Число Пи — интересная информация. Кто открыл число пи. История числа пи

Введение

В статье присутствуют математические формулы, поэтому для чтения перейдите на сайт для их корректного отображения. Число \(\pi \) имеет богатую историю. Данная константа обозначает отношение длины окружности к ее диаметру.

В науке число \(\pi \) используют в любых расчетах, где есть окружности. Начиная от объема банки газировки, до орбит спутников. И не только окружности. Ведь в изучении кривых линий число \(\pi \) помогает понять периодические и колебательные системы. Например, электромагнитные волны и даже музыку.

В 1706 году в книге «Новое введение в математику» британского ученого Уильяма Джонса (1675-1749 гг.) для обозначения числа 3,141592… впервые была использована буква греческого алфавита \(\pi \). Это обозначение происходит от начальной буквы греческих слов περιϕερεια – окружность, периферия и περιµετρoς – периметр. Общепринятым обозначение стало после работ Леонарда Эйлера в 1737 году.

Геометрический период

Постоянство отношения длины любой окружности к её диаметру было замечено уже давно. Жители Междуречья применяли довольно грубое приближение числа \(\pi \). Как следует из древних задач, в своих расчетах они используют значение \(\pi ≈ 3 \).

Более точное значение для \(\pi \) использовали древние египтяне. В Лондоне и Нью-Йорке хранятся две части древнеегипетского папируса, который называют «папирус Ринда». Папирус был составлен писцом Армесом примерно между 2000-1700 гг. до н.э.. Армес в своем папирусе написал, что площадь круга с радиусом \(r\) равна площади квадрата со стороной, равной \(\frac{8}{9} \) от диаметра окружности \(\frac{8}{9} \cdot 2r \), то есть \(\frac{256}{81} \cdot r^2 = \pi r^2 \). Отсюда \(\pi = 3,16\).

Древнегреческий математик Архимед (287-212 гг. до н.э.) впервые поставил задачу измерения круга на научную почву. Он получил оценку \(3\frac{10}{71} < \pi < 3\frac{1}{7}\), рассмотрев отношение периметров вписанного и описанного 96-угольника к диаметру окружности. Архимед выразил приближение числа \(\pi \) в виде дроби \(\frac{22}{7}\), которое до сих называется архимедовым числом.

Метод достаточно простой, но при отсутствии готовых таблиц тригонометрических функций потребуется извлечение корней. Кроме этого, приближение сходится к \(\pi \) очень медленно: с каждой итерацией погрешность уменьшается лишь вчетверо.

Аналитический период

Несмотря на это, до середины 17 века все попытки европейских учёных вычислить число \(\pi \) сводились к увеличению сторон многоугольника. Так например, голландский математик Лудольф ван Цейлен (1540-1610 гг.) вычислил приближенное значение числа \(\pi \) с точностью до 20-ти десятичных цифр.

На вычисление ему понадобилось 10 лет. Удваивая по методу Архимеда число сторон вписанных и описанных многоугольников, он дошел до \(60 \cdot 2^{29} \) – угольника с целью вычисления \(\pi \) с 20 десятичными знаками.

После смерти в его рукописях были обнаружены ещё 15 точных цифр числа \(\pi \). Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число \(\pi \) иногда называли «лудольфовым числом» или «константой Лудольфа».

Одним из первых, кто представил метод, отличный от метода Архимеда, был Франсуа Виет (1540-1603 гг.). Он пришел к результату , что круг, диаметр которого равен единице, имеет площадь:

\[\frac{1}{2 \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}} } \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} \cdots }}}} \]

С другой стороны, площадь равна \(\frac{\pi}{4} \). Подставив и упростив выражение, можно получить следующую формулу бесконечного произведения для вычисления приближенного значения \(\frac{\pi}{2} \):

\[\frac{\pi}{2} = \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2 + \sqrt{2}}} \cdot \frac{2}{\sqrt{2+ \sqrt{2 + \sqrt{2}}}} \cdots \]

Полученная формула представляет собой первое точное аналитическое выражение для числа \(\pi \). Кроме этой формулы, Виет, используя метод Архимеда, дал с помощью вписанных и описанных многоугольников, начиная с 6-угольника и заканчивая многоугольником с \(2^{16} \cdot 6 \) сторонами приближение числа \(\pi \) с 9 правильными знаками.

Английский математик Уильям Броункер (1620-1684 гг.), используя цепную дробь , получил следующие результаты вычисления \(\frac{\pi}{4}\):

\[\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \frac{9^2}{2 + \frac{11^2}{2 + \cdots }}}}}} \]

Данный метод вычисления приближения числа \(\frac{4}{\pi} \) требует довольно больших вычислений, чтобы получить хотя бы небольшое приближение.

Получаемые в результате подстановки значения то больше, то меньше числа \(\pi \), и каждый раз все ближе к истинному значению, но для получения значения 3,141592 потребуется совершить довольно большие вычисления.

Другой английский математик Джон Мэчин (1686-1751 гг.) в 1706 году для вычисления числа \(\pi \) со 100 десятичными знаками воспользовался формулой, выведенной Лейбницем в 1673 году, и применил её следующим образом:

\[\frac{\pi}{4} = 4 arctg\frac{1}{5} – arctg\frac{1}{239} \]

Ряд быстро сходится и с его помощью можно вычислить число \(\pi \) с большой точностью. Формулы подобного типа использовались для установки нескольких рекордов в эпоху компьютеров.

В XVII в. с началом периода математики переменной величины наступил новый этап в вычислении \(\pi \). Немецкий математик Готфрид Вильгельм Лейбниц (1646-1716 гг.) в 1673 году нашел разложение числа \(\pi \), в общем виде его можно записать следующим бесконечным рядом:

\[ \pi = 1 – 4(\frac{1}{3} + \frac{1}{5} – \frac{1}{7} + \frac{1}{9} – \frac{1}{11} + \cdots) \]

Ряд получается при подстановке x = 1 в \(arctg x = x – \frac{x^3}{3} + \frac{x^5}{5} – \frac{x^7}{7} + \frac{x^9}{9} – \cdots\)

Леонард Эйлер развивает идею Лейбница в своих работах, посвященных использованию рядов для arctg x при вычислении числа \(\pi \). В трактате «De variis modis circuli quadraturam numeris proxime exprimendi» (О различных методах выражения квадратуры круга приближенными числами), написанном в 1738 году, рассматриваются методы усовершенствования вычислений по формуле Лейбница.

Эйлер пишет о том, что ряд для арктангенса будет сходиться быстрее, если аргумент будет стремиться к нулю. Для \(x = 1\) сходимость ряда очень медленная: для вычисления с точностью до 100 цифр необходимо сложить \(10^{50}\) членов ряда. Ускорить вычисления можно, уменьшив значение аргумента. Если принять \(x = \frac{\sqrt{3}}{3}\), то получается ряд

\[ \frac{\pi}{6} = artctg\frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3}(1 – \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} – \frac{1}{7 \cdot 3^3} + \cdots) \]

По утверждению Эйлера, если мы возьмем 210 членов этого ряда, то получим 100 верных знаков числа. Полученный ряд неудобен, потому что необходимо знать достаточно точное значение иррационального числа \(\sqrt{3} \). Также Эйлер в своих вычислениях использовал разложения арктангенсов на сумму арктангенсов меньших аргументов :

\[где x = n + \frac{n^2-1}{m-n}, y = m + p, z = m + \frac{m^2+1}{p} \]

Далеко не все формулы для вычисления \(\pi \), которые использовал Эйлер в своих записных книжках, были опубликованы. В опубликованных работах и записных книжках он рассмотрел 3 различных ряда для вычисления арктангенса, а также привел множество утверждений, касающихся количества суммируемых членов, необходимых для получения приближенного значения \(\pi \) c заданной точностью.

В последующие годы уточнения значения числа \(\pi \) происходили все быстрее и быстрее. Так, например, в 1794 году Георг Вега (1754-1802 гг.) определил уже 140 знаков , из который только 136 оказались верными.

Период компьютерных вычислений

XX век ознаменован совершенно новым этапом в вычислении числа \(\pi \). Индийский математик Сриниваса Рамануджан (1887-1920 гг.) обнаружил множество новых формул для \(\pi \). В 1910 году он получил формулу для вычисления \(\pi \) через разложение арктангенса в ряд Тейлора:

\[\pi = \frac{9801}{2\sqrt{2} \sum\limits_{k=1}^{\infty} \frac{(1103+26390k) \cdot (4k)!}{(4\cdot99)^{4k} (k!)^2}} .\]

При k=100 достигается точность в 600 верных цифр числа \(\pi \).

Появление ЭВМ позволило существенно увеличить точность получаемых значений за более короткие сроки. В 1949 году всего за 70 часов с помощью ENIAC группа ученых под руководством Джона фон Неймана (1903-1957 гг.) получила 2037 знаков после запятой числа \(\pi \) . Давид и Грегорий Чудновские в 1987 году получили формулу, с помощью которой смогли установить несколько рекордов в вычислении \(\pi \):

\[\frac{1}{\pi} = \frac{1}{426880\sqrt{10005}} \sum\limits_{k=1}^{\infty} \frac{(6k)!(13591409+545140134k)}{(3k)!(k!)^3(-640320)^{3k}}.\]

Каждый член ряда дает по 14 цифр. В 1989 году было получено 1 011 196 691 цифр после запятой. Данная формула хорошо подходит для вычисления \(\pi \) на персональных компьютерах. На данный момент братья являются профессорами в политехническом институте Нью-Йоркского университета.

Важным событием недавнего времени стало открытие формулы в 1997 году Саймоном Плаффом . Она позволяет извлечь любую шестнадцатеричную цифру числа \(\pi \) без вычисления предыдущих. Формула носит название «Формула Бэйли – Боруэйна – Плаффа» в честь авторов статьи, где формула была впервые опубликована. Она имеет следующий вид:

\[\pi = \sum\limits_{k=1}^{\infty} \frac{1}{16^k} (\frac{4}{8k+1} – \frac{2}{8k+4} – \frac{1}{8k+5} – \frac{1}{8k+6}) .\]

В 2006 году Саймон, используя PSLQ, получил несколько красивых формул для вычисления \(\pi \). Например,

\[ \frac{\pi}{24} = \sum\limits_{n=1}^{\infty} \frac{1}{n} (\frac{3}{q^n – 1} – \frac{4}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

\[ \frac{\pi^3}{180} = \sum\limits_{n=1}^{\infty} \frac{1}{n^3} (\frac{4}{q^{2n} – 1} – \frac{5}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

где \(q = e^{\pi}\). В 2009 году японские ученые, используя суперкомпьютер T2K Tsukuba System, получили число \(\pi \) c 2 576 980 377 524 десятичными знаками после запятой. Вычисления заняли 73 часа 36 минут. Компьютер был оснащен 640-ка четырех ядерными процессорами AMD Opteron, что обеспечило производительность в 95 триллионов операций в секунду.

Следующее достижение в вычислении \(\pi \) принадлежит французскому программисту Фабрису Беллару , который в конце 2009 года на своем персональном компьютере под управлением Fedora 10 установил рекорд, вычислив 2 699 999 990 000 знаков после запятой числа \(\pi \). За последние 14 лет это первый мировой рекорд, который поставлен без использования суперкомпьютера. Для высокой производительности Фабрис использовал формулу братьев Чудновских. В общей сложности вычисление заняло 131 день (103 дня расчеты и 13 дней проверка результата). Достижение Беллара показало, что для таких вычислений не обязательно иметь суперкомпьютер.

Всего через полгода рекорд Франсуа был побит инженерами Александром Йи и Сингеру Кондо. Для установления рекорда в 5 триллионов знаков после запятой числа \(\pi \) был также использован персональный компьютер, но уже с более внушительными характеристиками: два процессора Intel Xeon X5680 по 3,33 ГГц, 96 ГБ оперативной памяти, 38 ТБ дисковой памяти и операционная система Windows Server 2008 R2 Enterprise x64. Для вычислений Александр и Сингеру использовали формулу братьев Чудновских. Процесс вычисления занял 90 дней и 22 ТБ дискового пространства. В 2011 году они установили еще один рекорд , вычислив 10 триллионов десятичных знаков числа \(\pi \). Вычисления происходили на том же компьютере, на котором был поставлен их предыдущий рекорд и занял в общей сложности 371 день. В конце 2013 года Александр и Сингеру улучшили рекорд до 12,1 триллиона цифр числа \(\pi \), вычисление которых заняло у них всего 94 дня. Такое улучшение в производительности достигнуто благодаря оптимизации производительности программного обеспечения, увеличения количества ядер процессора и значительного улучшения отказоустойчивости ПО.

Текущим рекордом является рекорд Александра Йи и Сингеру Кондо, который составляет 12,1 триллиона цифр после запятой числа \(\pi \).

Таким образом, мы рассмотрели методы вычисления числа \(\pi \), используемые в древние времена, аналитические методы, а также рассмотрели современные методы и рекорды по вычислению числа \(\pi \) на компьютерах.

Список источников

  1. Жуков А.В. Вездесущее число Пи – М.:Изд-во ЛКИ, 2007 – 216 с.
  2. Ф.Рудио. О квадратуре круга, с приложением истории вопроса, составленной Ф.Рудио. / Рудио Ф. – М.: ОНТИ НКТП СССР, 1936. – 235c.
  3. Arndt, J. Pi Unleashed / J. Arndt, C. Haenel. – Springer, 2001. – 270p.
  4. Шухман, Е.В. Приближенное вычисление числа Пи с помощью ряда для arctg x в опубликованных и неопубликованных работах Леонарда Эйлера / Е.В. Шухман. – История науки и техники, 2008 – №4. – С. 2-17.
  5. Euler, L. De variis modis circuli quadraturam numeris proxime exprimendi/ Commentarii academiae scientiarum Petropolitanae. 1744 – Vol.9 – 222-236p.
  6. Шумихин, С. Число Пи. История длиною в 4000 лет / С. Шумихин, А. Шумихина. – М.: Эксмо, 2011. – 192с.
  7. Борвейн, Дж.М. Рамануджан и число Пи. / Борвейн, Дж.М., Борвейн П.Б. В мире науки. 1988 – №4. – С. 58-66.
  8. Alex Yee. Number world. Access mode: numberworld.org

Понравилось?

Расскажи

История числа π

Подготовили:

Борцов Илья, Саакян Цовак

900igr.net



2 знака после запятой:

510 знаков после запятой:

π ≈ 3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 820 974 944 592 307 816 406 286 208 998 628 034 825 342 117 067 982 148 086 513 282 306 647 093 844 609 550 582 231 725 359 408 128 481 117 450 284 102 701 938 521 105 559 644 622 948 954 930 381 964 428 810 975 665 933 446 128 475 648 233 786 783 165 271 201 909 145 648 566 923 460 348 610 454 326 648 213 393 607 260 249 141 273 724 587 006 606 315 588 174 881 520 920 962 829 254 091 715 364 367 892 590 360 011 330 530 548 820 466 521 384 146 951 941 511 609 433 057 270 365 759 591 953 092 186 117 381 932 611 793 105 118 548 074 462 379 962 749 567 351 885 752 724 891 227 938 183 011 949 129 833 673 362…


Первый шаг в изучении свойств числа π сделал Архимед. В сочинении «Измерение круга» он вывел знаменитое неравенство:

Это означает, что π лежит в интервале длиной 1/497. В десятичной системе счисления получаются три правильных значащих цифры: π = 3,14…. Зная периметр правильного шестиугольника и последовательно удваивая число его сторон, Архимед вычислил периметр правильного 96-угольника, откуда и следует неравенство. 96-угольник визуально мало отличается от окружности и является хорошим приближением к ней.

В том же сочинении, последовательно удваивая число сторон квадрата, Архимед нашел формулу площади круга S = π R 2. Позднее он дополнил ее также формулами площади сферы S = 4 π R 2 и объема шара V = 4/3 π R 3.

В древнекитайских трудах попадаются самые разные оценки, из которых самая точная - это известное китайское число 355/113. Цзу Чунчжи (V век) даже считал это значение точным.


Лудольф ван Цейлен (1536-1610)

затратил десять лет на вычисление числа π с 20-ю десятичными цифрами (этот результат был опубликован в 1596 году). Применив метод Архимеда, он довёл удвоение до n -угольника, где n =60·229. Изложив свои результаты в сочинении «Об окружности», Лудольф закончил его словами: «У кого есть охота, пусть идёт дальше». После смерти в его рукописях были обнаружены ещё 15 точных цифр числа π. Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число π иногда называли «лудольфовым числом».


Заметим, что формула длины окружности и три формулы Архимеда (для площади круга, площади сферы и объема шара) не являются конструктивными - они не содержат способа вычисления входящего в эти формулы числа π. Если применить известные в интегральном исчислении методы нахождения длины кривой, площади поверхности и объема тела к формулам для окружности, круга, сферы и шара, то можно доказать, что в каждой из этих формул π задается интегралом:

Существующие методы вычисления интегралов позволяют таким образом находить π.




Известно много формул с числом π:

Франсуа Виет:

Формула Валлиса:

Тождество Эйлера:

Интегральный синус:


Но загадка таинственного числа не разрешена вплоть до сегодняшнего дня, хотя по-прежнему волнует ученых. Попытки математиков полностью вычислить всю числовую последовательность часто приводят к курьезным ситуациям. Например, математики братья Чудновские в Политехническом Университете Бруклина специально с этой целью сконструировали суперскоростной компьютер. Однако установить рекорд им не удалось пока рекорд принадлежит японскому математику Ясумаса Канада, который смог вычислить 1,2 биллиона чисел бесконечной последовательности.


  • Неофициальный праздник «День числа Пи» отмечается 14 марта, которое в американском формате дат (месяц/день) записывается как 3 / 14, что соответствует приближённому значению числа π.
  • Ещё одной датой, связанной с числом π, является 22 июля, которое называется «Днём приближённого числа Пи», так как в европейском формате дат этот день записывается как 22/7, а значение этой дроби является приближённым значением числа π.
  • Мировой рекорд по запоминанию знаков числа π принадлежит японцу Акира Харагути (Akira Haraguchi). Он запомнил число π до 100-тысячного знака после запятой. Ему понадобилось почти 16 часов, чтобы назвать всё число целиком.
  • Германский король Фридрих Второй был настолько очарован этим числом, что посвятил ему… целый дворец Кастель дель Монте, в пропорциях которого можно вычислить Пи. Сейчас волшебный дворец находится под охраной ЮНЕСКО.

Tatiana Durimanova

Я создала на Facebook страницу b назвала ее «Язык как философия жизни». Вообще-то мне хотелось назвать ее «Записки из сумасшедшего дома», ибо что иное, как не сумасшедший дом представляет собой наша современная жизнь? Нет, я не собираюсь говорить о том, что все куда-то бегут, что-то не успевают сделать, чего-то вечно не хватает: времени, денег, и т.д. Что нас захлестнула волна непонимания того, что происходит вокруг, куда катится мир…
Крутимся, как белки в колесе. Ощущаем, что бежим по замкнутому кругу. Теряем круг друзей, попадаем в порочный круг… Знакомо? А утро-день-вечер-ночь, и снова по кругу. Весна-лето-осень-зима, и опять по кругу.
Кстати, кто может точно сказать в какое конкретно время утро сменят ночь, зима, весну? Можно ли вообще проводить четкую разделительную грань между курицей и яйцом, и разделимы ли они? Может лучше признать, что яйцо – это потенциальная курица, курица – это потенциальное яйцо, и они не разделимы. Где кончаюсь я и начинаются мои проблемы, проблемы моих детей, друзей и пр., становящихся моими, просто потому, что мы живем в одной квартире, доме, городе, мире? Разве Господь-Бог сказал нам, что ноль часов нужно определять по Гринвичу, что меня нужно назвать Татьяной, а стул стулом? Где кончается мир реальный (вещественный), и начинается мир, выдуманный нами?
Земля вращается вокруг оси и по орбите (кругу, эллипсу – какая разница?). Галактики вращаются. Ученые открыли торсионные поля, доказали, что … «согласно теории относительности Альберта Эйнштейна, мир устроен не совсем так [как нас учили и учат в школе]), в нём наблюдается искривление пространства, так что две прямые, которые на данном участке пространства параллельны, на каком-то отрезке своей протяжённости, могут пересекаться. Недавно предположение Эйнштейна об искривлении пространства было подтверждено экспериментально» (Александр Бабицкий).
А мы все движемся из пункта А в пункт В, полагая, что они находятся на прямой линии.
И чего это меня, лингвиста, занесло в физику, спросите вы? Да потому что все вокруг нас, и в нас самих и есть физика. Язык есть физика. Разве звук не относится к области физики? А теперь скажите мне, что такое гласный звук? Я вам предлагаю «милое» для 21 века определение звуков: «Звуки мы произносим и слышим, а буквы пишем и видим. При произнесении гласного звука воздух не встречает преград: [а], [о], [у], [и], [ы], [э]. При произнесении согласного звука воздух встречает преграду: губы, зубы, язык. Согласный звук произносится с голосом и шумом или только с шумом.»
В принципе, все верно. Вы можете просто мычать «гласным звуком», не размыкая губ. Мычите на здоровье. А вот если, вы губы разомкнули, то у вас получаются знакомые нам всем звуке, «а», «э», которые различаются лишь степенью округленности, растягивания или вытягивания в трубочку губ. Согласны? Это как арбуз, который можно нарезать ломтиками, кубиками, фигурками, но он ведь не перестает оставаться арбузом!!! И в какой момент звук «а» превращается в «о»? Разве есть четкая граница? Конечно, на качество гласного звука может повлиять положение языка (задние звуки), опускание челюсти, опять же с соответствующим положением языка, но это все тот же арбуз, нарезанный фигурками.
Согласный звук есть барьер на пути гласного звука. Чем можно создать такой барьер? Читайте выше: губами, зубами, языком. Другими словами, инструментарий речи довольно ограничен, но какое обилие языков!!! (А как вам нравятся 7 нот и такое обилие музыки?)
Теперь давайте задумаемся, у кошки этот инструментарий есть, и у собаки, и у дельфина, да и вообще рыб, и т.д.…
«Ну и заехала», — скажете вы. Да, заехала! А разве не было времени, когда Землю считали блином? А разве электричество не существует просто потому, что мы его не видим и не слышим? Если доказано, что вакуума нет, значит есть все, но это все может быть различимо, опять же, в зависимости от инструментария, который мы используем для рассмотрения и изучения объекта. По мере его совершенствования, мы узнаем все больше нового, чего раньше даже и помыслить не могли.
Язык есть формализация мысли. А где формализуется мысль? Что мы знаем о нашем мире, о самих себе? Мы ищем иные миры, не зная собственного! В этом-то и заключается проблема!
Что мы знаем о языке, кроме того, что он формализуется в звуках. Пожалуйста, формализуйте – куммммарама. Что это? Ничего, потому что гласный звук может «нести на себе» лишь определенное количество согласных звуков, также как я, при моем весе в 50 кг не смогу поднять груз в 150 кг. Физика, понимаете ли!
Теперь обратимся к кривизне пространства и кругу, с которых мы начали. Допустим, мы усомнились в том, что язык развивается не по спирали (в плане контекста), а прямолинейно, и я сообщаю вам, что «в нашем большом городе есть главная улица пересекающая весь город на которой растет много деревьев ходит много людей…». Дурость, скажите вы, где здесь знаки препинания? Где запятые и точки?
Но что есть знаки препинания? Они и есть знаки разделения между подлежащим-сказуемым дополнением (с относящимися к ним определениями) одного предложения и начала другого. Причастие есть ни что иное, как умножение: которая проходит = проходящая, в то время как разворачивание «проходящая» на «которая проходит» – это уже деление. А это уже математика! Ничего удивительного. Мир неделим. Это целостность. Язык тоже – целостность. Нам просто пора взглянуть на все по-новому. Проснуться и оглядеться. Учить детей не правилам, наподобие «Существует отдельная группа слов — предикативы (или категория состояния). Это слова, обозначающие нединамическое состояние и выступающие в функции главного члена (сказуемого, предиката) односоставного безличного предложения. Учёные до сих пор не определились относительно статуса слов категории состояния. Так вот слово НАДО наряду с другими словами (жаль, охота, недосуг, пора и др.) входит в эту группу слов.»
Вы поняли, о чем это? Я нет! Для кого это написано? Наверное, для учеников. Бедные ученики! Если даже ученые до сих пор чего-то там не поняли, то как это должны понимать дети? Интересно, учителя, хотя бы, выучили наизусть такое определение?
Вот для этого я и создала свой канал на YouTube, чтобы просто (человеческим языком) рассказать о главном – о языке.
Если по прочтению, вам все это (написанное, кстати наспех), покажется бредом, не спешите сообщать мне о том, что я ненормальная. Я ведь и назвала это записками и сумасшедшего дома. Если вам это кажется ненормальным, значит вы живете в доме – напротив. Я его определять не собираюсь. Живем в стране победившей демократии и … ценностей. Каждый имеет право на свое мнение.

С тех пор, как у людей появилась возможность считать и они начали исследовать свойства абстрактных объектов, называемых числами, поколения пытливых умов совершали завораживающие открытия. По мере того как наши знания о числах увеличивались, некоторые из них привлекали особое внимание, а некоторым даже придавали мистические значения. Был , который обозначает ничего, и который при умножении на любое число дает себя. Была , начало всего, также обладающая редкостными свойствами, простые числа. Затем обнаружили, что существуют числа, которые не являются целыми, а иногда получаются в результате деления двух целых чисел, — числа рациональные. Иррациональные числа, которые не могут быть получены как отношение целых чисел, и т.д. Но если и есть число, которое очаровало и вызвало написание массы трудов, то это (пи). Число, которое, несмотря на долгую историю, не называли так, как мы называем его сегодня, до восемнадцатого века.

Начало

Число пи получается делением длины окружности на ее диаметр. При этом размер окружности не важен. Большая или маленькая, отношение длины к диаметру одно и то же. Хотя вполне вероятно, что это свойство было известно ранее, самые первые свидетельства об этом знании — Московский математический папирус 1850 г. до н.э. и папирус Ахмеcа 1650 г. до н.э. (хотя это копия более старого документа). В нем имеется большое количество математических задач, в некоторых из которых приближается как , что чуть более чем на 0,6\% отличается от точного значения. Примерно в это же время вавилоняне считали равным . В Ветхом Завете, написанном более десяти столетий спустя, Яхве не усложняет жизнь и божественным указом устанавливает, что в точности равно .

Однако великими исследователями этого числа были древние греки, такие как Анаксагор, Гиппократ из Хиоса и Антифон из Афин. Ранее значение определялось, почти наверняка, с помощью экспериментальных измерений. Архимед был первым, кто понял, как теоретически оценить его значение. Использование описанного и вписанного многоугольников (больший описан около окружности, в которую вписан меньший) позволило определить, что больше и меньше . С помощью метода Архимеда другие математики получили лучшие приближения, и уже в 480 г. Цзу Чунчжи определил, что значения находится между и . Тем не менее метод многоугольников требует много вычислений (напомним, что все делалось вручную и не в современной системе счисления), так что у него не было будущего.

Представления

Нужно было дождаться XVII века, когда с открытием бесконечного ряда свершилась революция в вычислении , хотя первый результат не был рядом, это было произведение. Бесконечные ряды — это суммы бесконечного числа членов, образующих некоторую последовательность (например, все числа вида , где принимает значения от до бесконечности). Во многих случаях сумма конечна и может быть найдена различными методами. Оказывается, что некоторые из этих рядов сходятся к или некоторой величине, имеющей отношение к . Для того чтобы ряд сходился, необходимо (но не достаточно), чтобы с ростом суммируемые величины стремились к нулю. Таким образом, чем больше чисел мы складываем, тем точнее мы получаем значение . Теперь у нас есть две возможности получения более точного значения . Или сложить больше чисел, или найти другой ряд, сходящийся быстрее, так чтобы складывать меньшее количество чисел.

Благодаря этому новому подходу точность вычисления резко возросла, и в 1873 году Уильям Шенкс опубликовал результат многолетней работы, приведя значение с 707 десятичными знаками. К счастью, он не дожил до 1945 года, когда было обнаружено, что он сделал ошибку и все цифры, начиная с , были неправильными. Тем не менее, его подход был наиболее точным до появления компьютеров. Это была предпоследняя революция в вычислении . Математические операции, которые при выполнении их вручную занимают несколько минут, в настоящее время выполняются в доли секунды, причем ошибки практически исключены. Джону Ренчу и Л. Р. Смиту удалось вычислить 2000 цифр за 70 часов на первом электронном компьютере. Барьер в миллион цифр был достигнут в 1973 году.

Последнее (на данный момент) достижение в вычислении — открытие итерационных алгоритмов, которые сходятся к быстрее, чем бесконечные ряды, так что можно достичь намного более высокой точности при той же вычислительной мощности. Текущий рекорд составляет чуть более 10 триллионов верных цифр. Зачем же так точно вычислять ? Учитывая, что, зная 39 цифр этого числа, можно вычислить объем известной Вселенной с точностью до атома, не за чем… пока.

Некоторые интересные факты

Однако вычисление значения является лишь малой частью его истории. Это число обладает свойствами, благодаря которым эта константа столь любопытна.

Возможно, самой большой проблемой, связанной с , является известная задача о квадратуре круга, задача о построении с помощью циркуля и линейки квадрата, площадь которого равна площади данного круга. Квадратура круга мучила поколения математиков в течение двадцати четырех столетий, пока фон Линдеман не доказал, что — трансцендентное число (оно не является решением никакого полиномиального уравнения с рациональными коэффициентами) и, следовательно, невозможно объять необъятное. До 1761 г. не было доказано, что число иррациональное, то есть что не существует двух натуральных чисел и таких, что . Трансцендентность не была доказана до 1882 года, однако пока неизвестно, являются ли числа или ( — это еще одно иррациональное трансцендентное число) иррациональными. Появляется много соотношений, которые не связаны с окружностями. Это часть коэффициента нормализации нормальной функции, видимо, наиболее широко используемой в статистике. Как уже упоминалось ранее, число появляется как сумма многих рядов и равно бесконечным произведениям, оно важно и при изучении комплексных чисел. В физике его можно найти (в зависимости от применяемой системы единиц) в космологической постоянной (самая большая ошибка Альберта Эйнштейна) или константе постоянного магнитного поля. В системе счисления с любым основанием (в десятичной, двоичной…), цифры проходят все тесты на случайность, не наблюдается никакого порядка или последовательности. Дзета-функция Римана тесно связывает число с простыми числами. Это число имеет долгую историю и наверняка до сих пор хранит множество сюрпризов.

Одним из самых загадочных чисел, известных человечеству, безусловно, является число Π (читается - пи). В алгебре это число отражает величину соотношения длины окружности и ее диаметра. Ранее эту величину называли лудольфовым числом. Как и откуда взялось число Пи доподлинно не известно, но математики делят на 3 этапа всю историю числа Π, на древний, классический и эру цифровых компьютеров.

Число П - иррационально, то есть его нельзя представить в виде простой дроби, где числитель и знаменатель целые числа. Поэтому, такое число не имеет окончания и является периодическим. Впервые иррациональность П доказал И. Ламберт в 1761 году.

Кроме этого свойства, число П не может являться еще и корнем какого-нибудь многочлена, а потому является числом свойство, когда было доказано в 1882 году, положило конец почти сакральному спору математиков «о квадратуре круга», который продолжался на протяжении 2 500 лет.

Известно, что первым ввел обозначение этого числа британец Джонс в 1706 году. После того как появились труды Эйлера, использование такого обозначения стало общепринятым.

Чтобы детально разобраться, что такое число Пи, следует сказать, что его использование настолько широко, что трудно даже назвать область науки, в которой бы без него обходятся. Одно из самых простых и знакомых еще из школьной программы значений - это обозначение геометрического периода. Отношение длины круга к длине его диаметра является постоянной и равно 3, 14. Это значение было известно еще древнейшим математикам в Индии, Греции, Вавилоне, Египте. Наиболее ранний вариант вычисления соотношения относится к 1900 году до н. э. Более приближенное к современному значение П вычислил китайский ученый Лю Хуэй, кроме того, он изобрел и быстрый способ такого вычисления. Его величина оставалась общепринятой на протяжении почти 900 лет.

Классический период развития математики ознаменовался тем, что чтобы установить точно, что такое число Пи, ученые стали использовать методы математического анализа. В 1400-х годах индийский математик Мадхава использовал для вычисления теорию рядов и определил период числа П с точностью до 11 цифр после запятой. Первым европейцем, после Архимеда, который исследовал число П и внес значительный вклад в его обоснование, стал голландец Людольф ван Цейлен, который определил уже 15 цифр после запятой, а в завещании написал весьма занимательные слова: «…кому интересно - пусть идет дальше». Именно в честь этого ученого, число П и получило свое первое и единственное за всю историю именное название.

Эпоха компьютерных вычислений привнесла новые детали в понимание сущности числа П. Так, чтобы выяснить, что такое число Пи, в 1949 году впервые была использована вычислительная машина ЭНИАК, одним из разработчиков которой был будущий «отец» теории современных компьютеров Дж. Первое измерение велось на протяжении 70 часов и дало 2037 цифр после запятой в периоде числа П. Отметка в миллион знаков была достигнута в 1973 году. Кроме того, в этот период были установлены и другие формулы, отражающие число П. Так, братья Чудновские смогли найти такую, которая позволила вычислить 1 011 196 691 цифр периода.

Вообще следует отметить, что чтобы ответить на вопрос: "Что такое число Пи?", многие исследования стали напоминать соревнования. Сегодня уже суперкомпьютеры занимаются вопросом, какое же оно на самом деле, число Пи. интересные факты, связанные с этими исследованиями, пронизывают практически всю историю математики.

Сегодня, например, проводятся мировые чемпионаты по запоминанию числа П и фиксируются мировые рекорды, последний принадлежит китайцу Лю Чао, за сутки с небольшим, назвал 67 890 знаков. В мире есть даже праздник числа П, который отмечается как «День числа Пи».

По данным на 2011 год уже установлено 10 триллионов цифр периода числа.

Loading...Loading...