоциты, главным образом нейтрофильные и ацидофильные. В цитоплазме бласта, становящейся более светлой и менее базофильной, появляется специфическая зернистость, после чего ядро приобретает неправильную форму. Кроме гранулоцитов, в печени формируют-

Рис. 7.14. Эмбриональный гемопоэз (по А. А. Максимову):

а - кроветворение в стенке желточного мешка зародыша морской свинки: 1 - мезенхимальные клетки; 2 - эндотелий стенки сосудов; 3 - первичные кровяные клетки-бласты; 4 - митотически делящиеся бласты; б - поперечный срез кровяного островка зародыша кролика 8,5 сут: 1 - полость сосуда; 2 - эндотелий; 3 - интра-васкулярные кровяные клетки; 4 - делящаяся кровяная клетка; 5 - формирование первичной кровяной клетки; 6 - энтодерма; 7 - висцеральный листок мезодермы; в - развитие вторичных эритробластов в сосуде зародыша кролика 13,5 сут: 1 - эндотелий; 2 - проэритробласты; 3 - базофильные эритробласты; 4 - поли-хроматофильные эритробласты; 5 - оксифильные (ацидофильные) эритробласты (нормобласты); 6 - оксифильный (ацидофильный) эритробласт с пикнотическим ядром; 7 - обособление ядра от оксифильного (ацидофильного) эритробласта (нор-мобласта); 8 - вытолкнутое ядро нормобласта; 9 - вторичный эритроцит; г - кроветворение в костном мозге зародыша человека с копчиково-теменной длиной тела 77 мм. Экстраваскулярное развитие клеток крови: 1 - эндотелий сосуда; 2 - бласты; 3 - нейтрофильные гранулоциты; 4 - эозинофильный миелоцит

ся гигантские клетки - мегакариоциты. К концу внутриутробного периода кроветворение в печени прекращается.

Кроветворение в тимусе. Вилочковая железа закладывается в конце 1-го мес внутриутробного развития, и на 7-8-й нед ее эпителий начинает заселяться стволовыми клетками крови, которые дифференцируются в лимфоциты тиму-

са. Увеличивающееся число лимфоцитов тимуса дает начало Т-лимфоцитам, заселяющим Т-зоны периферических органов иммунопоэза.

Кроветворение в селезенке. Закладка селезенки происходит в конце 1-го мес внутриутробного развития. Из вселяющихся в нее стволовых клеток происходит экстраваскулярное образование всех видов форменных элементов крови, т. е. селезенка в эмбриональном периоде представляет собой универсальный кроветворный орган. Образование эритроцитов и гранулоци-тов в селезенке достигает максимума на 5-м мес внутриутробного развития. После этого в ней начинает преобладать лимфоцитопоэз.

Кроветворение в лимфатических узлах. Первые закладки лимфатических узлов у человека появляются на 7-8-й нед эмбрионального развития. Большинство лимфатических узлов развиваются на 9-10-й нед. В этот же период начинается проникновение в лимфатические узлы стволовых клеток крови, из которых дифференцируются эритроциты, гранулоциты и мегака-риоциты. Однако формирование этих элементов быстро подавляется образованием лимфоцитов, составляющих основную часть клеток лимфатических узлов. Появление единичных лимфоцитов происходит уже на 8-15-й нед развития, однако массовое «заселение» лимфатических узлов предшественниками Т- и В-лимфоцитов начинается с 16-й нед, когда формируются посткапиллярные венулы, через стенку которых осуществляется процесс миграции клеток. Из клеток-предшественников дифференцируются лим-фобласты (большие лимфоциты), а далее средние и малые лимфоциты. Дифференцировка Т- и В-лимфоцитов происходит в Т- и В-зависимых зонах лимфатических узлов.

Кроветворение в костном мозге. Закладка костного мозга осуществляется на 2-м мес внутриутробного развития. Первые гемопоэтические элементы появляются на 12-й нед развития; в это время основную их массу составляют эритробласты и предшественники гранулоцитов. Из СКК в костном мозге формируются все форменные элементы крови, развитие которых происходит экстраваскулярно (см. рис. 7.14, г). Часть СКК сохраняются в костном мозге в недифференцированном состоянии, они могут расселяться по другим органам и тканям и являться источником развития клеток крови и соединительной ткани. Таким образом, костный мозг становится центральным органом, осуществляющим универсальный гемопоэз, и остается им в течение постнатальной жизни. Он обеспечивает стволовыми кроветворными клетками тимус и другие органы гемопоэза.

7.4.2. Постэмбриональный гемопоэз

Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови (клеточное обновление), который компенсирует физиологическое разрушение дифференцированных клеток. Миелопоэз происходит в миелоидной ткани (textus myeloideus), расположенной в эпифизах трубчатых и полостях многих губчатых костей (см. главу 14). Здесь развиваются форменные элементы крови: эритроциты, гранулоциты, моноциты, кровяные пластинки, предшественники лимфоцитов. В миелоид-

ной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют такие органы, как тимус, селезенка, лимфатические узлы и др.

Лимфопоэз происходит в лимфоидной ткани (textus lymphoideus), которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные функции: образование Т- и В-лимфоцитов и иммуноцитов (плазмоцитов и др.).

СКК являются плюрипотентными (полипотентными) предшественниками всех клеток крови и относятся к самоподдерживающейся популяции клеток. Они редко делятся. Впервые представление о родоначальных клетках крови сформулировал в начале XX в. А. А. Максимов, который считал, что по своему строению они сходны с лимфоцитами. В настоящее время это представление нашло подтверждение и дальнейшее развитие в новейших экспериментальных исследованиях, проводимых главным образом на мышах. Выявление СКК стало возможным при применении метода коло-ниеобразования.

Экспериментально (на мышах) показано, что при введении смертельно облученным животным (утратившим собственные кроветворные клетки) взвеси клеток красного костного мозга или фракции, обогащенной СКК, в селезенке появляются колонии клеток - потомков одной СКК. Пролиферативную активность СКК модулируют колониестимулирующие факторы (КСФ), интерлейкины (ИЛ-3 и др.). Каждая СКК в селезенке образует одну колонию и называется селезеночной колониеобразующей единицей (КОЕ-С). Подсчет колоний позволяет судить о количестве стволовых клеток, находящихся во введенной взвеси клеток. Таким образом, было установлено, что у мышей на 10 5 клеток костного мозга приходится около 50 стволовых клеток. Исследование очищенной фракции стволовых клеток с помощью электронного микроскопа позволяет сделать вывод, что по ультраструктуре они очень близки к малым темным лимфоцитам.

Исследование клеточного состава колоний выявляет две линии их диф-ференцировки. Одна линия дает начало мультипотентной клетке - родоначальнику гранулоцитарного, эритроцитарного, моноцитарного и мега-кариоцитарного дифферонов гемопоэза (КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке - родоначальнику лимфопоэза (КОЕ-Л) (рис. 7.15). Из мультипотентных клеток дифференцируются олигопотент-ные (КОЕ-ГМ) и унипотентные родоначальные (прогениторные) клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофилов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегака-риоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники (прекурсорные). В лимфопоэтическом ряду выделяют унипотентные клетки - предшественники В-лимфоцитов и соответственно Т-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.

Все приведенные выше стадии развития клеток составляют четыре основных компартмента: I - стволовые клетки крови (плюрипотентные, полипо-

Рис. 7.15. Постэмбриональный гемопоэз, окраска азуром II-эозином (по Н. А. Юриной).

Стадии дифференцировки крови: I-IV - морфологически неидентифицируе-мые клетки; V, VI - морфологически идентифицируемые клетки. Б - базофил;

БОЕ - бурстобразующая единица; Г - гранулоциты; Гн - гранулоцит нейтрофильный; КОЕ - колониеобразующие единицы; КОЕ-С - селезеночная колониеобразующая единица; Л - лимфоцит; Лск - лимфоидная стволовая клетка; М - моноцит; Мег - мегакариоцит; Эо - эозинофил; Э - эритроцит. Ретикулоцит окрашен суправитально

тентные); II - коммитированные родоначальные клетки (мультипотентные); III - коммитированные родоначальные (прогенторные) олигопотентные и унипотентные клетки; IV - клетки-предшественники (прекурсорные).

Дифференцировка полипотентных клеток в унипотентные определяется действием ряда специфических факторов - эритропоэтинов (для эритро-бластов), гранулопоэтинов (для миелобластов), лимфопоэтинов (для лим-фобластов), тромбопоэтинов (для мегакариобластов) и др.

Из каждой клетки-предшественника образуется конкретный вид клеток. Клетки каждого вида при созревании проходят ряд стадий и в совокупности образуют компартмент созревающих клеток (V). Зрелые клетки представляют последний компартмент (VI). Все клетки V и VI компартментов морфологически можно идентифицировать (рис. 7.15).

Эритроцитопоэз

Родоначальником эритроидных клеток человека, как и других клеток крови, является полипотентная стволовая клетка крови, способная формировать в культуре костного мозга колонии. Полипотентная СКК в результате дивергентной дифференцировки дает два типа мультипотентных частично коммитированных кроветворных клеток: 1) коммитированные к лимфо-идному типу дифференцировки (Лск, КОЕ-Л); 2) КОЕ-ГЭММ - единицы, образующие смешанные колонии, состоящие из гранулоцитов, эритроцитов, моноцитов и мегакариоцитов (аналог КОЕ-С in vitro). Из второго типа мультипотентных кроветворных клеток дифференцируются унипотентные единицы: бурстобразующая (БОЕ-Э) и колониеобразующая (КОЕ-Э) эри-троидные клетки, которые являются коммитированными родоначальными клетками эритропоэза.

БОЕ-Э - взрывообразующая, или бурстобразующая, единица (burst - взрыв) по сравнению с КОЕ-Э является менее дифференцированной. БОЕ-Э может при интенсивном размножении быстро образовать крупную колонию клеток. БОЕ-Э в течение 10 сут осуществляет 12 делений и образует колонию из 5000 эритроцитарных клеток с незрелым фетальным гемоглобином (HbF). БОЕ-Э малочувствительна к эритропоэтину и вступает в фазу размножения под влиянием интерлейкина-3 (бурстпромоторная активность), вырабатываемого моноцитами - макрофагами и Т-лимфоцитами. Интерлейкин-3 (ИЛ-3) является гликопротеином с молекулярной массой 20-30 килодальтон. Он активирует ранние полипотентные СКК, обеспечивая их самоподдержание, а также запускает дифференцировку полипотент-ных клеток в коммитированные клетки. ИЛ-3 способствует образованию клеток (КОЕ-Э), чувствительных к эритропоэтину.

КОЕ-Э по сравнению с БОЕ-Э - более зрелая клетка. Она чувствительна к эритропоэтину, под влиянием которого размножается (в течение 3 сут делает 6 делений), формирует более мелкие колонии, состоящие примерно из 60 эри-троцитарных элементов. Количество эритроидных клеток, образуемых в сутки из КОЕ-Э, в 5 раз меньше аналогичных клеток, образуемых из БОЕ-Э.

Таким образом, БОЕ-Э содержат клетки-предшественники эритроцитов, которые способны генерировать тысячи эритроидных прекурсоров

Рис. 7.16. Последовательные стадии дифференцировки проэритробласта в эритроцит: А - проэритробласт; Б - базофильный эритробласт; В - полихроматофильный эритробласт; Г - ацидофильный эритробласт (нормобласт); Д - выталкивание ядра из ацидофильного эритробласта; Е - ретикулоцит; Ж - пикнотичное ядро; З - эритроцит. 1 - ядро; 2 - рибосомы и полирибосомы; 3 - митохондрии; 4 - гранулы гемоглобина

(предшественников). Они содержатся в малом количестве в костном мозге и крови благодаря частичному самоподдержанию и миграции из компарт-мента мультипотентных кроветворных клеток. КОЕ-Э является более зрелой клеткой, образующейся из пролиферирующей БОЕ-Э.

Эритропоэтин - гликопротеиновый гормон, образующийся в юкста-гломерулярном аппарате (ЮГА) почки (90 %) и печени (10 %) в ответ на снижение парциального давления кислорода в крови (гипоксия) и запускающий эритропоэз из КОЕ-Э. Под его влиянием КОЕ-Э дифференцируются в проэритробласты, из которых образуются эритробласты (базофиль-ные, полихроматофильные, ацидофильные), ретикулоциты и эритроциты. Образующиеся из КОЕ-Э эритроидные клетки морфологически идентифицируются (рис. 7.16). Сначала образуется проэритробласт.

Проэритробласт - клетка диаметром 14-18 мкм, имеющая большое круглое ядро с мелкозернистым хроматином, одно-два ядрышка, слабобазо-фильную цитоплазму, в которой содержатся свободные рибосомы и полисомы, слаборазвитые комплекс Гольджи и гранулярная эндоплазматическая сеть. Базофильный эритробласт - клетка меньшего размера (13-16 мкм). Его ядро содержит больше гетерохроматина. Цитоплазма клетки обладает хорошо выраженной базофильностью в связи с накоплением в ней рибосом, в которых начинается синтез Нb. Полихроматофильный эритробласт - клетка размером 10-12 мкм. Ее ядро содержит много гетерохроматина. В цитоплазме клетки накапливается синтезируемый на рибосомах НЬ, окрашивающийся эозином, благодаря чему она приобретает серовато-фиолетовый цвет. Проэритробласты, базофильные и полихроматофильные эритробла-сты способны размножаться путем митоза, поэтому в них часто видны фигуры деления.

Следующая стадия дифференцировки - образование ацидофильного (оксифилия) эритробласта (нормобласта). Это клетка небольшого размера (8-10 мкм), имеющая маленькое пикнотичное ядро. В цитоплазме эритро-

бласта содержится много НЬ, обеспечивающего ее ацидофилию (оксифи-лию) - окрашивание эозином в ярко-розовый цвет. Пикнотическое ядро выталкивается из клетки, в цитоплазме сохраняются лишь единичные органеллы (рибосомы, митохондрии). Клетка утрачивает способность к делению.

Ретикулоцит - постклеточная структура (безъядерная клетка) с небольшим содержанием рибосом, обусловливающих наличие участков базофи-лии, и преобладанием НЬ, что в целом дает многоцветную (полихромную) окраску (поэтому эта клетка получила название «полихроматофильный эритроцит»). При выходе в кровь ретикулоцит созревает в эритроцит в течение 1-2 сут. Эритроцит - это клетка, образующаяся на конечной стадии дифференцировки клеток эритроидного ряда. Период образования эритроцита, начиная со стадии проэритробласта, занимает 7 сут.

Таким образом, в процессе эритропоэза происходят уменьшение размера клетки в 2 раза (см. рис. 7.16); уменьшение размера и уплотнение ядра и его выход из клетки; уменьшение содержания РНК, накопление НЬ, сопровождаемые изменением окраски цитоплазмы - от базофильной до полихро-матофильной и ацидофильной; потеря способности к делению клетки. Из одной СКК в течение 7-10 сут в результате 12 делений образуется около 2000 зрелых эритроцитов.

Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эри-тробластических островков, впервые описанных французским гематологом М. Бесси (1958). Эритробластический островок состоит из макрофага, окруженного одним или несколькими слоями эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом КОЕ-Э. Образующиеся из нее клетки (от проэритробласта до ретикулоцита) удерживаются в контакте с макрофагом его рецепторами (сиалоадгезинами и др.) (рис. 7.17, 7.18).

У взрослого организма потребность в эритроцитах обычно обеспечивается за счет усиленного размножения полихроматофильных эритробластов (гомопластический гемопоэз). Однако, когда потребность организма в эритроцитах возрастает (например, при потере крови), эритробласты начинают развиваться из предшественников, а последние - из стволовых клеток (гетеропластический эритропоэз).

В норме из костного мозга в кровь поступают только эритроциты и рети-кулоциты.

Гранулоцитопоэз

Источниками гранулоцитопоэза являются также СКК и мультипотент-ные КОЕ-ГЭММ (см. рис. 7.15). В результате дивергентной дифференци-ровки через ряд промежуточных стадий в трех различных направлениях образуются гранулоциты трех видов: нейтрофилы, эозинофилы и базофилы. Клеточные диффероны для гранулоцитов представлены следующими формами: СКК → КОЕ-ГЭММ → КОЕ-ГМ → унипотентные предшественники (КОЕ-Б, КОЕ-Эо, КОЕ-Гн) → миелобласт → промиелоцит → миелоцит →

Рис. 7.17. Динамика развития эритробластического островка (по М. Бесси и соавт., с изменениями):

а - схема: 1 - цитоплазма макрофага; 2 - отростки макрофага; 3 - базофильные эритробласты; 4 - полихроматофильные эритробласты; 5 - ацидофильный эритро-бласт; 6 - ретикулоцит; б - срез эритроидного островка: 1 - макрофаг; 2 - эритроциты; 3 - митотически делящийся эритробласт. Электронная микрофотография по Ю. М. Захарову. Увеличение 8000

Рис. 7.18. Развитие эритроцитов в печени плода человека:

а, б - 15-недельный плод (увеличение 6000); в - 20-недельный плод (увеличение 15 000). 1 - эксцентрично расположенное ядро эритробласта; 2 - обособление пикнотического ядра ацидофильного эритробласта; 3 - отделение пикнотического ядра с узким ободком цитоплазмы от ацидофильного эритробласта; 4 - ретикулоцит с единичными органеллами (указано стрелками). Электронная микрофотография (по Замбони)

Рис. 7.19. Дифференцировка нейтрофильного гранулоцита в костном мозге (по Д. Байнтону, М. Фарквару, Дж. Элиоту, с изменениями):

А - миелобласт; Б - промиелоцит; В - миелоцит; Г - метамиелоцит; Д - палоч-коядерный нейтрофильный гранулоцит (нейтрофил); Е - сегментоядерный нейтрофильный гранулоцит. 1 - ядро; 2 - первичные (азурофильные) гранулы; 3 - комплекс Гольджи; 4 - вторичные - специфические гранулы

метамиелоцит → палочкоядерный гранулоцит → сегментоядерный гранулоцит.

По мере созревания гранулоцитов клетки уменьшаются в размерах, изменяется форма их ядер от округлой до сегментированной, в цитоплазме накапливается специфическая зернистость (рис. 7.19).

Миелобласты (myeloblastus), дифференцируясь в направлении того или иного гранулоцита, дают начало промиелоцитам (promyelocytus) (см. рис. 7.15). Это крупные клетки, содержащие овальное или круглое светлое ядро, в котором имеется несколько ядрышек. Около ядра располагается ясно выраженная центросома, хорошо развиты комплекс Гольджи, лизосомы. Цитоплазма слегка базофильна. В ней накапливаются первичные (азуро-фильные) гранулы, которые характеризуются высокой активностью мие-лопероксидазы, а также кислой фосфатазы, т. е. относятся к лизосомам. Промиелоциты делятся митотически. Специфическая зернистость отсутствует.

Нейтрофильные миелоциты (myelocytus neutrophilicus) имеют размер от 12 до 18 мкм. Эти клетки размножаются митозом. Цитоплазма их становится диффузно ацидофильной, в ней появляются наряду с первичными вторичные (специфические) гранулы, характеризующиеся меньшей электронной плотностью. В миелоцитах обнаруживаются все органеллы. Количество митохондрий невелико. Эндоплазматическая сеть состоит из пузырьков. Рибосомы располагаются на поверхности мембранных пузырьков, а также диффузно в цитоплазме. По мере размножения нейтрофильных миелоцитов круглое или овальное ядро становится бобовидным, начинает окрашиваться темнее, хроматиновые глыбки становятся грубыми, ядрышки исчезают.

Такие клетки уже не делятся. Это метамиелоциты (metamyelocytus) (см. рис. 7.19). В цитоплазме увеличивается число специфических гранул. Если метамиелоциты встречаются в периферической крови, то их называют юными формами. При дальнейшем созревании их ядро приобретает вид изогнутой палочки. Подобные формы получили название палочкоядерных гранулоцитов. Затем ядро сегментируется, и клетка становится сегментоядер-ным нейтрофильным гранулоцитом. Полный период развития нейтрофильного гранулоцита составляет около 14 сут, при этом период пролиферации продолжается около 7,5 сут, а постмитотический период дифференцировки - около 6,5 сут.

Эозинофильные (ацидофильные) миелоциты (см. рис. 7.15) представляют собой клетки округлой формы диаметром (на мазке) около 14-16 мкм. По характеру строения ядра они мало отличаются от нейтрофильных миелоци-тов. Цитоплазма их заполнена характерной эозинофильной зернистостью. В процессе созревания миелоциты митотически делятся, а ядро приобретает подковообразную форму. Такие клетки называются ацидофильными мета-миелоцитами. Постепенно в средней части ядро истончается и становится двудольчатым, в цитоплазме увеличивается количество специфических гранул. Клетка утрачивает способность к делению.

Среди зрелых форм различают палочкоядерные и сегментоядерные эозино-фильные гранулоциты с двудольчатым ядром.

Базофильные миелоциты (см. рис. 7.15) встречаются в меньшем количестве, чем нейтрофильные или эозинофильные миелоциты. Размеры их примерно такие же, как и эозинофильных миелоцитов; ядро округлой формы, без ядрышек, с рыхлым расположением хроматина. Цитоплазма базофильных миелоцитов содержит в широко варьирующих количествах специфические базофильные зерна неодинаковых размеров, которые проявляют мета-хромазию при окрашивании азуром и легко растворяются в воде. По мере созревания базофильный миелоцит превращается в базофильный метамиелоцит, а затем в зрелый базофильный гранулоцит.

Все миелоциты, особенно нейтрофильные, обладают способностью фагоцитировать, а начиная с метамиелоцита, приобретают подвижность.

У взрослого организма потребность в лейкоцитах обеспечивается за счет размножения миелоцитов. При кровопотерях, например, миелоциты начинают развиваться из миелобластов, а последние из унипотентных и поли-потентных СКК.

Мегакариоцитопоэз. Тромбоцитопоэз

Кровяные пластинки образуются в костном мозге из мегакариоцитов - гигантских по величине клеток, которые дифференцируются из СКК, проходя ряд стадий. Последовательные стадии развития можно представить следующим клеточным диффероном: СКК → КОЕ-ГЭММ → КОЕ-МГЦ → мегакариобласт → промегакариоцит → мегакариоцит → тромбоциты (кровяные пластинки). Весь период образования пластинок составляет около 10 сут (см. рис. 7.15).

Мегакариобласт (megacaryoblastus) - клетка диаметром 15-25 мкм, имеет ядро с инвагинациями и относительно небольшой ободок базофильной цитоплазмы. Клетка способна к делению митозом, иногда содержит два ядра. При дальнейшей дифференцировке утрачивает способность к митозу и делится путем эндомитоза, при этом увеличиваются плоидность и размер ядра.

Промегакариоцит (promegacaryocytus) - клетка диаметром 30-40 мкм, содержит полиплоидные ядра - тетраплоидные, октаплоидные (4 n, 8 n), несколько пар центриолей. Объем цитоплазмы возрастает, в ней начинают накапливаться азурофильные гранулы. Клетка также способна к эндоми-тозу и дальнейшему увеличению плоидности ядер.

Мегакариоцит (megacaryocytus) - дифференцированная форма. Среди мегакариоцитов различают резервные клетки, не образующие пластинок, и зрелые активированные клетки, образующие кровяные пластинки. Резервные мегакариоциты диаметром 50-70 мкм, имеют очень большое, дольчатое ядро с набором хромосом 16-32 n; в их цитоплазме имеются две зоны - околоядерная, содержащая органеллы и мелкие азурофильные гранулы, и наружная (эктоплазма) - слабобазофильная, в которой хорошо развиты элементы цитоскелета. Зрелый, активированный мегакариоцит - крупная клетка диаметром 50-70 мкм (иногда даже до 100 мкм). Содержит очень крупное, сильно дольчатое полиплоидное ядро (до 64 n). В ее цитоплазме накапливается много азурофильных гранул, которые объединяются в группы. Прозрачная зона эктоплазмы также заполняется гранулами и вместе с плазмолеммой формирует псевдоподии в виде тонких отростков, направленных к стенкам сосудов. В цитоплазме мегакариоцита наблюдается скопление линейно расположенных пузырьков, которые разделяют зоны цитоплазмы с гранулами. Из пузырьков формируются демаркационные мембраны, разделяющие цитоплазму мегакариоцита на участки диаметром 1-3 мкм, содержащие по 1-3 гранулы (будущие кровяные пластинки). В цитоплазме можно выделить три зоны - перинуклеарную, промежуточную и наружную. В наружной зоне цитоплазмы наиболее активно идут процессы демаркации, формирования протромбоцитарных псевдоподий, проникающих через стенку синусов в их просвет, где и происходит отделение кровяных пластинок (рис. 7.20). После отделения пластинок остается клетка, содержащая дольчатое ядро, окруженное узким ободком цитоплазмы, - резидуальный мегакариоцит, который затем подвергается разрушению. При уменьшении числа кровяных пластинок в крови (тромбоцитопения), например после кровопотери, отмечается усиление мегакариоцитопоэза, приво-

Рис. 7.20. Ультрамикроскопическое строение мегакариоцита (по Н. А. Юриной, Л. С. Румянцевой):

1 - ядро; 2 - гранулярная эндоплазматическая сеть; 3 - гранулы; 4 - комплекс Гольджи; 5 - митохондрии; 6 - гладкая эндоплазматическая сеть; 7 - альфа-гранулы; - лизосомы; 8 - инвагинация плазмолеммы; 9 - демаркационные мембраны; 10 - формирующиеся кровяные пластинки

дящее к увеличению количества мегакариоцитов в 3-4 раза с последующей нормализацией числа тромбоцитов в крови.

Моноцитопоэз

Образование моноцитов происходит из стволовых клеток костного мозга по схеме: СКК → КОЕ-ГЭММ → КОЕ-ГМ → унипотентный предшественник моноцита (КОЕ-М) → монобласт (monoblastus) → промоноцит → моноцит (monocytus). Моноциты из крови поступают в ткани, где являются источником развития различных видов макрофагов.

Лимфоцитопоэз и иммуноцитопоэз

Лимфоцитопоэз проходит следующие стадии: СКК → КОЕ-Л (лимфоидная родоначальная мультипотентная клетка) → унипотентные предшественники лимфоцитов (пре-Т-клетки и пре-В-клетки)→ лимфобласт (lymphoblastus) пролимфоцит → лимфоцит. Особенность лимфоцитопоэ-за - способность дифференцированных клеток (лимфоцитов) дедифферен-цироваться в бластные формы.

Процесс дифференцировки Т-лимфоцитов в тимусе приводит к образованию из унипотентных предшественников Т-бластов, из которых формируются эффекторные лимфоциты - киллеры, хелперы, супрессоры.

Дифференцировка унипотентных предшественников В-лимфоцитов в лимфоидной ткани ведет к образованию плазмобластов (plasmoblastus), затем проплазмоцитов, плазмоцитов (plasmocytus). Более подробно процессы образования иммунокомпетентных клеток описаны в главе 14.

Регуляция гемопоэза

Кроветворение регулируется факторами роста, обеспечивающими пролиферацию и дифференцировку СКК и последующих стадий их развития, факторами транскрипции, влияющими на экспрессию генов, определяющих направление дифференцировки гемопоэтических клеток, а также витаминами, гормонами.

Факторы роста включают колониестимулирующие факторы, интерлей-кины и ингибирующие факторы. Они являются гликопротеинами с молекулярной массой около 20 килодальтон. Гликопротеины действуют и как циркулирующие гормоны, и как местные медиаторы, регулирующие гемопоэз и развитие клеточных дифферонов. Они почти все действуют на СКК, КОЕ, коммитированные и зрелые клетки. Однако отмечаются индивидуальные особенности действия этих факторов на клетки-мишени.

Например, фактор роста стволовых клеток влияет на пролиферацию и миграцию СКК в эмбриогенезе. В постнатальном периоде на гемопоэз оказывают влияние несколько КСФ, среди которых наиболее изучены факторы, стимулирующие развитие гранулоцитов и макрофагов (ГМ-КСФ, Г-КСФ, М-КСФ), а также интерлейкины.

Как видно из табл. 7.1, мульти-КСФ и интерлейкин-3 действуют на поли-потентную стволовую клетку и большинство КОЕ. Некоторые КСФ могут действовать на одну или более стадий гемопоэза, стимулируя деление, диф-ференцировку клеток или их функцию. Большинство указанных факторов выделено и применяется для лечения различных болезней. Для получения их используются биотехнологические методы.

Большая часть эритропоэтина образуется в почках (интерстициальные клетки), меньшая - в печени. Его образование регулируется содержанием в крови О 2 , которое зависит от количества циркулирующих в крови эритроцитов. Снижение числа эритроцитов и соответственно парциального давления кислорода (Ро 2) является сигналом для увеличения продукции эритропоэтина. Эритропоэтин действует на чувствительные к нему КОЕ-Э, стимулируя их пролиферацию и дифференцировку, что в конечном итоге приводит к повышению содержания в крови эритроцитов. К факторам роста для эритроидных клеток, кроме эритропоэтина, относится фактор бурст-промоторной активности (БПА), который влияет на БОЕ-Э. БПА образуется клетками ретикулоэндотелиальной системы. В настоящее время считают, что он является интерлейкином-3.

Тромбопоэтин синтезируется в печени, стимулирует пролиферацию КОЕ-МГЦ, их дифференцировку и образование тромбоцитов.

Ингибирующие факторы дают противоположный эффект, т. е. тормозят гемопоэз. К ним относятся липопротеины, блокирующие действие КСФ (лактофер-рин, простагландины, интерферон, кейлоны). Гормоны также влияют на гемопоэз. Например, гормон роста стимулирует эритропоэз, глюкокортикоиды, напротив, подавляют развитие клеток-предшественников.

Таблица 7.1. Гемопоэтические факторы роста (стимуляторы)

1 Нейтрофилы, эозинофилы, базофилы.

Витамины необходимы для стимуляции пролиферации и дифференцировки гемо-поэтических клеток. Витамин В 12 потребляется с пищей и поступает с кровью в костный мозг, где влияет на гемопоэз. Нарушение процесса всасывания при различных заболеваниях может служить причиной дефицита витамина В 12 и нарушений в гемопоэ-зе. Фолиевая кислота участвует в синтезе пуриновых и пиримидиновых оснований.

Таким образом, развитие кроветворных клеточных дифферонов протекает в неразрывной связи с микроокружением. Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т. е. относятся к тканям внутренней среды. Ретикулоцитарный, адипоцитарный, тучнокле-точный и остеобластический диффероны вместе с межклеточным веществом (матриксом) формируют микроокружение для гемопоэтических диф-феронов. Гистологические элементы микроокружения и гемопоэтические клетки функционируют в неразрывной связи. Микроокружение оказывает воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов). В миелоидной и лимфоидной тканях стромальные ретикулярные и гемопоэтические элементы образуют единое функциональное целое. В тимусе имеется сложная строма, представленная как соединительнотканными, так и ретикулоэпи-телиальными клетками. Эпителиальные клетки секретируют особые вещества - тимозины, оказывающие влияние на дифференцировку из СКК Т-лимфоцитов. В лимфатических узлах и селезенке специализированные ретикулярные клетки создают микроокружение, необходимое для пролиферации и дифференцировки в специальных Т- и В-зонах Т- и В-лимфоцитов и плазмоцитов.

Контрольные вопросы

1. Гемограмма, лейкоцитарная формула: определение, количественные и качественные характеристики у здорового человека.

2. Основные положения унитарной теории кроветворения А. А. Максимова. Перечислить свойства стволовой кроветворной клетки.

3. Эритропоэз, стадии, роль клеточного микроокружения в дифферен-цировке клеток эритробластического дифферона.

4. Агранулоциты: морфологические и функциональные характеристики.

Гистология, эмбриология, цитология: учебник / Ю. И. Афанасьев, Н. А. Юрина, Е. Ф. Котовский и др.. - 6-е изд., перераб. и доп. - 2012. - 800 с. : ил.

Лейкоциты, или белые клетки крови, являются компонентами, которые защищают организм от инфекционных агентов. Они играют важную роль, защищая иммунную систему путем выявления, уничтожения и удаления патогенов, поврежденных клеток (например, раковых) и других посторонних веществ из организма. Лейкоциты образуются из стволовых клеток костного мозга и циркулируют в крови и лимфатической жидкости. Как они образуются и как протекает их жизненный цикл? Какова продолжительность жизни лейкоцитов?

Белые клетки крови

Лимфоциты являются наиболее распространенным типом белых кровяных клеток, которые имеют сферическую форму с крупными ядрами и небольшим количеством цитоплазмы. Существуют три основных типа: Т-клетки, В-клетки и естественные клетки-киллеры. Первые два типа являются критическими для специфических иммунных реакций. Природные клетки-киллеры обеспечивают неспецифический иммунитет.

Образование лейкоцитов

В основном белые клетки крови образуются в костном мозге, некоторые из них созревают в лимфатических узлах, селезенке и вилочковой железе. Продолжительность жизни лейкоцитов колеблется примерно от нескольких часов до нескольких дней. Производство клеток крови часто регулируются такими структурами организма, как лимфатические узлы, селезенка, печень и почки. Низкий уровень лейкоцитов может быть связанным с заболеванием, воздействием радиации или повреждениями костного мозга. Высокий может указывать на наличие инфекционного или воспалительного заболевания, анемии, лейкемии, стресса или обширного повреждения тканей организма.

Какие еще существуют типы клеток крови?

Помимо белых кровяных телец, существуют красные, которые называются тромбоцитами. Эти клетки имеют двояковогнутую форму и заняты транспортировкой кислорода к клеткам и тканям тела посредством кровообращения. Они также транспортируют углекислый газ в легкие. Тромбоциты имеют жизненно важное значение для процесса свертывания крови и являются необходимыми для предотвращения ее потери.

Продолжительность жизни белых клеток крови

Какова продолжительность жизни лейкоцитов в крови? Можно сказать, что белые кровяные клетки живут быстро и умирают молодыми. Они имеют относительно короткий жизненный цикл - от нескольких дней до нескольких недель. Но это вовсе не означает их хрупкость и ненадежность. Вся сила заключается в цифрах: одна капля крови может содержать от 7 до 25 тысяч белых кровяных телец одновременно. Это число может увеличиться, если присутствует заражающая инфекция.

Жизнь гранулоцитов после выхода из костного мозга, как правило, составляет от 4 до 8 часов, если они циркулируют в крови, и от 4 до 5 дней - если движутся по тканям. Во время тяжелой инфекции общая продолжительность жизни лейкоцитов часто сокращается до всего лишь нескольких часов. Лимфоциты входят в кровеносную систему постоянно, наряду с дренажем лимфы из лимфатических узлов и другой лимфоидной ткани. Через несколько часов они поступают из крови обратно в ткань, затем возвращаются в лимфу и, таким образом, циркулируют. Продолжительность жизни лейкоцитов может варьироваться от нескольких недель до нескольких месяцев, все зависит от потребности организма в этих клетках.

Защита от инфекций

Кровь состоит из нескольких компонентов, в том числе красных кровяных клеток, лейкоцитов, тромбоцитов и плазмы. Здоровый взрослый человек имеет от 4500 до 11 000 белых кровяных клеток на кубический миллиметр крови. Лейкоциты, также называемые лейкоцитарными или белыми корпускулами, являются клеточным компонентом крови, который защищает организм от инфекций и болезней путем проглатывания инородных материалов и разрушения инфекционных агентов, в том числе раковых клеток, а также путем получения антител.

Аномальное увеличение числа белых клеток известно как лейкоцитоз, в то время как ненормальное уменьшение их числа носит название лейкопении. Количество лейкоцитов может расти в ответ на интенсивные физические нагрузки, судороги, острые эмоциональные реакции, боли, беременность, роды и некоторые другие болезненные состояния, такие как инфекции и интоксикации. Их количество может снижаться в ответ на определенные типы инфекций или препаратов либо в сочетании с определенными условиями, такими как хроническая анемия, недоедание или анафилаксия.

Сложный химический состав

Химические пути, используемые лейкоцитами, являются более сложными, чем у тех же эритроцитов. Белые клетки содержат ядро и способны производить рибонуклеиновую кислоту, а также синтезировать белок. В то же время они не претерпевают деление клеток (митоз) в крови, хотя некоторые из них сохраняют эту способность. Белые клетки сгруппированы в три основных класса: лимфоциты, гранулоциты и моноциты, каждый из которых имеет свои особенности и выполняет несколько иные функции.

Важный компонент системы крови

Лейкоциты являются важным компонентом системы крови, которая также состоит из красных кровяных клеток, тромбоцитов и плазмы. Хотя они составляют всего около 1 % от всей крови, их воздействие значительно: они необходимы для хорошего здоровья и защиты от болезней. Можно сказать, что это клетки иммунитета. В каком-то смысле они постоянно находятся в состоянии войны с вирусами, бактериями и другими "иностранными захватчиками", которые угрожают вашему здоровью.

Когда конкретная область подвергается атакам, белые кровяные клетки стремятся уничтожить вредное вещество и предотвратить болезнь. Лейкоциты производятся внутри костного мозга и хранятся в крови и лимфатических тканях. Поскольку продолжительность жизни лейкоцитов человека невелика, некоторые их типы имеют и вовсе короткий срок существования - от одного до трех дней. Поэтому костный мозг занимается их постоянным воспроизводством.

Типы лейкоцитов

    Моноциты. Они имеют более длительный срок службы, чем многие белые кровяные клетки, и помогают разрушать бактерии.

    Лимфоциты. Они продуцируют антитела для защиты от бактерий, вирусов и других потенциально вредоносных захватчиков.

    Нейтрофилы. Они убивают и переваривают бактерии и грибки. Являются наиболее многочисленным типом белых кровяных клеток и первой линией защиты при поражении инфекциями.

    Базофилы. Эти маленькие клетки выделяют такие химикаты, как гистамин и маркер аллергической болезни, которые помогают контролировать иммунный ответ организма.

    Чем больше - тем лучше?

    Даже при всей их способности бороться с болезнями, слишком большое количество белых кровяных клеток может быть плохим признаком. Например, человек, страдающий лейкемией, раком крови, может иметь до 50 000 лейкоцитов в одной капле крови. Все её элементы (эритроциты, лейкоциты и тромбоциты) происходят из гемопоэтических стволовых клеток и костного мозга, а также пуповины новорожденных детей. В среднем в теле взрослого человека содержится около 5 литров крови, которая в основном состоит из плазмы (55-60 %) и клеток крови (40-45 %). Продолжительность жизни эритроцитов, лейкоцитов и тромбоцитов, а также их структура и состав различаются, но все они играют важную роль в функционировании организма.

    Число эритроцитов и лейкоцитов в крови может служить индикатором некоторых заболеваний. Лейкопения может быть вызвана факторами, которые могут нарушать функции костного мозга. Состояние, для которого характерно низкое количество эритроцитов, обычно называют анемией, она бывает в том числе железодефицитной и вызванной дефицитом витамина B12. Это заболевание может нарушить способность крови к переносу кислорода, что может проявляться в повышенной усталости, одышке и бледности. Продолжительность жизни лейкоцитов, тромбоцитов и эритроцитов, их внешний вид, состав и функции кардинально различаются, но все они играют важную роль. Таким образом, сокращение или значительное увеличение их числа может привести к различным проблемам со здоровьем.

    Жизненный период эритроцитов и лейкоцитов

    Продолжительность жизни эритроцитов, лейкоцитов, тромбоцитов, как мы уже неоднократно упоминали, разная. Первые являются самыми устойчивыми. Эритроциты живут около 120 дней, в то время как продолжительность жизни лейкоцитов в крови человека может составлять в среднем от 3 до 4 дней. И это количество может в значительной степени снижаться в случае тяжелой инфекции.

    Количество лейкоцитов должно быть под контролем

    Врачи рекомендуют периодически проверять уровень ваших белых кровяных клеток. Если их количество продолжительное время остается высоким или низким, это может свидетельствовать об ухудшении состояния здоровья. Что касается эритроцитов, то их продолжительность жизни - три-четыре месяца. Лейкоциты в этом плане значительно уступают. И все же это важная часть защиты организма от инфекционных и чужеродных веществ. Проверить количество и состояние крови можно при помощи проведения специальных лабораторных тестов.

    Расстройства лейкоцитов

    Основные расстройства лейкоцитов включают в себя следующие патологические состояния:

      Нейтропения (аномально низкое количество нейтрофилов).

      Лейкоцитоз нейтрофилов (аномально высокое количество нейтрофилов).

      Лимфоцитопения (аномально низкое количество лимфоцитов).

      Лимфоцитарный лейкоцитоз (аномально высокое количество лимфоцитов).

    Наиболее распространенными являются расстройства нейтрофилов и лимфоцитов. Менее распространены отклонения, связанные с моноцитами и эозинофилами, реже встречаются проблемы, связанные с базофилами.

    Разрушение лейкоцитов

    Продолжительность жизни лейкоцитов, тромбоцитов и эритроцитов изучены достаточным образом, чего не скажешь о процессах их разрушения. Известно, что все виды белых клеток после некоторого периода циркуляции в крови попадают в ткани. Обратной дороги уже нет. В тканях они выполняют свою фагоцитарную функцию и гибнут. Важный вклад в изучение белых клеток крови и их свойств внесли Илья Мечников и Пауль Эрлих. Первый обнаружил и исследовал явление фагоцитоза, а второй вывел различные типы лейкоцитов. В 1908 году за эти достижения ученые вместе были удостоены Нобелевской премии.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

кровь эритроцит лейкоцит лимфоцит

Кровь - это ткань организма, относящаяся к группе опорно-трофических тканей. Но из-за своего агрегатного состояния её с лимфой нередко выделяют в отдельную группу тканей. Кровь и лимфа происходят в эмбриогенезе из одного источника - мезенхимных стволовых клеток, родоначальников гемопоэза.

Кровь выполняет две важнейшие функции в организме:

1) Транспортная. Кровь переносит газы (О 2 , СО 2), питательные вещества, гормоны, лекарства и многие другие вещества.

2) Защитная. Осуществляется за счет клеточных элементов, участвующих в макрофагальной защите, воспалительных реакциях и иммунитете.

Кровь на 65% состоит из плазмы - жидкой компоненты крови. Плазма состоит на 90% из воды, 6.6-8.5% из белков, среди которых выделяют белки-глобулины, альбумины, фибриногены, а также трофические белки, транспортируемые кровью. На долю остальных органических и неорганических (минеральных) соединений приходится 1,5-2,5%. Благодаря своему составу кровь поддерживает определенный гомеостаз. Напр., у здорового взрослого человека кислотность крови всегда находится в пределах рН = 7,34-7,36. 40-45% крови составляют форменные элементы: эритроциты, лейкоциты, тромбоциты [несмотря на наличие суффикса "-циты" тромбоциты не являются клетками - это остатки бывших клеточных структур, поэтому более правильно называть их кровяными пластинками].

Эритроциты (красные кровяные тельца)

Самые многочисленные форменные элементы крови. У мужчин 4,8-5,5*10(12) дм(3), у женщин 3,5-4,9*10(12) дм(3). Это количественное различие объясняется в основном андрогенами и большей мышечной массой у мужчин, для жизнедеятельности которой требуется больше кислорода.

Примерно 75% эритроцитов имеют диаметр 7-8 мкм , такие эритроциты называются нормоцитами. Если их размер меньше 6 мкм, то - микроцитами (их примерно 12.5%). Если больше 9 мкм - макроцитами (12,5%). Наличие большего процентного содержания микро- и/или макроцитов называется анизоцитозом. это свидетельствует о каком-либо заболевании крови.

Как правило, эритроциты имеют форму двояковогнутого диска. Однако, могут встречаться и другие формы эритроцитов; если они преобладают, то такое состояние называется пойкилоцитозом. У человека они не содержат ядра и органелл, а являются как бы мембранными мешочками, набитыми гемоглобином (95% сухой массы зрелого эритроцита).

Основным назначением эритроцитов является перенос газов (кислород, углекислота, при наличии - угарный газ), но также они транспортируют на поверхности своей мембраны многие БАВ (биологически активные вещества) иммуноглобин, гормоны. В лечебных целях их иногда "нагружают" лекарственными веществами, основываясь на знании рецепторов их цитолеммы (т.е., клеточной мембраны).

Жизненный цикл эритроцитов составляет около 120 суток. Образование и созревание их проходит в красном костном мозге, откуда они попадают в кровеносное русло и циркулируют без выхода за пределы просвета сосуда. После выработки своего ресурса эритроциты разрушаются в селезенки (поэтому ее называют "кладбищем эритроцитов").

Лейкоциты (белые кровяные тельца)

Их количество 3,5-9.0*10(9) дм(3), оно может зависеть от пола, возраста, экологии и других факторов.

Лейкоциты проходят три фазы:

1) в органах кроветворения (красный костный мозг и лимфогенная ткань);

2) циркуляция в крови (всего несколько часов):

3) тканевая после выхода из кровеносного русла (несколько суток, потом погибает).

Для некоторых клеток возможна рециркуляция - возврат в просвет сосудов.

Количество лейкоцитов в мазке крови описывается лейкоцитарной формулой.

Лейкоцитарная формула - это процентное отношение числа лейкоцитов одного вида к общему числу лейкоцитов, найденному в мазке [процент некоторых лейкоцитов даже меньше 1%, поэтому желательно подсчитывать, по крайней мере, 100 лейкоцитов]. Лейкоциты по наличию зернистости в цитоплазме подразделяются на две группы: 1) Зернистые (гранулоциты). Цитоплазма содержит мелкие пылевидные гранулы, плохо различимые при обычной микроскопии, содержащие большое количество ферментов (пероксидаза, щелочная фосфатаза и др.). Эти гранулы окрашиваются различными красителями, на этом основано их деление на:,

а) нейтрофильные; 49-75%

б) эозинофильные; 1-5%

в) базофильные

2) Незернистые (агранулоциты):

а) лимфоциты,

б) моноциты.

Для окраски используют азур-эозин (метод Романовского-Гимзы).

По степени дифференцировки нейтрофилы подразделяют на юные, палочкоядерные и сегментоядерные.

Сегментоядерные лейкоциты (45-70%) - зрелые нейтрофилы, ядро состоит из 3-5 сегментов, соединенных тонкими перемычками. В некоторых ядрах может быть вырост в виде барабанной палочки - конденсированная Х-хромосома. Наличие таких хромосом указывает, что кровь женская.

Палочкоядерные лейкоциты (1-3-5%) - более молодые клетки. Их ядро имеет $-образную форму, но часто встречаются и другие формы, напр., С-образная.

Юные лейкоциты, или мета-лейкоциты (0-0,5%). Имеют ядро бобовидной формы.

По соотношению этих форм в лейкоцитарной формуле судят о сдвиге вправо или сдвиге влево.

Сдвиг влево - преобладание юных и палочковидных - свидетельствует о раздражении красного костного мозга, сдвиг вправо - больше зрелых (сегментоядерных) и почти отсутствуют юные и палочковидные - говорит о подавлении лейкоцитопоэза. что является плохим прогностическим признаком. Так как все эти стадии имеют различные формы, то их относят к полиморфоядерным лейкоцитам.

Нейтпофильные лейкоциты составляют 50-75% (от числа лейкоцитов). Их размеры в мазке -10-12 мкм. Содержат мелкую пылевидную нейтрофильную зернистость.

Цикл развития составляет около 8 суток: кроветворная фаза - примерно 6 суток, сосудистая - 6-10 часов, тканевая фаза - около 2 суток. Нейтрофильный лейкоцит выходит за пределы сосуда, и. обладая положительным хемотаксисом, передвигается с помощью псевдоподий к очагу раздражения, где играет роль микрофага: фагоцитирует токсические вещества и микроорганизмы. Фагоцитарная активность нейтрофилов составляет 70-99%, фагоцитарный индекс (т.е. способность захватывать определенное число микроорганизмов)- 12-25.

Нейтрофилы образуют лейкоцитарный вал вокруг очага воспаления или выходят на поверхность эпителиального пласта в области стыков с целью защиты организма от поражения. В любом случае они погибают.

Эозинофильные лейкоциты (2-5%) имеют размеры в мазке 12-14 мкм. Окрашены слабооксифильно. В цитоплазме определяются крупные эозиноокрашенные гранулы (лизосомы), содержащие ряд БАВ, ферментов и других веществ, которые могут влиять на определенные клетки популяции. Имеют двулопастное ядро {по типу связки боксерских перчаток}. Жизненный цикл достигает 5-6 дней в органах кроветворения, 6 и менее в кровеносном русле, и несколько суток - тканевая фаза. Эозинофильные лейкоциты относятся к микрофагам, но они специализированны на поглощение комплексов антиген-антитело, которые образуются в ходе гуморального ответа на инородное вещество или в ходе аллергической реакции.

Количество эозинофилов увеличивается при гельминтных инвазиях, экземах, при детских инфекциях, особенно их число увеличивается в тех местах, где образуется наибольшее количество комплексов антитело-антиген, т.е. по ходу дыхательных путей и кишечника.

Базофильные лейкоциты (0-0.5%) во многом схожи с предыдущими, но отличаются содержащимися БАВ. Их размеры 11-13 мкм.

Жизненный цикл также складывается из трех фаз: кроветворная (в красном костном мозге) - 2-4 суток: сосудистая - несколько часов: тканевая - 10 часов и более. Цитоплазма оксифильная, ядро 5-образное, имеет несколько лопастей. В цитоплазме хорошо выражен лизосомальный аппарат, крупные базофильные гранулы, содержащие гистамин и гепарин, которые изменяют проницаемость стенок сосудов. Увеличение содержания базофильных лейкоцитов связано с тяжелыми систематическими поражениями или с интоксикациями.

Агранулоциты А. Лимфоциты

Составляют 25-35% в лейкоцитарной формуле. По размеру подразделяются на:

1) малые лимфоциты (4-6 мкм).

2) средние (7-8 мкм),

3) большие (до 14 мкм).

В периферической крови большие лимфоциты в норме не встречаются, они локализуются в отдельных органах (легких, печени, почках) и исполняют роль естественных киллеров дотимусовой природы (естественный убийца), которые отвечают за иммунитет в период до появления вилочковой железы в тех органах, где вероятность встречи с антигеном наиболее высока.

Лимфоциты имеют крупные округлые ядра. Цитоплазма в малых лимфоцитах видна в виде ободка вокруг ядра, а в крупных цитоплазма - больше. Иногда лимфоциты видны как фиолетовые шарики из-за того, что базофильная цитоплазма как бы сливается с ядром. В цитоплазме выявляются органеллы, лизосомальный аппарат, неспецифическая зернистость.

По функциональным особенностям все лимфоциты делят на три группы: 1) Т-лимфоциты, 2) В-лимфоциты,. 3) 0-лимфоциты [нуль-лимфоциты].

Т-лимфоциты

Тимус-зависимые лимфоциты, образуются в вилочковой железе. Самые распространенные лейкоциты (среди лимфоцитов 60-70%). По размеру относятся к средним лимфоцитам. Они подразделяются на классы:

1) Т-киллеры - эти лимфоциты имеют на своей мембране рецепторы клеточных антигенов, т.е. они распознают атипичные клетки ("чужие" и выродившиеся "свои", в том числе раковые и клетки трансплантата). Выделяют цитотоксические вещества, разрушающие цитолемму этой клетки. В образовавшиеся дефекты мембраны устремляется вода, которая буквально разрывает клетку. Т-киллеры ответственны за клеточный иммунитет, и за отторжение трансплантата.

2) Т-хэлперы способны только распознать антиген своими рецепторами, а затем "передать" его В-лимфрцитам. Т.о. Т-хелперы участвуют в гуморальном иммунитете. Также Т-хэлперы стимулируют превращение В-лимфоцитов в плазматические клетки в ответ на антигенный раздражитель, стимулирует выработку ими антител.

3) Т-супрессоры подавляют предыдущие две популяции (клетки иммунитета), что бывает необходимо, например, во время беременности [в этот момент Т-супрессоры вырабатываются плацентой).

4) Т-амплификаторы выполняют функцию своеобразных диспетчеров, следящих за взаимоотношениями среди всех разновидностей Т-лимфоцитов.

5) Т-лимфоциты памяти образуются в результате иммунного ответа, они несут информацию об уже встречавшихся антигенах, обеспечивая быструю иммунную реакцию при повторном воздействии этого антигена. Эти клетки долгоживущие, могут существовать десятки лет. Существованию именно этих клеток обязаны методы искусственной иммунизации - вакцинация и применение сывороток.

В-лимфоциты

Название произошло от фабрициевой сумки, впервые были обнаружены в выпячивании клоаки птиц (фабрициевой сумки) - гомологочервеобразного отростка человека.

Ответственны за гуморальный иммунный ответ. Они вырабатывают в процессе иммунного ответа антитела (специфические - иммуноглобулины, неспецифический - гамма-глобулин). Различают:

1) активированные В-лимфоциты. которые в процессе иммунного ответа превращаются в плазматические клетки, которые вырабатывают только антитела:

2) слабоактивированные В-лимфоциты. которые способны вырабатывать антитела, но остаются в кровеносном русле.

3) В-лимфоциты памяти - рециркулирующие лимфоциты: с кровью заносятся в ткани, затем переходят в лимфу, снова в кровь, такая циркуляция происходит в течение всей жизни клетки. При повторной встрече с антигеном они превращаются в лимфобласты ("омолаживаются"), которые пролиферируют, что приводит к быстрому образованию эффекторных лимфоцитов, действие которых направлено на конкретный антиген.

4) В-супрессоры.

Лимфоциты образуются в красном костном мозге, проходят в сосуды, попадают в тимус (полустволовые клетки), где они дифференцируются, и на их поверхности образуется определенный блок рецепторов, которыми можно распознавать некоторые антигены. В процессе дифференцировки они вырабатывают иммуноглобулин М, С, А, Е, Д.

0-лимфоциты

Составляют 5-10% числа лимфоцитов. К этой группе относят еще малодифференцированные, уже деструктурированные лимфоциты, либо лимфоциты с неизвестной функцией, а также стволовые клетки крови, натуральные киллеры. Среди всех лимфоцитов большие составляют примерно 5-6%.

Агранулоииты Б. Моноциты

Это лейкоциты размером 16-18 мкм, в мазке крови до 22 мкм. В лейкоцитарной формуле составляют 6-8%. Имеют костномозговое происхождение, проходя по сосудам, они завершают свою дифференцировку и превращаются в макрофаги (1-1,5 месяца). Покидая сосуды, образуют единую макрофагальную систему, которая состоит из отдельных популяций макрофагов в области предполагаемых ворот инфекции. Это макрофаги:

* дыхательных путей

* респираторного отдела

* плевры (плевральные макрофаги)

* брюшины (перитонеальные макрофаги)

* печени (купферовские клетки)

* соединительной ткани (гистиоциты)

* лимфоузлов

* селезенки

* костного мозга [условия стерильны, поэтому нет функции фагоцитоза]

* костной ткани (остеокласты)

* нервной ткани (микроглия)

Моноциты имеют крупное ядро, бобовидной или подкововидной формы. Цитоплазма слабобазофильна. В ней в большом количестве встречаются мезосомы, лизосомальный аппарат постепенно зреет.

Моноциты крови длительное время находятся в тканях (от 1 суток до нескольких лет), обычно это резидентные макрофаги.

Тромбоциты (кровяные пластинки)

На мазке располагаются группами по 6-12. Тромбоциты представлены частями разрушенных мегакариоцитов, которые в красном костном мозге контактируют со стенкой синусоидного комплекса, их отростки проникают в капилляр; постепенно клетка разрушается, и образуются тромбоциты. В нем выделяют гиаломер (часть гиалоплазмы) и грануломер, в котором определяется зернистость, т.е. остатки органелл (митохондрии, комплекс Гольджи). По степени зрелости выделяют пять групп тромбоцитов.

Тромбоциты ответственны за целостность стенки сосуда, но принимают участие в образовании тромба. Они могут переносить многие БАВ. Их приспосабливают для переноса лекарственных веществ.

На количество тромбоцитов влияет множество факторов. Одни из них - тромбоцитопоэтины, вырабатываемые селезенкой. Они уменьшают титр тромбоцитов, поэтому при резком снижении количества тромбоцитов практикуют удаление части селезенки.

Размещено на Allbest.ru

Подобные документы

    Кровь - жидкая ткань организма, состоящая из плазмы и взвешенных в ней клеток: лейкоцитов, эритроцитов и тромбоцитов. Свойства крови, транспортная, защитная, терморегуляторная функции. Антигенные характеристики эритроцитов, определяющих группы крови.

    презентация , добавлен 21.02.2016

    Общая характеристика крови, ее свойства (суспензионные, коллоидные, электролитные) и основные функции. Состав плазмы, строение эритроцитов и лейкоцитов. Факторы, обуславливающие разделение крови людей на группы. Особенности процесса кроветворения.

    реферат , добавлен 25.12.2012

    Внутренняя среда организма. Система крови. Основы гемопоэза. Физико-химические свойства крови, состав плазмы. Резистентность эритроцитов. Группы крови и резус-фактор. Правила переливания крови. Количество, виды и функции лейкоцитов. Система фибpинолиза.

    лекция , добавлен 30.07.2013

    презентация , добавлен 29.08.2013

    Объем крови в организме взрослого здорового человека. Относительная плотность крови и плазмы крови. Процесс образования форменных элементов крови. Эмбриональный и постэмбриональный гемопоэз. Основные функции крови. Эритроциты, тромбоциты и лейкоциты.

    презентация , добавлен 22.12.2013

    Анализ регуляторной, терморегуляторной, дыхательной, гомеостатической, питательной и защитной функций крови. Исследование форменных элементов крови. Химический состав тромбоцитов. Характеристика сферы действия лейкоцитов. Место лимфоцитов в системе крови.

    презентация , добавлен 27.01.2016

    Состав крови человека. Транспорт газов, питательных веществ и конечных продуктов метаболизма. Поддержка водного баланса в организме. Структура защитной системы. Клетки крови: эритроциты, лейкоциты, тромбоциты. Белки плазмы крови: образование, разрушение.

    презентация , добавлен 17.03.2013

    Сущность и основные элементы внутренней среды организма. Состав и функции крови, соотношение ее компонентов. Форма, строение и место образования эритроцитов, лейкоцитов и тромбоцитов. Схема движения лимфы, ее назначение. Характеристика тканевой жидкости.

    презентация , добавлен 02.10.2012

    Количество крови у животных. Кровяное депо. Состав крови. Плазма. Сыворотка. Строение, функции, количество. Количество эритроцитов в крови. Необходимое условие образования и созревания эритроцитов. Фолиевая кислота. Истинный и относительный эритроцитоз.

    реферат , добавлен 08.11.2008

    Функции антигенов эритроцитов, их химическая природа и факторы, влияющие на динамику действия. Современная классификация и типы, биологическая природа и значение в организме. Система антигенов эритроцитов Резус. Описание других антигенных систем крови.

Однако только лишь со слов пациента порой врач не может точно установить диагноз и назначить лечение. Чтобы получить полную картину происходящего, может быть назначен общий анализ крови и мочи. Оценив, есть ли показатели воспаления в крови и моче, можно точнее определить проблему и назначить лечение.

Роль крови

Наверное, все знают, насколько важную роль в человеческом организме играет кровь. Эта красная жидкость без преувеличения дает возможность жить. Кровь не только разносит по телу питательные вещества, но и помогает выводить токсины. Циркуляция ее играет ключевую роль в дыхании. Именно с помощью клеток крови переносится кислород к тканям и углекислый газ от них.

Кровь – неоднородная среда. Основу ее представляет плазма. Помимо витаминов и других веществ, в ней присутствуют основные форменные компоненты:

Для каждого компонента установлены нормальные показатели содержания в организме. Если есть какое-то воспаление, это сразу станет видно по результату анализа. Диагностически важную роль играют нейтрофилы (наиболее распространенный вид лейкоцитов), эритроциты и СОЭ.

Расшифровка анализа крови

Каждому хочется скорее узнать, что же происходит у него в организме. Конечно, зная нормальные показатели для каждого форменного элемента, можно понять, есть воспаление или нет.

Колебания уровня эритроцитов

Эритроциты – основной элемент крови, в ней таких клеток больше всего. Эти кровяные тельца имеют красный цвет и определяют оттенок крови. Основное значение эритроцитов – переносить кислород к клеткам и тканям. Эти элементы имеют двояковогнутую форму, благодаря чему их общая поверхность увеличивается и позволяет каждой клетке выполнять большую работу.

Очень важно, чтобы показатель эритроцитов всегда соответствовал норме. Его снижение может свидетельствовать о том, что в организме есть воспаление либо же пациент страдает от анемии или малокровия. Если эритроциты повышены, это значит, что молекулярный состав крови стал плотнее, возможно, из-за обезвоживания или онкологического заболевания.

На показатель эритроцитов также могут оказывать влияние такие факторы:

  • количество потребляемых витаминов;
  • отравление;
  • проблемы с сердцем и легкими;
  • употребление большого количества алкоголя;
  • снижение потребления жидкости.

Должны ли эритроциты присутствовать в моче? Нормой содержания этих частиц в моче принято считать 1-2 единицы.

Идеально, когда в моче эритроцитов нет вообще.

Если в моче эритроциты содержатся в большем количестве, это может свидетельствовать о серьезных проблемах с почками, сердцем или говорить о сниженном показателе свертываемости. Кровь в моче может появиться из-за травмы и при гинекологических проблемах. Всегда при выявлении отклонений от нормы требуется осмотр узкого специалиста.

Колебания уровня лейкоцитов

Лейкоциты – белые клетки крови. Эти элементы несут основную нагрузку в работе иммунной системы. При возникновении даже небольшого воспаления происходит быстрое изменение содержания лейкоцитов. Именно эти компоненты борются с различными возбудителями инфекций.

Существует несколько видов лейкоцитов. Их функции различаются между собой. Общее повышение лейкоцитов может быть связано с такими факторами:

  • обильный прием пищи;
  • послеоперационный период;
  • раковые болезни;
  • вакцинация;
  • менструации;
  • гнойные раны.

Уровень лейкоцитов обычно повышается у тех, кто страдает от гайморита, бронхита или плеврита. При аппендицитах обычно этот показатель также возрастает. Снижение лейкоцитов возможно при вирусных инфекциях, сезонной нехватке витаминов, приеме некоторых медикаментов, а также при системных заболеваниях иммунной системы. Не исключено, что человек с низкими показателями проживает в регионе с повышенной радиационной активностью.

Нейтрофилы – разновидность лейкоцитов, основные клетки в лейкоцитарной формуле. Чаще всего их повышение связано с работой иммунной системы и ее реакцией на проникновение в организм чужеродного объекта.

Нейтрофилы повышаются в следующих случаях:

  • инфекция;
  • травмы;
  • остеомиелит костей;
  • воспаление во внутренних органах, например, в щитовидной железе или в поджелудочной;
  • диабет;
  • вакцины;
  • онкология.

Нейтрофилы могут быть повышены и в том случае, если человеком в течение длительного периода принимались препараты, стимулирующие работу иммунной системы.

Сниженные нейтрофилы диагностируются после прохождения курса химиотерапии, при повышенных гормонах щитовидной железы, во время гриппа или другого инфекционного заболевания.

Нередко нейтрофилы снижаются на фоне таких «детских» болезней, как корь, ветрянка или краснуха. Подобная картина наблюдается и при вирусных гепатитах.

Колебания уровня тромбоцитов

Тромбоциты – самые маленькие форменные элементы. Они отвечают за способность крови свертываться. Внутри каждой такой клетки содержится вещество, которое выделяется в случае нарушения целостности сосуда и останавливает кровотечение. Образование тромбов обычно напрямую связано с этим компонентом крови.

Тромбоциты повышаются после операции по удалению селезенки. Кроме того, это может быть связано с онкологическим процессом, анемией, систематическим перенапряжением, с ревматическим заболеванием и эритремией.

Тромбоциты снижены при гемофилии, красной волчанке и некоторых вирусных заболеваниях. Причины, по которым тромбоциты могут быть ниже нормы, иногда кроются в болезнях крупных вен, сердечной недостаточности и приеме антигистаминных средств, антибиотиков и других медикаментов.

На что указывает СОЭ

Скорость оседания эритроцитов зависит как от внутренних проблем, так и от внешних факторов. Например, СОЭ может быть повышена при месячных и во время беременности, а снижена у младенцев. Если речь не идет о нормальных физиологических колебаниях показателя, его повышению содействуют такие процессы:

  • воспаление в дыхательной системе;
  • болезни десен и зубов;
  • инфаркт и сердечная недостаточность;
  • мочеполовые проблемы;
  • болезни желудка и кишечника;
  • опухоли, в том числе онкологические;
  • травмы;
  • системные заболевания.

Снижение СОЭ отмечается в следующих случаях:

Анализировать результаты лабораторных исследований должен только врач. Нельзя самостоятельно ставить себе диагноз и назначать лечение. Так можно нанести себе серьезный вред.

Информация дана только для общего ознакомления и не может быть использована для самолечения.

Не стоит заниматься самолечением, это может быть опасно. Всегда консультируйтесь с врачом.

При частичном или полном копировании материалов с сайта, активная ссылка на него обязательна. Все права защищены.

Эритроциты и лейкоциты

Эритроциты

Красные кровяные тельца, или, по-научному, эритроциты, доставляют вдыхаемый нами кислород от легких к клеткам тела. Помогает им в этом гемоглобин - иссиня-красный пигмент, содержащий железо. Вот как это происходит. В легких, где капиллярные сосуды особенно узкие и длинные, эритроцитам приходится буквально протискиваться сквозь них. Они прижимаются к стенкам капилляров, и лишь тончайший слой эпителия отделяет их от альвеол - легочных пузырьков, в которых заключен кислород. Этот слой не мешает железу гемоглобина захватывать кислород и, образуя с ним нестойкое соединение оксигемоглобин, снабжать кислородом красные кровяные тельца. При этом гемоглобин меняет свой цвет. То же происходит и с кровью: из темно-красной она, насытившись кислородом, становится ярко-алой. Теперь эритроциты разносят кислород по всему телу. С помощью кислорода клетки тела сжигают (окисляют) водород, добытый ими из пищи, превращая его в воду и вырабатывая АТФ. Попутно образуется углекислый газ. Часть его проникает в красные кровяные тельца. Большую же часть кровяная плазма доставляет в легкие, а оттуда углекислый газ при выдохе выводится наружу.

Нелегко обеспечить кислородом 100 трлн. клеток. Поэтому количество эритроцитов в крови человека очень велико: около 25 трлн. Если их вытянуть в цепочку, то ее длина составиткм - можно пять раз опоясать земной шар. Так же велика и общая площадь поверхности красных кровяных телец, участвующих в газообмене, - 3200 кв. м. Это площадь квадрата со стороной около 57 м.

Эритроциты живут очень недолго. Уже через четыре месяца они разрушаются (происходит это в основном в селезенке). Поэтому каждый день в костном мозге образуется более 200 млрд. новых красных кровяных телец.

Лейкоциты

Мы уже знаем, что эритроциты переносят кислород и углекислый газ. Мы убедились, что они содержат вещества, от которых зависит, какая группа крови у человека. Их родственники лейкоциты - так ученые именуют белые кровяные тельца - мало на них похожи. Выполняют они совсем другие задачи. Всюду, куда проникают возбудители заболеваний, немедленно собирается множество лейкоцитов. По капиллярам они пробираются в ткань, пораженную болезнью, и обрушиваются на врага. Начинается настоящая война.

Гранулоциты, как и остальные белые кровяные тельца, выполняют роль защитников организма, При инфекционном заболевании количество их резко возрастает. На этом рисунке видно, как гранулоцит-фагоцит нападает на палочковидную бактерию и я пожирает» ее, то есть захватывает бактерию, поглощает и переваривает ее.

Одни лейкоциты выделяют вещества, от которых вторгшиеся бактерии гибнут. Другие набрасываются на непрочных гостей, поглощают и переваривают их. В этой борьбе погибают и сами лейкоциты. Но их жертвы оправданны: погибшие лейкоциты источают вещества, которые приманивают их собратьев. К очагу заболевания устремляются другие белые кровяные тельца. Ряды бойцов, защищающих организм, смыкаются все плотнее. Наконец лейкоциты окружают очаг болезни. Они действуют, словно армия, берущая противника в кольцо. Это явление, называемое фагоцитозом, открыл в 1883 г. русский ученый Илья Ильич Мечников, один из основоположников микробиологии и иммунологии. Мечников назвал лейкоциты «пожирающими» - фагоцитами. Иногда из остатков уничтоженных клеток, бактерий и лейкоцитов образуется вязкая желтая жижа - гной. Позднее сами же лейкоциты расчищают место былого «сражения». Теперь понятно, почему в крови человека, инфицированного бактериями, количество белых кровяных телец резко увеличивается. Случается такое и после пересадки пациенту чужого - донорского - органа. Лейкоциты воспринимают инородную ткань как своего врага и пытаются во что бы то ни стало уничтожить ее. Поэтому пересадка органа часто оканчивается неудачей - организм отторгает его.

Известно несколько видов белых кровяных телец: гранулоциты, лимфоциты, моноциты. Различают их по форме и месту образования - в костном мозге и в лимфатических узлах. Роднит лейкоциты разных видов одно: все они защищают организм.

Также вам будет интересно

Человек

Эритроциты и лейкоциты

Детская энциклопедия «What This?» © 2009-2018

Показатели эритроцитов и лейкоцитов в анализе

Еще со школьных уроков биологии каждый человек знает, что в крови есть белые и красные тельца, что выполняют определенные функции. В медицине их называют эритроциты и лейкоциты. При полноценном здоровье человека их количественный состав находится в норме, но как только в организме происходит сбой они начинают повышаться или понижаться, в зависимости от заболевания, что имеет место. Определить малейшие отличия от нормы, может биохимический и общий анализ крови.

Процесс кроветворения

За процессы кроветворения в организме отвечает костный мозг. Все клетки образуются с гемоцитобластов. Кроветворные процессы четко координированы и имеют определенное соотношение. Контролируются эти процессы гормонами и витаминами, что поступают в организм с пищей. Если человек не получает в необходимом количестве какой-то витамин, к примеру, В12, то нарушаются процессы кроветворения. Снижение или повышение показателей отмечается также, если на организм воздействуют патологические факторы, к примеру, радиация, яды, токсические вещества, а также внутрь проникают бактерии и вирусы.

Все нарушения кроветворения четко отображаются в биохимическом анализе крови. Процедура осуществляется при диагностике абсолютно всех заболеваний. Проводится анализ в условиях стационара или поликлиники. Для исследования у пациента изымают кровь из периферической вены. Процедура практически безболезненна, но иногда может вызывать неприятные ощущения. Врач обматывает руку пациента жгутом, протирает кожу спиртом и делает прокол иглой. Изъятая кровь отправляется в пробирке на исследование. Расшифровка анализа осуществляется в сжатые сроки, как правило, результаты готовы уже на следующий день.

Особое внимание уделяется подготовке к сдаче анализа. Обязательно накануне обследования воздержаться от употребления пищи. Идеальным вариантом считается отказ от еды на протяжении 8 часов, поэтому большинство врачей рекомендуют сдавать кровь утром натощак. Нельзя курить и пить сладкие чаи накануне исследования. За три дня до прохождения анализа, нельзя употреблять медикаментозные препараты. Некоторые из них могу повлиять на исследование и исказить результаты.

Если у человека имеются хронические недуги, что требуют постоянной коррекции лекарствами, об этом нужно сообщить врачу. Он изучит список употребляемых лекарств и в индивидуальном режиме расскажет, от каких можно отказаться, а которые лучше оставить.

Биохимический анализ крови - это первая процедура, которая назначается при диагностике заболеваний, его назначают для контроля за действием медикаментозных препаратов, а также в целях профилактики для определения состояния здоровья человека. Биохимический анализ крови также проводят в процессе подготовки к оперативному вмешательству. Показатели анализа позволят врачам исключить возможные осложнения в процессе хирургической манипуляции.

Эритроциты в крови

Эритроциты и лейкоциты выполняют в организме человека очень важную функцию, к примеру, от эритроцитов напрямую зависит поставка кислорода от легких остальным клеткам тела. Происходит это следующим образом - эритроциты протискиваются по капиллярным сосудам легких, вплоть до альвеол, но стенки сосудов очень узкие и полностью пройти эритроциты не могут, помогают им в этом гемоглобин. Эти клетки содержат в своем составе железо, а оно может дотянуться до легочных пузырьков, в которых содержится кислород. Гемоглобин образует с ним нестойкое соединение оксигемоглобин. Далее клетка гемоглобина меняет свой цвет и это же происходит с кровью, что насытиться кислородом - из темной она становится ярко алой. Эритроциты разносят кислород по всему телу и клетки с его помощью сжигают водород, полученный вместе с пищей. Отработанный углекислый газ отправляется в легкие, откуда с человеческим выдохом выводится наружу.

Очень сложно обеспечить кислородом 10 триллионов клеток, поэтому эритроцитов должно быть очень много, примерно 25 триллионов. Ученые теоретики утверждают, что если вытянуть эритроциты из организма и сложить в цепочку, то ими можно пять раз обмотать земной шар, ведь их длина составит примернокм. Ежедневно в костном мозге вырабатывается больше 200 млрд. эритроцитов, чтобы поддерживать полноценную жизнеспособность человека. Длительность жизни эритроцитов небольшая, они, как правило, саморазрушаются чрез 4 месяца в селезенке.

Эритроциты и лейкоциты в крови имеют определенные нормы, часто показатели могут отличаться для разных возвратных категорий. Количество эритроцитов для женщин в нормальном состоянии примерно 3,4-5,1 ×10 12 /л, у мужчин 4,1-5,7×10 12 /л, в детском возрасте 4-6,6×10 12 /л. Любые отклонения от этих показателей могут свидетельствовать о нарушениях в работе костного мозга и процессах кроветворения. Высокое содержание в крови эритроцитов может свидетельствовать о таких заболеваниях, как:

  • воспаление бронхов;
  • ларингит;
  • пневмония;
  • пороки сердечной мышцы;
  • эритремия;
  • болезнь Аэрза;
  • дифтерия;
  • коклюш;
  • онкологические образования в почках, печении гипофизе.

Требуется отметить, что повышенные эритроциты и лейкоциты могут наблюдаться при длительном пребывании в горах, там повышается выработка клеток костным мозгом из-за повышения давления в воздухе. Иногда, человек может даже ощущать приступ отдышки без физических нагрузок и нехватку воздуха. На показатели эритроцитов может влиять обезвоживание организма, что не редко отмечается при диарее и нарушении питьевого режима. Понижены эритроциты могут быть вследствие анемии. При низких показателях эритроцитов врач может диагностировать такие заболевания как:

  • микседема;
  • наличие кровотечения во внутренних органах;
  • цирроз;
  • гемолиз;
  • новообразования в костном мозге или метастазы в нем;
  • инфекционные заболевания;
  • нехватка витамина В и фолиевой кислоты.

В добавок к вышеперечисленным патологическим процессам можно отнести и период беременности, при котором постоянно отмечается пониженное число эритроцитов. В процессе вынашивания ребенка, это является нормой и существенной лечебной коррекции не требует, достаточно правильного питания и витаминотерапии.

Лейкоциты в крови

В костном мозгу помимо эритроцитов вырабатываются белые кровяные тельца – лейкоциты. Они в организме выполняют защитную функцию и являют собой иммунную систему человека. При малейшем повреждении кожи, внутренних органов или проникновении бактерий, лейкоциты первыми бросаются в бой и устраняют чужеродные микроорганизмы. В своем составе лейкоциты имеют несколько групп клеток, которые тоже принимают, участие в борьбе с чужеродными агентами, но отличаются по-своему действию - одни выделяют специальное вещество, что убивает бактерии, а другие поглощают антиген и погибают вместе с ними.

Такая «самоотверженность» клеток оправдана, ведь человек таким образом избавляется от заболевания. Погибнув, клетка раскладывается, но выделяет вещество, что заманивает остальные лейкоциты, которые продолжают бороться с недугом или чужеродным агентом. Вследствие этого при сдаче анализов любое повышение лейкоцитов говорит о патологических процессов в организме.

Повышены лейкоциты могут быть также при пересадке нового органа, человеческий организм не принимает чужеродный объект и изначально пытается от него избавиться. Очень интересным фактом является то, что, когда животное чувствует опасность в его крови повышается количество лейкоцитов. Организм таким образом готовит себя к возможной необходимости защищаться. Этот инстинкт присутствует у человека, когда человек подвергает себя большим физическим нагрузкам, эмоциональным переживания, а также испытывает страх, в организме повышается содержание лейкоцитов.

Норма лейкоцитов в крови обусловливается содержанием оптимального количества всех составляющих клеток. Лейкоцитарная формула включает такие показатели, как нейтрофилы – нацелены на уничтожение бактериальной микрофлоры, их норма в составе крови должна быть 55%; моноциты – выполняют функцию поглощения чужеродных агентов, что окажутся в крови, количество моноцитов должно быть 5%; эозинофилы – вступают в борьбу с аллергенами и составляют 2,5%.

В целом количество лейкоцитов отличается в зависимости от возраста и пола человека:

  • Новорожденные до 3 дней - от 7 до 32 × 10 9 Ед/л;
  • Дети до года - от 6 до 17,5 × 10 9 Ед/л;
  • 1 - 2 года - от 6 до 17 × 10 9 Ед/л;
  • 2 - 6 лет - от 5 до 15,5 × 10 9 Ед/л;
  • лет - от 4,5 до 13,5 × 10 9 Ед/л;
  • го года - от 4,5 до 11 × 10 9 Ед/л;
  • взрослые мужчины - от 4,2 до 9 × 10 9 Ед/л;
  • взрослые женщины - от 3,98 до 10,4 × 10 9 Ед/л;
  • пожилые мужчины - от 3,9 до 8,5 × 10 9 Ед/л;
  • пожилые женщины - от 3,7 до 9 × 10 9 Ед/л.

Что такое значит повышенное количество лейкоцитов, известно немногим, в медицине это состояние называют лейкоцитозом, чаще им болеют пожилые люди из-за сниженного иммунитета. Повышенные лейкоциты могут свидетельствовать о:

  • инфекционных заболеваниях;
  • бактериальных инфекциях;
  • отите;
  • гнойных процессах в организме;
  • травмах и перенесенных операциях;
  • ожогах и обморожениях;
  • вирусных инфекциях;
  • воспалениях кишечника;
  • кровопотере;
  • инфаркте миокарда;
  • лейкозах;
  • мононуклеозе;
  • почечной недостаточности.

Повышены лейкоциты могут быть и при других заболеваниях, задачей врача является сопоставление симптомов пациента, результатов анализа крови и показателей, полученных в процессе ультразвукового обследования.

Лейкоциты понижены могут быть в случае нехватки витаминов группы В, фолиевой кислоты, а также железа и меди. Облучение, а также аутоиммунные заболевания, что остаются без должного лечения тоже могут спровоцировать понижения лейкоцитов. В целом, при низких показателях лейкоцитов врач может сделать выводы о плохом состоянии иммунных сил.

Как бороться с плохими показателями?

Для того чтобы нормализовать показатели биохимического анализа крови, человек должен пройти соответствующую терапию. Повысить низкие эритроциты в крови, можно увеличив количество железосодержащих продуктов в своем рационе, к ним относят:

Показано употребление повышенного количества витамина С и А, их можно приобрести в аптеках или же употреблять вместе с пищей. Если диета и отказ от вредных привычек не дает результат, назначают переливание крови. В редких случаях необходима пересадка костного мозга, который перестал продуцировать эритроциты пациенту. Если эритроциты снижаются слишком резко, в некоторых ситуациях рекомендовано удаление селезенки, так как именно она разрушает красные кровяные тельца. Чтобы снизить процессы уничтожения рекомендовано удаление органа.

Повышенное количество эритроцитов будет лечиться в зависимости от заболевания, что его спровоцировало, требуется детальная диагностика. Если отклонений не будет обнаружено, то понизить количество эритроцитов в крови поможет качественный питьевой режим. Порой хлорированная вода, что часто находится в трубопроводах многоэтажных зданий, является причиной повышенного количества эритроцитов.

Если имеют место пониженные лейкоциты, то назначают диетическое питание с повышенным количеством фолиевой кислоты, а также препараты Пентоксил, Лейкоген, Метилурацил. Сниженное количество лейкоцитов делает человека беззащитным перед множеством заболеваний. Именно поэтому, вся терапия будет нацелена на укрепление иммунитета. В домашних условиях хорошо помогает повысить количество лейкоцитов отвар из ячменя.

Что касается повышенных лейкоцитов, то лечить их не стоит, так как они не являются причиной, а есть следствием ситуации. Врач обязан обнаружить патологический процесс, что вызвал повышенное содержание лейкоцитов в организме и начать терапию больного органа. Есть ряд случаев, когда имеет место повышенное количество лейкоцитов, после перенесенного недуга или оперативного вмешательства, это считается нормой до определенного времени. Если ситуация не проходит, то проводят процедуру аппаратного очищения кровяной плазмы от лейкоцитов.

Требуется отметить, что на основе одного только анализа крови, достаточно сложно поставить диагноз, поэтому если у вас имеются плохие показатели, не удивляйтесь если вас отправят на дополнительную диагностику. Современная медицина уже хорошо научилась справляться с дисбалансом важных ферментов в крови, поэтому легко может нормализовать показатели. Очень важно своевременно пройти обследование и обратиться за помощью. Изменение состава крови - это первый признак патологических процессов в организме и своевременная диагностика поможет оградить пациента от множества заболеваний.

Эритроциты, лейкоциты, тромбоциты

В переводе с греческого это «красные клетки», самые многочисленные клетки крови, у взрослого человека их примерно 25 триллионов. Количество эритроцитов в крови меняется, например, при недостатке кислорода, в разреженном горном воздухе или при физических нагрузках оно увеличивается.

По форме эритроцит представляет собой двояковогнутый диск – такая форма значительно увеличивает его поверхность, кислород быстро и равномерно поступает в клетку. Эритроциты к тому же эластичны, благодаря чему проникают даже в самые мелкие капилляры. Живет эритроцит недолго – от 100 до 125 дней. Образуется он в красном костном мозге, а разрушается в селезенке.

Примерно на треть клетка эритроцита состоит из гемоглобина, сложного соединения, состоящего из белка (глобина) и двухвалентного железа (гема). Гемоглобин содержится только в эритроцитах и в свободном состоянии в крови здоровых людей отсутствует.

В каждом эритроците содержится примерномолекул гемоглобина. Благодаря своему строению гемоглобин является идеальным транспортным средствам для газов. В капиллярах легких к нему присоединяются молекулы кислорода, эритроцит приобретает ярко-красный цвет. Отдав кислород клеткам, гемоглобин присоединяет молекулы углекислого газа, меняя свой цвет на темно-красный.

Помимо переноса кислорода и углекислого газа, эритроциты транспортируют также аминокислоты, липиды, белки, помогают организму освободиться от различных ядов, которые образуются в результате обмена веществ и жизнедеятельности микроорганизмов. Эритроциты участвуют и в поддержании кислотно-щелочного, ионного равновесия, и в свертывании крови.

Эритроциты очень чувствительны к изменению химического состава плазмы, и в некоторых случаях происходит их преждевременное разрушение, называемое гемолиз. Это случается при увеличении в плазме концентрации хлористого натрия, под воздействием эфира, хлороформа. Чувствительны эритроциты и к температурному режиму, поэтому при переохлаждении или перегреве организма они разрушаются в первую очередь. Гемолиз происходит также при переливании несовместимой крови, при нарушениях иммунной системы, под действием ядов змей, пчел.

Размеры и форма эритроцитов. Анизоцитоз – гетерогенность выборок эритроцитов в мазках периферической крови по размеру клетки. В норме преобладают нормоциты с диаметром 7,8 мкм (68 ± 0,4 %).

Среди патологических клеток встречаются микроциты (< 6,5 мкм), макроциты (8,9 мкм) и мегалоциты (> 12 мкм).

Истории наших читателей

В норме доля микроцитов и макроцитов составляет 15,3 ±0,4 % и 16,7 ±0,5 %; мегалоцитов в норме не бывает.

СЕНСАЦИЯ! Врачи ошарашены! АЛКОГОЛИЗМ уходит НАВСЕГДА! Нужно всего лишь каждый день после еды. Читайте далее->

Наряду с этим в мазках крови можно встретить эритроциты вытянутой, грушевидной, овальной, веретинообразной и других форм (пойкилоцитоз).

Ряд обратимых пойкилоцитов (в норме не более 3 %, что связано со старением клеток) включает эхиноциты, т.е. зубчатые клетки, и стоматоциты с центральным просветлением в виде рта.

Необратимо измененные эритроциты подразделяются на 6 групп:

Наша постоянная читательница поделилась действенным методом, который избавил ее мужа от АЛКОГОЛИЗМА. Казалось, что уже ничего не поможет, было несколько кодирований, лечение в диспансере, ничего не помогало. Помог действенный метод, который порекомендовала Елена Малышева. ДЕЙСТВЕННЫЙ МЕТОД

  1. Микроциты, лептоциты (тонкие клетки с обычным диаметром), анулоциты (широкое просветление) и макроциты.
  2. Серповидные.
  3. Плантоциты (увеличен диаметр, но не объем) мишеневидные, акантоциты без просветления с многочисленными шипами и каплевидные.
  4. Ксероциты, уплотненные, неправильной формы.
  5. Сфероциты (трансформация эхиноцитов, акантоцитов и стоматоцитов), овалоциты.
  6. Укушенные клетки и шизоциты.

Регенеративные изменения циркулирующих эритроцитов. К регенеративным формам эритроцитов относятся незрелые элементы эритропоэза – ядросодержащие эритроциты: нормобласты и мегалобласты, а также эритроциты с включениями ядерного или цитоплазматического происхождения.

В число первых входят тельца Жолли (Гоуэла) – одно или два мелких темно-фиолетовых включения (редко обнаруживаются в единичных эритроцитах здоровых людей, хотя при раздражении эритрона частота маркированных ими эритроцитов колеблется от 1 до 5 %).

В число вторых – базофильная пунктация (рассеянные по поверхности эритроцита и связанные с РНК-содержащими органеллами гранулы темного цвета) и сидеросомы, выявляемые реакцией с берлинской лазурью включения негемоглобинового железа в эритробластах (сидеробластах) и в эритроцитах (сидероцитах).

Неэффективный эритропоэз. Неэффективный эритропоэз обусловлен тем, что часть эритробластов и нормобластов (обычно не более 3-8 %) не завершает цикл дифференцировки и разрушается в костном мозге.

В норме этот процесс является одним из физиологических механизмов регуляции равновесия в системе эритрона при постоянно меняющейся потребности организма в эритроцитах. При изменении условий жизнедеятельности костномозговая продукция эритроцитов увеличивается или уменьшается в зависимости от потребности организма.

Неполноценные, обреченные на разрушение в костном мозге эритронормобласты накапливают полисахариды (выявляются ШИК-реакцией), что при патологических состояниях превышает нормальные для здорового человека значения и может проявляться на всех стадиях дифференцировки эритроидных клеток.

Для образования полноценных эритроцитов в организме должно быть:

– 3,7 г активного железа, 70 % которого связывается гемоглобином, а почти все остальное сохраняется ферритином;

– 3-5 мг витамина В12 (кобаламин инициирует транскрипцию эритропоэтина);

– 2,5 ЕД/мл эритропоэтина.

Факторы контроля эритропоэза. Основным стимулирующим эриропоэз фактором является гипоксия.

Считается, что наблюдаемое при этом снижение уровня кислорода в специфических сенсорных клетках корковой части почек (область наиболее низкого давления кислорода) усиливает продукцию простагландинов в клетках клубочков почек и одновременное высвобождение нейтральных протеаз и лизосомных гидролаз. Все вместе стимулирует продукцию эритропоэтина (ЭП). Биосинтез эритропоэтина стимулируют также гормоны гипоталамо-гипофизарной системы, щитовидной железы и некоторые стероидные гормоны. Ген ЭП расположен на длинном плече хромосомы 7. Чувствительными к ЭП являются проэритробласты и эритробласты, которые несут на своей поверхности рецепторы к гормону. По мере дальнейшей дифференцировки в эритроне число таких рецепторов на клетках падает.

Лейкоциты

Эти клетки называют еще белыми кровяными тельцами. Их содержание в крови значительно меньше, примерно 60 млрд. Содержание лейкоцитов в крови взрослого человека может изменяться под влиянием самых различных факторов. Например, после еды возникает пищеварительный лейкоцитоз и количество лейкоцитов значительно повышается.

По внешнему виду и строению выделяют две основные группы лейкоцитов:

Зернистые (гранулоциты), содержащие в цитоплазме мелкие зерна. В зависимости от окраски, в которую гранулы лейкоцитов окрашиваются при лабораторных исследованиях, выделяют базофилы (окрашиваются щелочными красителями), нейтрофилы (нейтральными красителями) и эозинофилы (кислыми красителями);

В крови существует определенное соотношение лейкоцитов – лейкоцитарная формула, которая указывается в листочке с результатами анализа крови. По ее изменениям специалист может судить о процессах, проходящих в организме. Изменяется лейкоцитарная формула и с возрастом. В крови маленького ребенка лимфоцитов больше, чем нейтрофилов, где-то к 6 годам их количество выравнивается, а затем постепенно нейтрофилы начинают превалировать над лимфоцитами.

Какую роль играют лейкоциты? Основная их задача – защита. Благодаря своему строению они поглощают и уничтожают чужеродные элементы – бактерии, вирусы, токсины. Это явление, открытое И.И. Мечниковым, получило название фагоцитоза, а сами клетки – фагоцитов.

Каждый из лейкоцитов выполняет свои четкие задачи. Нейтрофилы – это наиболее являются наиболее активными фагоцитами, один нейтрофил способен поглотитьмикробов. Также они участвуют в рассасывании и переваривании погибших клеток крови, в очистке организма от омертвевших тканей. Лимфоциты и моноциты захватывают внедрившиеся бактерии и микробы, а также разрушенные нейтрофилы и поглощают их.

Эозинофилы участвуют в транспортировке особого вещества – гистамина, избыток которого вызывает аллергию. Повышенное содержание эозинофилов в крови как раз указывает на аллергическую реакцию в организме. Базофилы, также участвуя в регуляции уровня гистамина, кроме этого играют свою роль в свертывании крови.

Тромбоциты

Тромбоциты – самые мелкие клетки крови. Их основная задача – участие в свертывании крови, точнее, в образовании тромба, который подобно пробке закрывает просвет в стенке сосуда и предотвращает отток крови из организма.

Образование тромбоцитов – клеток, в совокупности с другими факторами обеспечивающих свертывание крови, осуществляется посредством мегакариоцитопоэза. Первыми в этом ряду гемопоэза стоят мегакариобласты, затем – мегакариоциты, в результате отшнуровки цитоплазмы которых и возникают тромбоциты.

Происхождение тромбоцитов из цитоплазмы мегакариоцитов доказано иммунологическими, радиоизотопными методами и подтверждено как прямым наблюдением, так и цейтраферной киносъемкой.

Факторы контроля мегакариоцитопоэза. Образование клеток-предшественников мегакариоцитопоэза осуществляется по общему для всех гранулоцитов принципу: избыток тромбоцитов в кровеносном русле тормозит мегакариоцитопоэз, тромбоцитопения – стимулирует (через тромбоцитарный кейлон).

Регуляцию продукции тромбоцитов осуществляет тромбопоэтин, молекулярная масса которого равнакДа, а период полужизни –ч. Рецепторы к тромбопоэтину (c-mpl) выявляются на тромбоцитах, мегакариоцитах и на небольшом количестве клеток-предшественников.

Наиболее быстрый путь увеличения числа тромбоцитов – заключительный эндомитоз мегакариоцитов. Закономерности вызревания мегакариоцитов, как выяснено экспериментально, состоят в том, что оно ускоряется при усиленной регенерации, например, после кровопотери, и замедляется в условиях дефицита витаминов, пищевых ингредиентов или при воздействии антитромбоцитарных антител, химиотерапии. Восстановившийся костномозговой резерв мегакариоцитов по принципу обратной связи замедляет темпы пролиферации клеток в ростке.

В цитоплазме зрелых мегакариоцитов всегда содержатся вполне зрелые тромбоциты, у которых, однако, отсутствует широкий рыхлый слой наружной мембраны (гликокаликс). Именно уникальная способность деления ядра в морфологически зрелой цитоплазме мегакариоцита, т. е. заключительный эндомитоз, завершает формирование гликокаликса и делает тромбоциты полноценными.

В образовании тромба кроме тромбоцитов участвует белок фибрин. Его нити, выпадая в осадок, образуют в поврежденной стенке сосуда густую сеть, которая преграждает путь крови. В эту сеть загоняются также, кроме тромбоцитов, эритроциты и лейкоциты. Образуется сгусток, и кровотечение прекращается. После того как начинается восстановление поврежденных тканей, тромб постепенно рассасывается, фибрин растворяется (фибринолиз).

Процесс свертывания крови в слабовыраженной степени происходит постоянно даже в неповрежденных сосудах. Это необходимо для образования на внутренней поверхности сосудов фибриновой пленки, которая препятствует выходу эритроцитов и белков плазмы крови из сосудов. Чтобы пленка не заполнила весь просвет сосуда, свертывание крови постоянно сопровождается фибринолизом.

Активность и количество тромбоцитов в крови очень сильно зависят от состояния здоровья. Плохо как пониженное их количество, так и повышенное.

В первом случае нарушается процесс свертывания крови. Это случается, например, при апластической анемии.

Избыток тромбоцитов повышает риск инфаркта и инсульта, он может сигнализировать о некоторых инфекционных заболеваниях, например, лихорадке Денге, переносимой комарами. Поэтому очень важно регулярно сдавать анализы крови для контроля над тромбоцитами.

Вылечить алкоголизм невозможно.

  • Испробовано множество способов, но ничего не помогает?
  • Очередное кодирование оказалось неэффективным?
  • Алкоголизм разрушает вашу семью?

Кровь и лимфа - это ткани внутренней среды организма, они является разновидностью соединительной ткани.

Функции крови делятся на:

  • транспортная;
  • трофическая;
  • дыхательная;
  • защитная;
  • экскреторная;
  • регуляция гомеостаза.

Составные компоненты крови:

  • клетки - форменные элементы;
  • жидкое межклеточное вещество - плазма крови.

Классификация форменных элементов:

эритроциты;

тромбоциты;

лейкоциты.

Качественный состав крови (анализ крови) определяется такими понятиями как гемограмма и лейкоцитарная формула .

Гемограмма - количественное содержание форменных элементов крови в одном литре или одном миллилитре.

Гемограмма взрослого человека:

  1. эритроцитов:
  • у женщины - 3,7-4,9 млн в литре;
  • у мужчины - 3,9-5,5 млн в литре;
  • тромбоцитов 200-400 тыс. в литре;
  • лейкоцитов 3,8-9,0 тыс. в литре.

Эритроциты преобладающая популяция форменных элементов крови.

Морфологические особенности эритроцитов

  • не содержит ядра;
  • не содержит большинства органелл;
  • цитоплазма заполнена пигментным включением - гемоглобином: гемжелезо, глобин-белок.

Размеры эритроцитов:

  • Нормоциты 7,1-7,9 мкм (75 %);
  • Макроциты больше 8 мкм (12,5 %);
  • Микроциты меньше 6 мкм (12,5 %).

Форма эритроцитов:

  • двояковогнутые диски - дискоциты (80 %);
  • остальные 20 % составляют сфероциты, планоциты, эхиноциты, седловидные, двуямочные, стоматоциты.

По насыщенности гемоглобином эритроциты различаются:

  • нормохромные;
  • гипохромные;
  • гиперхромные.

Различают две формы гемоглобина

  • гемоглобин А;
  • гемоглобин F - фетальный.

Функции эритроцитов

  • Дыхательная - транспорт газов (О2 и СО2);
  • транспорт других веществ, абсорбированных на поверхности цитолеммы (гормонов, иммуноглобулинов, лекарственных веществ, токсинов и других).

Тромбоциты или кровяные пластинки

Представляют собой фрагменты цитоплазмы особых клеток красного костного мозга -мегакариоцитов.

Составные части тромбоцита:

  • Гиаломер - основа пластинки, окруженная цитолеммой;
  • Грануломер - зернистость, представленная специфическими гранулами, а также фрагментами зернистой эндоплазматической сети, рибосомами, митохондриями и другими.

Размеры тромбоцитов - 2-3 мкм, форма округлая, овальная, отростчатая. По степени зрелости тромбоциты подразделяются на:

  • юные;
  • зрелые;
  • старые;
  • дегенеративные;
  • гигантские.

Продолжительность жизни тромбоцитов - 5-8 дней. Функции тромбоцитов: участие в механизмах свертывания крови посредством склеивания пластинок и образования тромба, разрушения пластинок и выделения одного из многочисленных факторов, способствующих превращению глобулярного фибриногена в нитчатый фибрин.

Лейкоциты

или белые кровяные тельца, ядерные клетки крови, выполняющие защитную функцию. Содержатся в крови от нескольких часов до нескольких суток, а затем покидают кровяное русло и проявляют свои функции в основном в тканях. Лейкоциты представляют собой неоднородную группу и подразделяются на несколько популяций. Классификация лейкоцитов основана на:

  • содержании гранул в цитоплазме;
  • отношении к красителям по тинкториальным свойствам;
  • степени зрелости клеток данного типа;
  • морфологии и функции клеток;
  • размера клеток.

Классификация лейкоцитов:

1.зернистые (гранулоциты)- нейтрофилы (65-75 %): юные (0-0,5 %); палочкоядерные (3-5 %); сегментоядерные (60-65 %);

эозинофилы (1-5 %);

базофилы (0,5-1,0 %);

2. незернистые (агранулоциты):

лимфоциты (20-35 %): Т-лимфоциты; В-лимфоциты;

моноциты (6-8 %).

Лейкоцитарная формула

Это процентное соотношение различных форм лейкоцитов (к общему числу лейкоцитов - 100 %). В таблице классификации лейкоцитов представлена лейкоцитарная формула здорового организма.

Функции нейтрофилов

  • фагоцитоз бактерий;
  • фагоцитоз иммунных комплексов (антиген-антитело);
  • бактериостатическая и бактериолитическая;
  • выделение кейлонов и регуляция размножения лейкоцитов.

Функции эозинофилов

участвуют в иммунологических (аллергических и анафилактических) реакциях, угнетают (ингибируют) аллергические реакции посредством нейтрализации гистамина и серотонина несколькими способами:

  • фагоцитируют гистамин и серотонин, выделяемые базофилами и тучными клетками, а также адсорбируют эти биологически активные вещества на цитолемме;
  • выделяют ферменты, расщепляющие гистамин и серотонин внеклеточно;
  • выделяют факторы, препятствующие выбросу гистамина и серотонина базофилами и тучными клетками;
  • способны фагоцитировать бактерии, но в незначительной степени.

Базофилы

Это наименьшая популяция лейкоцитов (0,5-1 %), однако в общей массе в организме их огромное количество. Размеры в мазке 11-12 мкм. Морфологические особенности базофилов:

  • крупное слабо сегментированное ядро;
  • в цитоплазме содержатся крупные гранулы, окрашивающиеся основными красителями, метахроматично, за счет содержания в них гликозоаминогликанов - гепарина, а также гистамина, серотонина и других биологически активных веществ;
  • другие органеллы развиты слабо.

Функции базофилов заключают в участии в иммунных (аллергических) реакциях посредством выделения гранул (дегрануляции)и содержащихся в них вышеперечисленных биологически активных веществ, которые и вызывают аллергические проявления (отек ткани, кровенаполнение, зуд, спазм гладкой мышечной ткани и другие). При встрече с антигенами (аллергенами) некоторые В-лимфоциты и плазмоциты вырабатывают иммуноглобулины Е, которые адсорбируются на цитолемме базофилов и тучных клеток. При повторной встрече базофилов с тем же антигеном на их поверхности образуются комплексы антиген-антитело , которые вызывают резкую дегрануляцию и выход в окружающую среду гистамина, серотонина, гепарина. Базофилы также обладают способностью фагоцитоза , но это не основная их функция.

Агранулоциты

По функциям:

  • а) В-лимфоциты и плазмоциты обеспечивают гуморальный иммунитет - защиту организма от чужеродных корпускулярных антигенов (бактерий, вирусов, токсинов, белков и других);
  • б) Т-лимфоциты по выполняемым функциям подразделяются на киллеров, хелперов, супрессоров.

Моноциты это наиболее крупные клетки крови (18-20 мкм), имеющие круглое бобовидное или подковообразное ядро и хорошо выраженную базофильную цитоплазму, в которой содержатся множественные пиноцитозные пузырьки, лизосомы и другие общие органеллы. По своей функции моноциты являются фагоцитами . Моноциты являются не вполне зрелыми клетками. Они циркулируют в крови 2-е суток, после чего покидают кровеносное русло, мигрируют в разные ткани и органы и превращаются в различные формы макрофагов, фагоцитарная активность которых значительно выше моноцитов. Моноциты и образующиеся из них макрофаги объединяются в единую макрофагическую систему или мононуклеарную фагоцитарную систему (МФС).

Возрастные особенности крови

У новорожденных:

  • эритроцитов 6-7 млн в 1 л (эритроцитоз);
  • лейкоцитов 10-30 тыс. в 1 л (лейкоцитоз);
  • тромбоцитов 200-300 тыс. в 1 л, то есть как у взрослых.

Через 2 недели содержание эритроцитов снижается к показателям взрослых (около 5 млн в 1 л). Через 3-6 месяцев число эритроцитов снижается ниже 4-5 мл в 1 л - это физиологическая анемия, а затем постепенно достигает нормальных показателей к периоду полового созревания. Содержание лейкоцитов у детей через 2 недели снижается до 9 15 тыс. в 1 л и к периоду полового созревания достигает показателей взрослых.

Лейкоцитарная формула у новорожденных детей

Наибольшие изменения в лейкоцитарной формуле отмечаются в содержании нейтрофилов и лимфоцитов. Остальные показатели существенно не отличаются от показателей взрослых.

Классификация лейкоцитов

Сроки развития:

  1. Новорожденные:
  • нейтрофилы 65-75 %;
  • лимфоциты 20-35 %;
  1. 4-е сутки - первый физиологический перекрест:
  • нейтрофилы 45 %;
  • лимфоциты 45 %;

III. 2 года:

  • нейтрофилы 25 %;
  • лимфоциты 65 %;
  1. 4 года - второй физиологический перекрест:
  • нейтрофилы 45 %;
  • лимфоциты 45 %;
  1. 14-17 лет:
  • нейтрофилы 65-75 %;
  • лимфоциты 20-35 %.

По качественному составу лимфа подразделяется на:

  • периферическую лимфу - до лимфатических узлов;
  • промежуточную лимфу - после лимфатических узлов;
  • центральную лимфу - лимфа грудного протока.

В области лимфатических узлов происходит не только образование лимфоцитов, но и миграция лимфоцитов из крови в лимфу, а затем с током лимфы они снова попадают в крови и так далее. Такие лимфоциты составляют рециркулирующий пул лимфоцитов .

Функции лимфы:

  • дренирование тканей;
  • обогащение лимфоцитами;
  • очищение лимфы от экзогенных и эндогенных веществ.
Loading...Loading...