Животные в пищевой цепи выполняют функцию потребителей. Пищевая цепь: примеры. Как образуется пищевая цепь

  • Вопрос 11. Живое вещество. Назовите и охарактеризуйте свойства живого вещества.
  • Вопрос 12. Живое вещество. Функции живого вещества.
  • Вопрос 13. С какой функцией живого вещества связывают Первую и Вторую точку Пастера.
  • Вопрос 14. Биосфера. Назовите и охарактеризуйте основные свойства биосферы.
  • Вопрос 15. В чем сущность принципа Ле Шателье – Брауна.
  • Вопрос 16. Сформулируйте закон Эшби.
  • Вопрос 17. Что является основой динамического равновесия и устойчивости экосистем. Устойчивость и саморегуляция экосистемы
  • Вопрос 18. Круговорот веществ. Типы круговоротов веществ.
  • Вопрос 19. Изобразите и поясните блоковую модель экосистемы.
  • Вопрос 20. Биом. Назовите наиболее крупные наземные биомы.
  • Вопрос 21. В чем сущность «правила краевого эффекта».
  • Вопрос 22. Виды эдификаторы, доминанты.
  • Вопрос 23. Трофическая цепь. Автотрофы, гетеротрофы, редуценты.
  • Вопрос 24. Экологическая ниша. Правило конкурентного исключения г. Ф. Гаузе.
  • Вопрос 25. Представьте в виде уравнения баланс пищи и энергии для живого организма.
  • Вопрос 26. Правило 10%, кто сформулировал и когда.
  • Вопрос 27. Продукция. Первичная и Вторичная продукция. Биомасса организма.
  • Вопрос 28. Пищевая цепь. Типы пищевых цепей.
  • Вопрос 29. Для чего используют экологические пирамиды, назовите их.
  • Вопрос 30. Сукцессии. Первичная и вторичная сукцессия.
  • Вопрос 31. Назовите последовательные стадии первичной сукцессии. Климакс.
  • Вопрос 32. Назовите и охарактеризуйте этапы воздействия человека на биосферу.
  • Вопрос 33. Ресурсы биосферы. Классификация ресурсов.
  • Вопрос 34. Атмосфера – состав, роль в биосфере.
  • Вопрос 35. Значение воды. Классификация вод.
  • Классификация подземных вод
  • Вопрос 36. Биолитосфера. Ресурсы биолитосферы.
  • Вопрос 37. Почва. Плодородие. Гумус. Образование почвы.
  • Вопрос 38. Ресурсы растительности. Лесные ресурсы. Ресурсы животного мира.
  • Вопрос 39. Биоценоз. Биотоп. Биогеоценоз.
  • Вопрос 40. Факториальная и популяционная экология, синэкология.
  • Вопрос 41. Назовите и охарактеризуйте экологические факторы.
  • Вопрос 42. Биогеохимические процессы. Как осуществляется круговорот азота.
  • Вопрос 43. Биогеохимические процессы. Как осуществляется круговорот кислорода. Круговорот кислорода в биосфере
  • Вопрос 44. Биогеохимические процессы. Как осуществляется круговорот углерода.
  • Вопрос 45. Биогеохимические процессы. Как осуществляется круговорот воды.
  • Вопрос 46. Биогеохимические процессы. Как осуществляется круговорот фосфора.
  • Вопрос 47. Биогеохимические процессы. Как осуществляется круговорот серы.
  • Вопрос 49. Энергетический баланс биосферы.
  • Вопрос 50. Атмосфера. Назовите слои атмосферы.
  • Вопрос 51. Виды загрязнителей атмосферы.
  • Вопрос 52. Как происходит естественное загрязнение атмосферы.
  • Вопрос 54. Основные ингредиенты загрязнения атмосферы.
  • Вопрос 55. Какие газы вызывают парниковый эффект. Последствия увеличения парниковых газов в атмосфере.
  • Вопрос 56. Озон. Озоновая дыра. Какие газы вызывают разрушение озонового слоя. Последствия для живых организмов.
  • Вопрос 57. Причины образования и выпадения кислотных осадков. Какие газы вызывают образование кислотных осадков. Последствия.
  • Последствия кислотных дождей
  • Вопрос 58. Смог, его образование и влияние на человека.
  • Вопрос 59. Пдк, разовая пдк, среднесуточная пдк. Пдв.
  • Вопрос 60. Для чего используют пылеуловители. Типы пылеуловителей.
  • Вопрос 63. Назовите и охарактеризуйте методы очистки воздуха от паро - и газообразных загрязнителей.
  • Вопрос 64. Чем метод абсорбции отличается от метода адсорбции.
  • Вопрос 65. От чего зависит выбор метода очистки газа.
  • Вопрос 66. Назовите, какие газы образуются при сгорании топлива автотранспорта.
  • Вопрос 67. Пути очистки выхлопных газов от автотранспорта.
  • Вопрос 69. Качество воды. Критерии качества воды. 4 класса воды.
  • Вопрос 70. Норма водопотребления и водоотведения.
  • Вопрос 71. Назовите физико-химические и биохимические методы очистки воды. Физико-химический метод очистки воды
  • Коагуляция
  • Выбор коагулянта
  • Органические коагулянты
  • Неорганические коагулянты
  • Вопрос 72. Сточная вода. Охарактеризуйте гидромеханические методы очистки сточных вод от твердых примесей (процеживание, отстаивание, фильтрование).
  • Вопрос 73. Охарактеризуйте химические методы очистки сточных вод.
  • Вопрос 74. Охарактеризуйте биохимические методы очистки сточных вод. Достоинства и недостатки этого метода.
  • Вопрос 75. Аэротенки. Классификация аэротенков.
  • Вопрос 76. Суша. Два вида вредного воздействия на почву.
  • Вопрос 77. Назовите мероприятия по охране почв от загрязнений.
  • Вопрос 78. Утилизация и переработка отходов.
  • 3.1.Огневой способ.
  • 3.2. Технологии высокотемпературного пиролиза.
  • 3.3. Плазмохимическая технология.
  • 3.4.Использование вторичных ресурсов.
  • 3.5 Захоронение отходов
  • 3.5.1.Полигоны
  • 3.5.2 Изоляторы, подземные хранилища.
  • 3.5.3.Заполнение карьеров.
  • Вопрос 79. Назовите международные природоохранные организации. Межправительственные экологические организации
  • Вопрос 80. Назовите международные экологические движения. Неправительственные международные организации
  • Вопрос 81. Назовите природоохранные организации рф.
  • Международный союз охраны природы (мсоп) в россии
  • Вопрос 82. Виды природоохранных мероприятий.
  • 1. Природоохранные мероприятия в области охраны и рационального использования водных ресурсов:
  • 2. Природоохранные мероприятия в области охраны атмосферного воздуха:
  • 3. Природоохранные мероприятия в области охраны и рационального использования земельных ресурсов:
  • 4. Природоохранные мероприятия в области управления отходами:
  • 5. Энергосберегающие мероприятия:
  • Вопрос 83. Почему Всемирный день охраны природы отмечается 5 июня.
  • Вопрос 85. Устойчивое развитие. Правовая охрана биосферы.
  • Правовая охрана биосферы
  • Вопрос 86. Финансирование природоохранных мероприятий.
  • Вопрос 87. Экологическое нормирование. Экологический мониторинг. Экологическая экспертиза.
  • Вопрос 88. Экологические правонарушения. Ответственность за экологические правонарушения.
  • Вопрос 89. Рациональное природопользование.
  • Рациональное природопользование
  • Вопрос 90. Глобальные экологические проблемы и меры по предотвращению экологической угрозы.
  • Вопрос 91. Какие горючие газы являются компонентами газообразного топлива.
  • Вопрос 92. Охарактеризуйте следующие газы и их влияние на человека: метан, пропан, бутан.
  • Физические свойства
  • Химические свойства
  • Применение пропана
  • Вопрос 93. Охарактеризуйте следующие газы и их влияние на человека: этилен, пропилен, сероводород.
  • Вопрос 94. В результате чего образуется диоксид углерода и оксид углерода, их влияние на живые организмы.
  • Вопрос 95. В результате чего образуется оксид азота, оксид серы и пары воды, их влияние на живые организмы.
  • Вопрос 28. Пищевая цепь. Типы пищевых цепей.

    ПИЩЕВАЯ ЦЕПЬ (трофическая цепь, цепь питания), взаимосвязь организмов через отношения пища – потребитель (одни служат пищей для других). При этом происходит трансформация вещества и энергии от продуцентов (первичных производителей) черезконсументов (потребителей) к редуцентам (преобразователям мёртвой органики в неорганические вещества, усваиваемые продуцентами). Различают 2 типа пищевых цепей – пастбищную и детритную. Пастбищная цепь начинается с зелёных растений, идёт к пасущимся растительноядным животным (консументы 1-го порядка) и затем к хищникам, добывающим этих животных (в зависимости от места в цепи – консументы 2-го и последующих порядков). Детритная цепь начинается с детрита (продукт распада органики), идёт к микроорганизмам, которые им питаются, а затем к детритофагам (животные и микроорганизмы, вовлечённые в процесс разложения отмирающей органики).

    Примером пастбищной цепи может служить многоканальная её модель в африканской саванне. Первичными продуцентами являются травостой и деревья, консументами 1-го порядка – растительноядные насекомые и травоядные животные (копытные, слоны, носороги и др.), 2-го порядка – хищные насекомые, 3-го – плотоядные пресмыкающиеся (змеи и др.), 4-го – хищные млекопитающие и хищные птицы. В свою очередь детритофаги (жуки-скарабеи, гиены, шакалы, грифы и т. д.) на каждом из этапов пастбищной цепи разрушают туши погибших животных и остатки пищи хищников. Количество особей, включённых в пищевую цепь, в каждом её звене последовательно уменьшается (правило экологической пирамиды), т. е. число жертв всякий раз существенно превышает число их потребителей. Пищевые цепи не изолированы одна от другой, а переплетаются друг с другом, образуя пищевые сети.

    Вопрос 29. Для чего используют экологические пирамиды, назовите их.

    Экологическая пирамида - графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников; видов, питающихся другими хищниками) в экосистеме.

    Схематически изображать эти соотношения предложил американский зоолог Чарльз Элтон в 1927 году.

    При схематическом изображении каждый уровень показывают в виде прямоугольника, длина или площадь которого соответствует численным значениям звена пищевой цепи (пирамида Элтона), их массе или энергии. Расположенные в определенной последовательности прямоугольники создают различные по форме пирамиды.

    Основанием пирамиды служит первый трофический уровень - уровень продуцентов, последующие этажи пирамиды образованы следующими уровнями пищевой цепи - консументами различных порядков. Высота всех блоков в пирамиде одинакова, а длина пропорциональна числу, биомассе или энергии на соответствующем уровне.

    Экологические пирамиды различают в зависимости от показателей, на основании которых строится пирамида. При этом для всех пирамид установлено основное правило, согласно которому в любой экосистеме больше растений, чем животных, травоядных, чем плотоядных, насекомых, чем птиц.

    На основе правила экологической пирамиды можно определить или рассчитать количественные соотношения разных видов растений и животных в естественных и искусственно создаваемых экологических системах. Например, 1 кг массы морского зверя (тюленя, дельфина) нужно 10 кг съеденной рыбы, а этим 10 кг нужно уже 100 кг их корма - водных беспозвоночных, которым в свою очередь для образования такой массы необходимо съедать 1000 кг водорослей и бактерий. В данном случае экологическая пирамида будет устойчива.

    Однако, как известно, из каждого правила бывают исключения, которые будут рассмотрены в каждом типе экологических пирамид.

    Первые экологические схемы в виде пирамид построил в двадцатых годах XX в. Чарлз Элтон. Они были основаны на полевых наблюдениях за рядом животных различных размерных классов. Элтон не включил в них первичных продуцентов и не делал никаких различий между детритофа-гами и редуцентами. Однако он отметил, что хищники обычно крупнее своих жертв, и понял, что такое соотношение крайне специфично лишь для определенных размерных классов животных. В сороковые годы американский эколог Реймонд Линдеман применил идею Элтона к трофическим уровням, абстрагировавшись от конкретных составляющих их организмов. Однако, если распределить животных по размерным классам легко, то определить, к какому трофическому уровню они относятся, гораздо сложнее. В любом случае сделать это можно лишь весьма упрощенно и обобщенно. Пищевые отношения и эффективность передачи энергии в биотическом компоненте экосистемы традиционно изображают в виде ступенчатых пирамид. Это дает наглядную основу для сопоставления: 1) разных экосистем; 2) сезонных состояний одной и той же экосистемы; 3) разных фаз изменения экосистемы. Существуют три типа пирамид: 1) пирамиды чисел, основанные на подсчете организмов каждого трофического уровня; 2) пирамиды биомассы, в которых используется суммарная масса (обычно сухая) организмов на каждом трофическом уровне; 3) пирамиды энергии, учитывающие энергоемкость организмов каждого трофического уровня.

    Типы экологических пирамид

    пирамиды чисел - на каждом уровне откладывается численность отдельных организмов

    Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис.3).

    Например, чтобы прокормить одного волка, необходимо по крайней мере несколько зайцев, на которых он мог бы охотиться; чтобы прокормить этих зайцев, нужно довольно большое количество разнообразных растений. В данном случае пирамида будет иметь вид треугольника с широким основанием суживающимся кверху.

    Однако подобная форма пирамиды чисел характерна не для всех экосистем. Иногда они могут быть обращенными, или перевернутыми. Это касается пищевых цепей леса, когда продуцентами служат деревья, а первичными консументами - насекомые. В этом случае уровень первичных консументов численно богаче уровня продуцентов (на одном дереве кормится большое количество насекомых), поэтому пирамиды чисел наименее информативны и наименее показательны, т.е. численность организмов одного трофического уровня в значительной степени зависит от их размеров.

    пирамиды биомасс - характеризует общую сухую или сырую массу организмов на данном трофическом уровне, например, в единицах массы на единицу площади - г/м 2 , кг/га, т/км 2 или на объем - г/м 3 (рис.4)

    Обычно в наземных биоценозах общая масса продуцентов больше, чем каждого последующего звена. В свою очередь, общая масса консументов первого порядка больше, нежели консументов второго порядка и т.д.

    В данном случае (если организмы не слишком различаются по размерам) пирамида также будет иметь вид треугольника с широким основанием суживающимся кверху. Однако и из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2-3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

    В целом для наземных биогеоценозов, где продуценты крупные и живут сравнительно долго, характерны относительно устойчивые пирамиды с широким основанием. В водных же экосистемах, где продуценты невелики по размеру и имеют короткие жизненные циклы, пирамида биомасс может быть обращенной, или перевернутой (острием направлена вниз). Так, в озерах и морях масса растений превышает массу потребителей только в период цветения (весной), а в остальное время года может создаться обратное положение.

    Пирамиды чисел и биомасс отражают статику системы, т. е. характеризуют количество или биомассу организмов в определенный промежуток времени. Они не дают полной информации о трофической структуре экосистемы, хотя позволяют решать ряд практических задач, особенно связанных с сохранением устойчивости экосистем.

    Пирамида чисел позволяет, например, рассчитывать допустимую величину улова рыбы или отстрела животных в охотничий период без последствий для нормального их воспроизведения.

    пирамиды энергии - показывает величину потока энергии или продуктивности на последовательных уровнях (рис.5).

    В противоположность пирамидам чисел и биомассы, отражающим статику системы (количество организмов в данный момент), пирамида энергии отражая картину скоростей прохождения массы пищи (количества энергии) через каждый трофический уровень пищевой цепи, дает наиболее полное представление о функциональной организации сообществ.

    На форму этой пирамиды не влияют изменения размеров и интенсивности метаболизма особей, и если учтены все источники энергии, то пирамида всегда будет иметь типичный вид с широким основанием и суживающейся верхушкой. При построении пирамиды энергии в ее основание часто добавляют прямоугольник, показывающий приток солнечной энергии.

    В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий (закон 10 процентов), согласно которому с одного трофического уровня через пищевые цепи на другой трофический уровень переходит в среднем около 10% поступившей на предыдущий уровень экологической пирамиды энергии. Остальная часть энергии теряется в виде теплового излучения, на движение и т.д. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии, которая расходуется на поддержание их жизнедеятельности.

    Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г. У древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно больше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии остается: через верхние трофические уровни ее проходит значительно меньше, чем через нижние.

    Большинство живых организмов питаются органической пищей, в этом специфика их жизнедеятельности на нашей планете. Среди этой пищи и растения, и мясо других животных, их продукты деятельности и мертвая материя, готовая к разложению. Сам процесс питания у различных видов растений и животных происходит по-разному, но всегда образуются так называемые Они преобразовывают материю и энергию, а питательные вещества могут таким образом переходить от одного существа к другому, осуществляя круговорот веществ в природе.

    в лесу

    Лесами различного рода покрыто довольно много поверхности суши. Это - легкие и инструмент очищения нашей планеты. Не зря многие прогрессивные современные ученые и активисты выступают сегодня против массовой вырубки лесов. Цепь питания в лесу может быть довольно разнообразна, но, как правило, включает в себя не более 3-5 звеньев. Для того чтобы понять суть вопроса, обратимся к возможным составляющим данной цепи.

    Продуценты и консументы

    1. Первые - автотрофные организмы, что питаются неорганической пищей. Они берут энергию и материю для создания собственных тел, используя газы и соли из окружающей их среды. Как пример - зеленые растения, которые получают питание от солнечного света при помощи фотосинтеза. Или многочисленные виды микроорганизмов, которые обитают везде: в воздухе, в почве, в воде. Именно продуценты составляют в большинстве своем первое звено практически любой цепи питания в лесу (примеры будут приведены ниже).
    2. Вторые - гетеротрофные организмы, которые питаются органикой. Среди них - первого порядка те, что непосредственно осуществляют питание за счет растений и бактерий, продуцентов. Второго порядка - те, кто питается животной пищей (хищники или плотоядные).

    Растения

    С них, как правило, начинается цепь питания в лесу. Они выступают первым звеном в этом круговороте. Деревья и кустарники, травы и мхи добывают пищу из неорганических веществ, используя солнечный свет, газы и минералы. Цепь питания в лесу, к примеру, может начинаться с березы, кору которой поедает заяц, а его, в свою очередь, убивает и съедает волк.

    Растительноядные животные

    В разнообразных лесах в изобилии встречаются животные, которые питаются растительной пищей. Конечно же, например, сильно отличается по своему наполнению от угодий средней полосы. В джунглях обитают различные виды животных, многие из которых - травоядные, а значит, составляют второе звено пищевой цепи, питаясь растительной пищей. От слонов и носорогов до едва ли заметных насекомых, от земноводных и птиц до млекопитающих. Так, в Бразилии, к примеру, водятся более 700 видов бабочек, практически все из них - растительноядные.

    Скуднее, конечно же, фауна в лесополосе средней части России. Соответственно, вариантов цепи питания в гораздо меньше. Белки и зайцы, другие грызуны, олени и лоси, зайцы - вот основа для подобных цепочек.

    Хищники или плотоядные

    Они так и называются, потому что поедают плоть, питаясь мясом других животных. В пищевой цепочке занимают главенствующее положение, часто являясь заключительным звеном. В наших лесах это лисы и волки, совы и орлы, иногда - медведи (но вообще-то они относятся к которые могут питаться и растительной, и животной пищей). В пищевой цепи могут принимать участие как один, так и несколько хищников, поедающих друг друга. Заключающим звеном, как правило, является наиболее крупный и наиболее сильный плотоядный. В лесу средней полосы эту роль может выполнять, например, волк. Таких хищников не слишком много, и их популяция ограничивается питательной базой и энергетическими запасами. Так как, согласно закону сохранения энергии, при переходе питательных веществ от одного звена к последующему может утратиться до 90% ресурса. Наверное, поэтому численность звеньев большинства пищевых цепей не может превышать пяти.

    Падальщики

    Они питаются останками других организмов. Как ни странно, но их в природе леса также довольно много: от микроорганизмов и насекомых до птиц и млекопитающих. Многие жуки, к примеру, используют в качестве пищи трупы других насекомых и даже позвоночных. А бактерии способны разлагать умершие тела млекопитающих за довольно короткое время. Организмы-падальщики играют в природе огромную роль. Они уничтожают материю, преобразуя ее в неорганические вещества, высвобождают энергию, используя ее для своей жизнедеятельности. Если бы не падальщики, то, наверное, все земное пространство было бы покрыто телами умерших за все времена животных и растений.

    в лесу

    Чтобы составить цепь питания в лесу, необходимо знать о тех обитателях, кто проживает там. А также о том, чем эти животные могут питаться.

    1. Кора березы - личинки насекомых - мелкие птицы - хищные птицы.
    2. Палая листва - бактерии.
    3. Гусеница бабочки - мышь - змея - еж - лиса.
    4. Желудь - мышь - лиса.
    5. Зерновые - мышь - филин.

    Есть и подлиннее: палая листва - бактерии - черви дождевые - мыши - крот - еж - лиса - волк. Но, как правило, количество звеньев не больше пяти. Цепь питания в еловом лесу немного отличается от аналогичных в лиственном.

    1. Семена злаков - воробей - дикая кошка.
    2. Цветы (нектар) - бабочка - лягушка - уж.
    3. Еловая шишка - дятел - орлан.

    Пищевые цепочки иногда могут сплетаться между собой, образуя и более сложные, многоуровневые структуры, объединяющиеся в единую экосистему леса. К примеру, лиса не брезгует питаться и насекомыми и их личинками, и млекопитающими, таким образом, несколько пищевых цепей пересекаются.

    Любому живому существу на нашей планете для нормального развития необходимо питание. Питание — это процесс поступления энергии и необходимых химических элементов в живой организм. Источником питания для одних животных служат другие растения и животные. Процесс перехода энергии и питательных веществ от одного живого организма к другому происходит путем поедания одних другими. Одни животные и растения служат пищей для других. Таким образом, энергия может передаваться через несколько звеньев.

    Совокупность всех звеньев в этом процессе называется цепью питания . Пример пищевой цепочки можно увидеть в лесу, когда птица съест червяка, а потом сама станет пищей для рыси.

    Все виды живых организмов, в зависимости от того, какое место они занимают, делятся на три вида:

    • продуценты;
    • консументы;
    • редуценты.

    Продуцентами являются живые организмы , которые самостоятельно вырабатывают питательные вещества. Например, растения или водоросли. Для выработки органических веществ продуценты могут использовать солнечный свет или простые неорганические соединения, такие как углекислый газ или сероводород. Такие организмы ещё называются автотрофными. Автотрофы являются первым звеном любой пищевой цепочки и составляют её основу, а энергия, полученная этими организмами, поддерживает каждое следующее звено.

    Консументы

    Консументы это следующее звено . Роль консументов выполняют гетеротрофные организмы, то есть те, которые не вырабатывают самостоятельно органические вещества, а используют в пищу другие организмы. Консументов можно разделить на несколько уровней. Например, к первому уровню относятся все травоядные животные, некоторые виды микроорганизмов, а также планктон. Грызуны, зайцы, лоси, кабаны, антилопы и даже бегемоты — все относятся к первому уровню.

    Ко второму уровню относят мелких хищников, таких как: дикие кошки, норки, хорьки, рыбы, питающиеся планктоном, совы, змеи. Эти животные служат пищей для консументов третьего уровня — более крупных хищников. Это такие животные, как: лиса, рысь, лев, ястреб, щука и др. Таких хищников называют ещё высшими. Высшие хищники необязательно поедают только тех, кто находится на предыдущем уровне. Например, мелкая лиса может стать добычей ястреба, а рысь может охотиться и на грызунов, и на сов.

    Редуценты

    Это такие организмы, которые перерабатывают продукты жизнедеятельности животных и их мертвую плоть в неорганические соединения. К ним относятся некоторые виды грибов, бактерии гниения . Роль редуцентов в том, чтобы замкнуть круговорот веществ в природе. Они возвращают в почву и воздух воду и простейшие неорганические соединения, которые используют продуценты для своей жизнедеятельности. Редуценты перерабатывают не только умерших животных, но и например, опавшие листья, которые начинают гнить в лесу или сухую траву в степи.

    Трофические сети

    Все пищевые цепочки существуют в постоянной взаимосвязи друг с другом. Совокупность нескольких пищевых цепей составляет трофическую сеть . Это своеобразная пирамида, состоящая из нескольких уровней.Каждый уровень образуют определенные звенья цепи питания. Например, в цепочках:

    • муха — лягушка — цапля;
    • кузнечик — змея — сокол;

    Муха и кузнечик будут относиться к первому трофическому уровню, змея и лягушка ко второму, а цапля и сокол к третьему.

    Виды пищевых цепей: примеры в природе

    Они разделяются на пастбищные и детритные. Пастбищные цепи питания распространены в степях и в мировом океане. Началом этих цепей служат продуценты. Например,трава или водоросли. Дальше идут консументы первого порядка, например, травоядные животные или малюски и мелкие ракообразные, питающиеся водорослями. Далее в цепи идут мелкие хищники, такие как, лисы, норки, хорьки, окуни, совы. Замыкают цепь суперхищники, такие как, львы, медведи, крокодилы. Суперхищники не являются добычей для других животных, но после своей гибели служат пищевым материалом для редуцентов. Редуценты участвуют в процессе разложения останков этих животных.

    Детритные цепи питания берут свое начало от гниющих органических веществ. Например, от разлагающейся листвы и оставшейся травы или от опавших ягод. Такие цепи распространены в лиственных и смешанных лесах. Опавшие гниющие листья — мокрица — ворон. Вот пример такой пищевой цепи. Большинство животных и микроорганизмов могут одновременно являться звеньями обоих видов пищевых цепочек. Примером этого может служит дятел, питающийся жучками, которые разлагают мертвое дерево. Это представители детритной цепи питания А сам дятел может стать добычей уже для мелкого хищника, например, для рыси. Рысь может охотиться ещё и на грызунов — представителей пастбищной цепи питания.

    Любая пищевая цепь не может быть очень длинной. Это связано с тем, что на каждый последующий уровень передается только 10% энергии предыдущего уровня. Большинство из них состоит от 3 до 6 звеньев.

    Перенос энергии путём поедания живыми организмами друг друга называется пищевой цепью. Это специфические взаимоотношения растений, грибов, животных, микроорганизмов, обеспечивающие круговорот веществ в природе. Также называется трофической цепью.

    Структура

    Все организмы питаются, т.е. получают энергию, которая обеспечивает процессы жизнедеятельности. Систему трофической цепи образуют звенья. Звено пищевой цепочки - это группа живых организмов, связанная с соседней группой отношениями «пища - потребитель». Одни организмы являются пищей для других организмов, которые в свою очередь также являются пищей для третьей группы организмов.
    Выделяют три типа звеньев:

    • продуценты - автотрофы;
    • консументы - гетеротрофы;
    • редуценты (деструкторы) - сапротрофы.

    Рис. 1. Звенья пищевой цепочки.

    В одну цепочку входят все три звена. Консументов может быть несколько (консументы первого, второго порядка и т.д.). Основу цепочки могут составлять продуценты или редуценты.

    К продуцентам относятся растения, преобразовывающие органические вещества с помощью света в органические вещества, которые при поедании растений попадают в организм консумента первого порядка. Основным признаком консумента является гетеротрофность. При этом консументы могут потреблять как живые организмы, так и мёртвые (падаль).
    Примеры консументов:

    • травоядные - заяц, корова, мышь;
    • хищные - леопард, сова, морж;
    • падальщики - гриф, тасманийский дьявол, шакал.

    Некоторые консументы, в том числе и человек, занимают промежуточное положение, являясь всеядными. Такие животные могут выступать в роли консумента первого, второго и даже третьего порядка. Например, медведь питается ягодами и мелкими грызунами, т.е. одновременно является консументом первого и второго порядков.

    К редуцентам относятся:

    • грибы;
    • бактерии;
    • простейшие;
    • черви;
    • личинки насекомых.

    Рис. 2. Редуценты.

    Редуценты питаются останками живых организмов и продуктами их жизнедеятельности, возвращая в почву неорганические вещества, которые потребляют продуценты.

    Виды

    Цепочки питания могут быть двух видов:

    ТОП-4 статьи которые читают вместе с этой

    • пастбищные (цепь выедания);
    • детритные (цепь разложения).

    Пастбищные цепи свойственны лугам, полям, морям, водоёмам. Началом цепи выедания являются автотрофные организмы - фотосинтезирующие растения.
    Далее звенья цепочки располагаются следующим образом:

    • консументы первого порядка - растительноядные животные;
    • консументы второго порядка - хищники;
    • консументы третьего порядка - более крупные хищники;
    • редуценты.

    В морских и океанических экосистемах цепи выедания более длинные, чем на суше. Они могут включать до пяти порядков консументов. Основу морских цепей составляет фотосинтезирующий фитопланктон.
    Следующие звенья образует несколько консументов:

    • зоопланктон (рачки);
    • мелкая рыба (шпроты);
    • крупные хищные рыбы (сельдь);
    • крупные хищные млекопитающие (тюлени);
    • высшие хищники (касатки);
    • редуценты.

    Детритные цепи характерны для лесов и саванн. Цепь начинается с редуцентов, которые питаются органическими останкам (детритом) и называются детриофагами. К ним относятся микроорганизмы, насекомые, черви. Все эти живые организмы становятся пищей для хищников высшего порядка, например, птиц, ежей, ящериц.

    Примеры пищевых цепей двух типов:

    • пастбищные : клевер - заяц - лисица - микроорганизмы;
    • детритные : детрит - личинки мух - лягушка - уж - ястреб - микроорганизмы.

    Рис. 3. Пример пищевой цепочки.

    Вершину пищевой цепочки всегда занимает хищник, который является консументом последнего порядка в своём ареале. Численность высших хищников не регулируется другими хищниками и зависит только от внешних факторов среды. Примерами являются касатки, вараны, крупные акулы.

    Что мы узнали?

    Выяснили, какие есть пищевые цепи в природе и как в них располагаются звенья. Все живые организмы на Земле взаимосвязаны пищевыми цепочками, с помощью которых передаётся энергия. Автотрофы сами производят питательные вещества и являются пищей для гетеротрофов, которые, умирая, становятся питательной средой для сапротрофов. Редуценты также могут становиться пищей для консументов и производить питательную среду для продуцентов, не прерывая пищевую цепочку.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.7 . Всего получено оценок: 203.

    Цель: расширить знания о биотических факторах среды.

    Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, пресмыкающихся, птиц, млекопитающих), коллекции насекомых, влажные препараты животных, иллюстрации различных растений и животных.

    Ход работы:

    1. Используйте оборудование и составьте две цепи питания. Помните, что цепь всегда начинается продуцентом и заканчивается редуцентом.

    Растения насекомые ящерица бактерии

    Растения кузнечик лягушка бактерии

    Вспомните свои наблюдения в природе и составьте две цепи питания. Подпишите продуценты, консументы (1 и 2 порядков), редуценты.

    Фиалка Ногохвостки хищные клещи хищные многоножки бактерии

    Продуцент- консумент1- консумент2 - консумент2 - редуцент

    Капуста слизень лягушка бактерии

    Продуцент – консумент1 - консумент2 - редуцент

    Что такое цепь питания и что лежит в её основе? Чем определяется устойчивость биоценоза? Сформулируйте вывод.

    Вывод:

    Пищева́я (трофи́ческая ) цепь - ряды видов растений, животных, грибов и микроорганизмов, которые связаны друг с другом отношениями: пища - потребитель (последовательность организмов, в которой происходит поэтапный перенос вещества и энергии от источника к потребителю). Организмы, последующего звена поедают организмы предыдущего звена, и таким образом осуществляется цепной перенос энергии и вещества, лежащий в основе круговорота веществ в природе. При каждом переносе от звена к звену теряется большая часть (до 80-90 %) потенциальной энергии, рассеивающейся в виде тепла. По этой причине число звеньев (видов) в цепи питания ограничено и не превышает обычно 4-5. Устойчивость биоценоза определяется разнообразием его видового состава. Продуце́нты - организмы, способные синтезировать органические вещества из неорганических, то есть, все автотрофы. Консументы - гетеротрофы, организмы, потребляющие готовые органические вещества, создаваемые автотрофами (продуцентами). В отличие от редуцентов

    Консументы не способны разлагать органические вещества до неорганических.Редуце́нты - микроорганизмы (бактерии и грибы), разрушающие отмершие остатки живых существ, превращающие их в неорганические и простейшие органические соединения.

    3. Назовите организмы, которые должны быть на пропущенном месте следующих пищевых цепей.

    1) Паук, лиса

    2) древоед-гусеница, ястреб-змеед

    3) гусеница

    4. Из предложенного списка живых организмов составить трофическую сеть:

    трава, ягодный кустарник, муха, синица, лягушка, уж, заяц, волк, бактерии гниения, комар, кузнечик. Укажите количество энергии, которое переходит с одного уровня на другой.

    1. Трава (100%) -- кузнечик (10%) -- лягушка (1%) -- уж (0,1%) -- бактерии гниения (0,01%).

    2. Кустарник (100%) -- заяц (10%) -- волк (1%) -- бактерии гниения (0,1%).

    3. Трава (100%) -- муха (10%) -- синица (1%) -- волк (0,1%) -- бактерии гниения (0,01%).

    4. Трава (100%) -- комар (10%) -- лягушка (1%) -- уж (0,1%) -- бактерии гниения (0,01%).

    5. Зная правило перехода энергии с одного трофического уровня на другой (около10%), постройте пирамиду биомассы третьей пищевой цепи (задание 1). Биомасса растений составляет 40 тонн.

    Трава (40 тонн) -- кузнечик (4 тонны) -- воробей (0,4 тонны) -- лиса (0,04).



    6. Вывод: что отражают правила экологических пирамид?

    Правило экологических пирамид очень условно передает закономерность передачи энергии с одного уровня питания на следующий, в пищевой цепочке. Впервые эти графические модели были разработаны Ч. Элтоном в 1927 году. По этой закономерности суммарная масса растений должна быть на порядок больше растительноядных животных, а суммарная масса растительноядных животных на порядок больше хищников первого уровня и т.д. до самого конца пищевой цепи.

    Лабораторная работа № 1

    Loading...Loading...