Где у рыб уши. Орган равновесия и слуха. Более подробно о боковой линии

Первые попытки отыскать орган, воспринимающий звуки, от­носятся к концу XIX в. Так, Крейдль (Kreidl, 1895), производя разрушение лабиринта рыб, где, по его мнению, мог распола­гаться орган слуха, (приходит к выводу, что рыбы не обладают органом слуха. Повторяя его опыты и производя перерезку нер­вов кожи, боковой линии и лабиринта, Байгелоу (Bigelow, 1904) показал, что только перерезка нерва, иннервирующего лабиринт, приводит к потере слуха. Он предположил, что восприятие звука осуществляется нижней частью лабиринта (Sacculus и lagenae). Пипер (Piper, 1906) электрофизиологически, отводя токи дей­ствия от VIII нерва у различных видов рыб при звуковом их раз­дражении, пришел к выводу, что «восприятие звуков рыбами осу­ществляется при помощи лабиринта.

Анатомические исследования уха рыб привели Де Бурле (De Burlet, 1929) к выводу, что органом слуха рыб является Sacculus лабиринта.

Паркер (Parker, 1909) на основании опытов с Mustelus cards также заключил, что слух рыб связан с лабиринтом, который, кроме слуховой функции, имеет отношение к поддержанию рав­новесия и мышечному тонусу. Однако наиболее полные данные о функции лабиринта были получены только после работы Фри­ша и Штеттера (Frisch a. Stetter, 1932).

У гольянов с выработанными пищевыми рефлексами на звук производилось в хроническом эксперименте удаление отдельных частей лабиринта, после чего вновь проверялось наличие реак­ции. Опыты показали, что слуховую функцию несет нижняя часть лабиринта Sacculus и lagenae, тогда как Utriculus и полу­окружные каналы участвуют в «поддержании равновесия. В 1936 и 1938 гг. Фриш предпринял еще более детальные исследования локализации внутреннего уха рыб, изучив на гольянах значение Sacculus и lagenae, их отолитов и чувствительного эпителия в восприятии звука.

Слуховой рецептор рыб связан со слуховым центром, распо­ложенным в продолговатом мозгу, при помощи VIII пары голов­ных нервов.

На рис. 35 показан лабиринт со слуховым органом рыб. Отме­чая разнообразное строение слуховых аппаратов у рыб, Фриш отмечает два основных типа: аппараты, не имеющие связи с пла­вательным пузырем, и аппараты, составной частью которых яв­ляется плавательный пузырь (рис. 36). Соединение плавательно­го пузыря с внутренним ухом осуществляется при помощи веберова аппарата - четырех пар подвижно сочлененных косточек, соединяющих лабиринт «с плавательным пузырем. Фриш показал, что рыбы, обладающие слуховым аппаратом ‘Второго типа (Сурrinidae, Siluridae, Characinidae, Gymnotidae), имеют более раз­витый слух.

Таким образом, рецептором, воспринимающим звук, являет­ся Sacculus и lagenae, а плавательный пузырь имеет значение резонатора, усиливающего и определенным образом выбираю­щего звуковые частоты.

В последующих работах Диссельхорста (Diesselhorst, 1938) и Дикграфа (Dijkgraaf, 1950) указывается, что у рыб других се­мейств принимать участие в восприятии звука может такжеUtriculus.

Рыба, находясь на глубине, как правило, не видит рыбаков, но прекрасно слышит, как рыбаки разговаривают и передвигаются в непосредственной близости от воды. Чтобы слышать, у рыб имеется внутреннее ухо и боковая линия.

Звуковые волны отлично распространяются в воде, поэтому любые шорохи и неуклюжие движения на берегу, тут же доходят до рыб. Прибыв на водоем и, громко хлопнув дверкой автомобиля, можно рыбу напугать, и она отойдет от берега. Если учесть, что приезд на водоем сопровождается громким весельем, то рассчитывать на хорошую, результативную рыбалку не следует. Очень сильно осторожничает крупная рыба, которую рыбаки чаще всего хотят видеть в качестве основного трофея.

Пресноводные рыбы разделяются на две группы:

  • рыбы, имеющие отличный слух : карповые, линь, плотва;
  • рыбы, имеющие удовлетворительный слух : окунь, щука.

Как слышат рыбы?

Внутреннее ухо рыб соединено с плавательным пузырем, который выступает в роли резонатора, успокаивающего звуковые колебания. Усиленные колебания передаются на внутреннее ухо, за счет чего рыба имеет не плохой слух. Человеческое ухо способно воспринимать звук в диапазоне от 20Гц до 20кГц, а звуковой диапазон рыб сужен и лежит в пределах 5Гц-2кГц. Можно сказать, что рыба слышит хуже человека, где-то в 10 раз и ее основной звуковой диапазон располагается в пределах более низких звуковых волн.

Поэтому, рыба в воде может слышать малейшие шорохи, тем более, ходьбу на берегу или удары о землю. В основном, это карповые и плотва, поэтому, собираясь на карпа или плотву, следует обязательно учитывать данный фактор.

Хищная рыба имеет несколько другое строение слухового аппарата: у них отсутствует связь между внутренним ухом и воздушным пузырем. Они больше надеются на свое зрение, нежели на свой слух, так как звуковые волны, лежащие за пределами 500Гц, они не слышат.

Лишний шум на водоеме очень сильно влияет на поведение рыб, которые имеют хороший слух. В таких условиях она может перестать передвигаться по водоему в поисках пищи или прервать нерест. При этом, рыба способна запоминать звуки и связывать их с событиями. Занимаясь исследованиями, ученые установили, что шум очень сильно действует на карпа и он, в таких условиях, прекращал кормиться, в то время, как щука продолжала охотиться, не обращая внимания на шум.


Рыба располагает парой ушей, которые расположены позади черепа. Функция ушей рыбы заключается не только в определении звуковых колебаний, но и служат органами равновесия рыбы. При этом, ухо рыбы, в отличие от человека, не выходит наружу. Звуковые колебания к уху передаются через жировые рецепторы, которые улавливают волны низкой частоты, генерирующиеся в результате движения рыбы в воде, а также посторонние звуки. Попадая в мозг рыбы, звуковые колебания сравниваются и, если среди них появляются посторонние, то выделяются, и рыба начинает на них реагировать.

Благодаря тому, что рыба имеет две боковые линии и двое ушей, то она способна определять направление по отношению к издаваемым звукам. Определив направление опасного шума, она может вовремя спрятаться.

Со временем рыба привыкает к посторонним шумам, которые ей не угрожают, но при появлении не знакомых ей шумов, она может отойти от этого места и рыбалка может не состояться.


Вопрос о том, слышат ли рыбы, долго дискутировался. В настоящее время установлено, что рыбы слышат и сами издают звуки. Звук представляет собой цепочку регулярно повторяющихся волн сжатия газообразной, жидкой или твердой среды, т. е. в водной среде звуковые сигналы так же естественны, как и на суше. Волны сжатия водной среды могут распространяться с различной частотой. Низкочастотные колебания (вибрация или инфразвук) до 16Гц воспринимаются не всеми рыбами. Однако у некоторых видов инфразвуковая рецепция доведена до совершенства (акулы). Спектр звуковых частот, воспринимаемый большинством рыб, лежит в диапазоне 50-3000 Гц. Способность к восприятию рыбами ультразвуковых волн (свыше 20 000 Гц) до настоящего времени убедительно не доказана.

Скорость распространения звука в воде в 4,5 раза больше, чем в воздушной среде. Поэтому звуковые сигналы с берега доходят до рыб в искаженном виде. Острота слуха у рыб не так развита, как у наземных животных. Тем не менее у некоторых видов рыб в экспериментах наблюдаются довольно приличные музыкальные способности. Например, гольян при 400-800 Гц различает 1/2 тона. Возможности других видов рыб скромнее. Так, гуппи и угорь дифференцируют два различающихся на 1/2-1/4 октавы. Есть и совершенно бездарные в музыкальном отношении виды (беспузырные и лабиринтовые рыбы).

Рис. 2.18. Связь плавательного пузыря с внутренним ухом у разных видов рыб: а- сельдь атлантическая; б -треска; в - карп; 1 - выросты плавательного пузыря; 2- внутреннее ухо; 3 - головной мозг: 4 и 5-косточки Веберова аппарата; общий эндолимфатический проток

Острота слуха определяется морфологией акустико-латеральной системы, к которой помимо боковой линии и ее производных относят внутреннее ухо плавательный пузырь и Веберов аппарат (рис. 2.18).

И в лабиринте, и в боковой линии чувствительными клетками выступают так называемые волосатые клетки. Смещение волоска чувствительной клетки как в лабиринте, так и в боковой линии приводит к одинаковому результату-генерации нервного импульса, поступающего в один и тот же акустико-латеральный центр продолговатого мозга. Однако эти органы рецептируют и другие сигналы (гравитационное поле, электромагнитные и гидродинамические поля, а также механические и химические раздражители).

Слуховой аппарат рыб представлен лабиринтом, плавательным пузырем (у пузырных рыб), Веберовым аппаратом и системой боковой линии. Лабиринт. Парное образование - лабиринт, или внутреннее ухо рыб (рис. 2.19), выполняет функцию органа равновесия и слуха. Слуховые рецепторы в большом количестве присутствуют в двух нижних камерах лабиринта - лагене и утрикулюсе. Волоски слуховых рецепторов очень чувствительны к перемещению эндолимфы в лабиринте. Изменение положения тела рыбы в любой плоскости приводит к перемещению эндолимфы, по крайней мере, в одном из полукружных каналов, что раздражает волоски.

В эндолимфе саккулы, утрикулюса и лагены находятся отолиты (камешки), которые повышают чувствительность внутреннего уха.


Рис. 2.19. Лабиринт рыбы: 1-круглый мешочек (лагена); 2-ампула (утрикулюс); 3-саккула; 4-каналы лабиринта; 5- расположение отолитов

Их общее количество по три с каждой стороны. Они различаются не только расположением, но и размерами. Самый крупный отолит (камешек) находится в круглом мешочке - лагене.

На отолитах рыб хорошо заметны годовые кольца, по которым v некоторых видов рыб определяют возраст. Они также обеспечивают оценку эффективности маневра рыбы. При продольном, вертикальном, боковом и вращательном движениях тела рыбы происходят некоторое смещение отолитов и раздражение ими чувствительных волосков, что, в свою очередь, создает соответствующий афферентный поток. На них же (отолиты) ложатся и рецепция гравитационного поля, оценка степени ускорения рыбы при бросках.

От лабиринта отходит эндолимфатический проток (см. рис. 2.18,6), который у костистых рыб закрыт, а у хрящевых открыт и сообщается с внешней средой. Веберов аппарат. Он представлен тремя парами подвижно соединенных косточек, которые называются стапесом (контактирует с лабиринтом), инкусом и малеусом (эта кость соединена с плавательным пузырем). Кости Веберова аппарата являются результатом эволюционной трансформации первых туловищных позвонков (рис. 2.20, 2.21).

При помощи Веберова аппарата лабиринт контактирует с плавательным пузырем у всех пузырных рыб. Другими словами, Веберов аппарат обеспечивает связь центральных структур сенсорной системы с воспринимающей звук периферией.


Рис.2.20. Строение Веберова аппарата:

1- перилимфатический проток; 2, 4, 6, 8- связки; 3 - стапес; 5- инкус; 7- малеус; 8 - плавательный пузырь (римскими цифрами обозначены позвонки)

Рис. 2.21. Общая схема строения органа слуха у рыбы:

1 - головной мозг; 2 - утрикулюс; 3 - саккула; 4- объединительный канал; 5 - лагена; 6- перилимфатический проток; 7-стапес; 8- инкус; 9-малеус; 10- плавательный пузырь

Плавательный пузырь. Он является хорошим резонирующим устройством, своеобразным усилителем средне- и низкочастотных колебаний среды. Звуковая волна извне приводит к колебаниям стенки плавательного пузыря, которые, в свою очередь, приводят к смещению цепочки косточек Веберова аппарата. Первая пара косточек Веберова аппарата давит на мембрану лабиринта, вызывая смещения эндолимфы и отолитов. Таким образом, если проводить аналогию с высшими наземными животными, Веберов аппарат у рыб выполняет функцию среднего уха.

Однако не у всех рыб есть плавательный пузырь и Веберов аппарат. В этом случае рыбы проявляют низкую чувствительность к звуку. У беспузырных рыб слуховую функцию плавательного пузыря частично компенсируют воздушные полости, связанные с лабиринтом, и высокая чувствительность органов боковой линии к звуковым стимулам (волнам сжатия воды).

Боковая линия. Она является очень древним сенсорным образованием, которое и у эволюционно молодых групп рыб выполняет одновременно несколько функций. Принимая во внимание исключительное значение этого органа для рыб, позволим себе более подробно остановиться на его морфофункциональной характеристике. Разные экологические типы рыб демонстрируют различные варианты латеральной системы. Расположение боковой линии на теле рыб часто является видоспецифичным признаком. Есть виды рыб, у которых более чем одна боковая линия. Например, терпуг имеет по четыре боковых линии с каждой стороны, отсюда
происходит его второе название - "восьмилинейный хир". У большинства костистых рыб боковая линия тянется вдоль туловища (не прерываясь или прерываясь в отдельных местах), достигает головы, образуя сложную систему каналов. Каналы боковой линии расположены или внутри кожи (рис. 2.22), или открыто на ее поверхности.

Примером открытого поверхностного расположения невромастов - структурных единиц латеральной линии - является боковая линия у гольяна. Несмотря на очевидное разнообразие морфологии латеральной системы, следует подчеркнуть, что наблюдаемые различия касаются только макростроения этого сенсорного образования. Собственно рецепторный аппарат органа (цепочка невромастов) на удивление одинаков у всех рыб как и морфологическом, так и функциональном отношении.

Система боковой линии реагирует на волны сжатия водной среды, обтекающие потоки, химические раздражители и электромагнитные поля при помощи невромастов - структур, объединяющих несколько волосковых клеток (рис. 2.23).


Рис. 2.22. Канал боковой линии рыбы

Невромаст состоит из слизисто-студенистой части - капулы, в которую погружены волоски чувствительных клеток. Закрытые невромасты сообщаются с внешней средой небольшими прободающими чешую отверстиями.

Открытые невромасты характерны для каналов латеральной системы, заходящих на голову рыбы (см. рис. 2.23, а).

Канальные невромасты тянутся от головы до хвоста по бокам тела, как правило, в один ряд (у рыб семейства Hexagramidae шесть рядов и бол ее). Термин "боковая линия" в обиходе относится именно к канальным невромастам. Однако у рыб описаны и невромасты, отделенные от канальной части и имеющие вид самостоятельных органов.

Канальные и свободные невромасты, расположенные в разных частях тела рыбы, и лабиринт не дублируют, а функционально дополняют друг друга. Считается, что саккулюс и лагена внутреннего уха обеспечивают звуковую чувствительность рыб с большого расстояния, а латеральная система позволяет локализовать источник звука (правда уже вблизи источника звука).

Рис. 2.23. Строение невромастарыбы: а - открытый; б - канальный

Экспериментально доказано, что боковая линия воспринимает низкочастотные колебания, как звуковые, так и связанные с движением других рыб, т. е. низкочастотные колебания, возникающие от удара рыбы хвостом по воде, воспринимаются другой рыбой как низкочастотные звуки.

Таким образом, звуковой фон водоема довольно разнообразен и рыбы располагают совершенной системой органов для восприятия волновых физических явлений под водой.

Заметное влияние на активность рыб и характер их поведения оказывают волны, возникающие на поверхности воды. Причинами данного физического явления служат многие факторы: движение крупных объектов (крупная рыба, птицы, животные), ветер, приливы, землетрясения. Волнение служит важным каналом информирования водных животных о событиях как в самом водоеме, так и за его пределами. Причем волнение водоема воспринимается и пелагическими, и донными рыбами. Реакция на поверхностные волны со стороны рыбы бывает двух типов: рыба опускается на большую глубину или перемешается на другой участок водоема. Стимулом, действующим на тело рыбы в период волнения водоема, является движение воды относительно тела рыбы. Перемещение воды при ее волнении рецептируется акустико-латеральной системой, причем чувствительность боковой линии к волнам чрезвычайно высока. Так, для возникновения афферентации от боковой линии достаточно смешения купулы на 0,1 мкм. При этом рыба способна очень точно локализовать как источник волнообразования, так и направление распространения волны. Пространственная диаграмма чувствительности рыб видоспецифична (рис. 2.26).

В экспериментах использовали искусственный волнообразователь как очень сильный раздражитель. При изменении его местоположения рыбы безошибочно находили очаг возмущения. Реакция на источник волн состоит из двух фаз.

Первая фаза - фаза замирания - является результатом ориентировочной реакции (врожденного исследовательского рефлекса). Продолжительность этой фазы определяется многими факторами, наиболее существенными из которых являются высота волны и глубина погружения рыбы. Для карповых рыб (карп, карась, плотва) при высоте волны 2-12 мм и погружении рыб на 20-140 мм ориентировочный рефлекс занимал 200-250 мс.

Вторая фаза - фаза движения - условно-рефлекторная реакция вырабатывается у рыб довольно быстро. Для интактных рыб достаточно от двух до шести подкреплений для ее возникновений у ослепленных рыб после шести сочетаний волнообразования пищевого подкрепления вырабатывался устойчивый поисковый пищедобывающий рефлекс.

Большей чувствительностью к поверхностной волне отличаются Мелкие пелагические планктонофаги, меньшей - крупные донные рыбы. Так, ослепленные верховки при высоте волны всего 1- 3 мм уже после первого предъявления стимула демонстрировали ориентировочную реакцию. Для морских донных рыб характерна чувствительность к сильному волнению на поверхности моря. На глубине 500 м их латеральная линия возбуждается, когда высота волны достигает 3 м и длины 100 м. Как правило, волны на поверхности моря порождают качку Поэтому при волнении в возбуждение приходит не только боковая линия рыбы, но и ее лабиринт. Результаты экспериментов по, казали, что полукружные каналы лабиринта реагируют на вращательные движения, в которые водяные потоки вовлекают тело рыбы. Утрикулюс рецептирует линейное ускорение, возникающее в процессе качки. Во время шторма меняется поведение как одиночных, так и стайных рыб. При слабом шторме пелагические виды в прибрежной зоне опускаются в придонные слои. При сильном волнении рыбы мигрируют в открытое море и уходят на большую глубину, где влияние волнения менее заметно. Очевидно, что сильное волнение оценивается рыбами как неблагоприятный или даже опасный фактор. Он подавляет пищевое поведение и вынуждает рыб совершать миграции. Алогичные изменения в пищевом поведении наблюдаются и у видов рыб, обитающих во внутренних водоемах. Рыболовы знают, что при волнении моря клев рыбы прекращается.

Таким образом, водоем, в котором обитает рыба, является источником разнообразной информации, передаваемой по нескольким каналам. Такая информированность рыбы о колебаниях внешней среды позволяет ей своевременно и адекватно реагировать на них локомоторными реакциями и изменением вегетативных функций.

Сигналы рыб. Очевидно, что рыбы сами являются источником разнообразных сигналов. Они издают звуки в диапазоне частот от 20 Гц до 12 кГц, оставляют химический след (феромоны, кайромоны), имеют собственные электрические и гидродинамические поля. Акустические и гидродинамические поля рыбы создают различными способами.

Издаваемые рыбами звуки довольно разнообразны, однако из-за низкого давления зафиксировать их можно лишь при помощи специальной высокочувствительной техники. Механизм формирования звуковой волны у разных видов рыб может быть различным (табл. 2.5).

2.5. Звуки рыб и механизм их воспроизведения

Звуки рыб видоспецифичны. Кроме того, характер звука зависят от возраста рыбы и ее физиологического состояния. Звуки, исходящие от стаи и от отдельных рыб, также хорошо различимы. Например, звуки, издаваемые лещом, напоминают хрипы. Звуковая картина стаи сельдей ассоциируется с писком. Морской петух Черного моря издает звуки, напоминающие кудахтанье курицы. Пресноводный барабанщик идентифицирует себя барабанной дробью. Плотва, вьюн, щитовка издают писки, доступные для восприятия невооруженным ухом.

Пока трудно однозначно охарактеризовать биологическое значение издаваемых рыбами звуков. Часть из них является шумовым фоном. Внутри популяций, стай, а также между половыми партнерами издаваемые рыбами звуки могут выполнять и коммуникативную функцию.

Шумопеленгация успешно применяется в промышленном рыболовстве. Превышение звукового фона рыб над окружающими шумами составляет не более 15 дБ. Шумовой фон судна может десятикратно превышать рыбный звуковой пейзаж. Поэтому пеленг рыб возможен только с тех судов, которые могут работать в режиме "тишины", т. е. с заглушенными двигателями.

Таким образом, известное выражение "нем, как рыба" явно не соответствует действительности. Все рыбы имеют совершенный аппарат звуковой рецепции. Кроме того, рыбы являются источниками акустических и гидродинамических полей, которыми они активно пользуются для общения внутри стаи, обнаружения жертвы, предупреждения сородичей о возможной опасности и других целей.



Поговорка «нем как рыба», с научной точки зрения давно утратило свою актуальность. Доказано, что рыбы умеют не только сами издавать звуки, но и слышать их. В течение долгого времени велись споры вокруг того, слышат ли рыбы. Сейчас ответ ученых известен и однозначен – рыбы не только обладают способностью слышать и имеют для этого соответствующие органы, но и сами посредством звуков в том числе могут между собой общаться.

Немного теории о сущности звука

Физиками давно установлено, что звук является ни чем иным, как цепочкой регулярно повторяющихся волн сжатия среды (воздушной, жидкой, твердой). Иначе говоря, звуки в воде являются столь же естественными, что и на ее поверхности. В воде звуковые волны, скорость которых обусловлена силой сжатия, могут распространяться различной частотой:

  • большинство рыб воспринимает звуковые частоты в диапазоне 50-3000 Гц,
  • вибрации и инфразвук, относящие к низкочастотным колебаниям до 16 Гц, воспринимают не все рыбы,
  • способны ли рыбы воспринимать ультразвуковые волны, частота которых превышает 20000 Гц) – этот вопрос до конца еще не изучен, поэтому убедительные доказательства относительно наличия у подводных обитателей такой способности не получены.

Известно, что в воде звук распространяется вчетверо быстрее, нежели в воздухе или другой газообразной среде. Это – причина того, что звуки, которые поступают в воду извне, рыбы получают в искаженном виде. По сравнению с обитателями суши у рыб слух не столь острый. Однако эксперименты зоологов выявили очень интересные факты: в частности, некоторые виды раб умеют различать даже полутона.

Более подробно о боковой линии

Этот орган у рыб ученые относят к древнейшим сенсорным образованиям. Его можно считать универсальным, поскольку он выполняет не одну, а сразу несколько функций, обеспечивающих нормальную жизнедеятельность рыб.

Морфология латеральной системы не одинакова у всех видов рыб. Существуют ее варианты:

  1. Уже само расположение боковой линии на корпусе рыбы может относиться к специфичному признаку вида,
  2. Кроме того, известны виды рыб с двумя и более латеральными линиями по обеим сторонам,
  3. У костистых рыб боковая линия, как правило, проходит вдоль тела. У одних она непрерывная, у других – прерывистая и похожа на пунктир,
  4. У одних видов каналы латеральной линии спрятаны внутри кожи либо проходят открыто по поверхности.

Во всем остальном строение этого сенсорного органа у рыб идентично и функционирует он у всех видов рыб одинаково.

Этот орган реагирует не только на сжатие воды, но и на иные раздражители: электромагнитные, химические. Главную роль в этом играют невромасты, состоящие из, так называемых, волосковых клеток. Сама же структура невромастов это – капсула (слизистая часть), в которую и погружены собственно волоски чувствительных клеток. Поскольку сами невромасты закрыты, с внешней средой они соединены через микроотверстия в чешуе. Как мы знаем, невромасты бывают и открытым. Эти характерны для тех видов рыб, у которых каналов боковой линии заходят на голову.

В ходе многочисленных опытов, проводимых ихтиологами в разных странах было доподлинно установлено, что латеральная линия воспринимает низкочастотные колебания, причем, не только звуковые, но волны от движения других рыб.

Как органы слуха предупреждают рыб об опасности

В живой природе, как, в прочем, и в домашнем аквариуме, рыбы предпринимают адекватные меры, заслышав самые отдаленные звуки опасности. Пока шторм в этом районе моря или океана еще только зарождается, рыбы загодя меняют свое поведение – одни виды, опускаются на дно, где колебания волн наименьшие; другие мигрирую в спокойные локации.

Нехарактерные колебания воды расцениваются обитателями морей, как приближающаяся опасности и не отреагировать на нее они не могут, поскольку инстинкт самосохранения свойствен всему живому на нашей планете.

В реках поведенческие реакции рыб могут быть иными. В частности, при малейшем волнении воды (от лодки, например) рыба перестает есть. Это спасает ее от риска попасть на крючок к рыбаку.

  • Читать: Многообразие рыб: форма, размер, цвет

Орган равновесия и слуха

  • Читать дополнительно: Органы чувств рыб

Круглоротые и рыбы имеют парный орган равновесия и слуха, который представлен внутренним ухом (или перепончатым лабиринтом) и расположен в слуховых капсулах задней части черепа. Перепончатый лабиринт состоит из двух мешочков: 1) верхний овальный; 2) нижний круглый.

У хрящевых лабиринт разделен на овальный и круглый мешочки не полностью. У многих видов от круглого мешочка отходит вырост (лагена), представляющий собой зачаток улитки. От овального мешочка во взаимно перпендикулярных плоскостях отходят три полукружных канала (у миног – 2, у миксин – 1). На одном конце полукружных каналов имеется расширение (ампула). Полость лабиринта заполнена эндолимфой. От лабиринта отходит эндолимфатический проток, который у костистых рыб заканчивается слепо, а у хрящевых сообщается с наружной средой. Внутреннее ухо имеет волосковые клетки, которые являются окончаниями слухового нерва и расположены участками в ампулах полукружных каналов, мешочках и лагене. В перепончатом лабиринте есть слуховые камешки, или отолиты. Они располагаются по три с каждой стороны: один, самый крупный, отолит – в круглом мешочке, второй – в овальном, третий – в лагене. На отолитах хорошо видны годовые кольца, по которым у некоторых видов рыб определяют возраст (корюшка, ерш и др.).

Верхняя часть перепончатого лабиринта (овальный мешочек с полукружными каналами) выполняет функцию органа равновесия, нижняя часть лабиринта воспринимает звуки. Любое изменение положения головы вызывает движение эндолимфы и отолитов и раздражает волосковые клетки.

Рыбы воспринимают в воде звуки в диапазоне от 5 Гц до 15 кГц, звуки более высоких частот (ультразвуки) рыбами не воспринимаются. Рыбы воспринимают звуки также и с помощью органов чувств системы боковой линии. Чувствительные клетки внутреннего уха и боковой линии имеют сходное строение, иннервируются ветвями слухового нерва и относятся к единой акустиколатеральной системе (центр в продолговатом мозгу). Боковая линия расширяет диапазон волн и позволяет воспринимать низкочастотные звуковые колебания (5–20 Гц), вызываемых землетрясениями, волнами и т.д.

Чувствительность внутреннего уха повышается у рыб с плавательным пузырем, который является резонатором и рефлектором звуковых колебаний. Соединение плавательного пузыря с внутренним ухом осуществляется при помощи Веберова аппарата (система 4 косточек) (у карповых), слепых выростов плавательного пузыря (у сельдевых, тресковых) или особых воздушных полостей. Наиболее чувствительными к звукам являются рыбы, имеющие Веберов аппарат. При помощи плавательного пузыря, связанного с внутренним ухом, рыбы способны воспринимать звуки низких и высоких частот.

Н. В. ИЛЬМАСТ. ВВЕДЕНИЕ В ИХТИОЛОГИЮ. Петрозаводск, 2005

Loading...Loading...