Содержание углекислого газа в атмосфере равно. Углекислый газ в атмосфере земли достиг самой высокой концентрации. Углекислый газ в природе: естественные источники

Подавляющее большинство специалистов в области вентиляции сходятся во мнении: углекислый газ является индикатором состояния воздуха (авторитетный пруф из АВОК). Много СО2 - значит, много и более вредных веществ (формальдегиды и прочая ядовитая органика, PM2.5 и т.д.). Это логично: ведь если вентиляция не справляется с воздухообменом, то в помещении накапливается и выдыхаемый нами СО2, и весь остальной «воздушный коктейль». Так что вполне резонно измерять концентрацию СО2 в воздухе, чтобы оценить качество этого самого воздуха.

Является ли углекислый газ таким же загрязнителем воздуха, как автомобильные выхлопы или промышленные выбросы? Исследования на эту тему противоречивы. Есть много статей про вред СО2 (пример раз , пример два). Меньше исследований, согласно которым углекислый газ практически безвреден, но и такие есть (пример). Если вам интересна эта тема, пишите в комментариях. В будущем мы можем сделать подробный литобзор о влиянии СО2 на здоровье человека.

Наше мнение - углекислый газ однозначно влияет на самочувствие человека (вялость, утомляемость, сонливость). Вспомните, как вы чувствуете себя в душном офисе или квартире с закрытыми окнами. Усредненное влияние СО2 на человека выглядит примерно так:

Как измерить количество СО2 в воздухе?

Уровень углекислого газа в воздухе измеряется в ppm: 1 ppm = 0.0001%, то есть одна миллионная доля. Для России 1400 ppm углекислого газа в воздухе - это уже недопустимое количество (согласно ГОСТу 30494-2011). В Америке общие стандарты ASHRAE (американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха) гласят: жалобы на головную боль начинаются с 2000 ppm.

В среднем по больнице получается такая картина:

  • 300 ppm – норма на улице на природе
  • 500 ppm – норма на улице в современном городе
  • 700-1500 ppm – норма в помещении, причем ближе к 1500 ppm уже начинаются жалобы на духоту, головную боль, вялость и т.д.
Последнее из вступительной части - название использованного датчика СО2. Это был Testo 480 .

Все, заканчиваем с введением. Приступаем непосредственно к измерением. Слово Михаилу Амелькину.

Транспорт


Трип начался с самолёта. Перелет Новосибирск-Москва, около 4 часов. Самолёт полный, аэробус А316. Весь полёт концентрация СО2 около 2000 ppm! Добавьте сюда слишком высокую температуру на борту (около 28°С) и пониженное давление (786 гПа против 1007 гПа на земле), и поймете, почему нас так «колбасит» после перелетов. Для сравнения, в аэропорту прилета около 700 ppm, то есть норма. На обратном пути летел в полупустом самолёте и ситуация была гораздо лучше – весь полёт до 1000 ppm, что приемлемо.

В метро все гораздо лучше. На самой станции под землёй 600 ppm. В старых, «дырявых» вагонах около 700 ppm. Вот в новых вагонах метро, где кондиционеры гоняют воздух по кругу, уже хуже – при неполной загрузке 1200 ppm. В набитом вагоне следует ожидать больше 2000 ppm. Но здесь стоит иметь в виду, что обычно в таких вагонах мы проводим мало времени, 10-20 минут, так что это не очень критично.

Улица


Сделал замер прямо на Красной Площади. Уровень около 450 ppm. Это выше, чем за городом, что, скорее всего, объясняется обилием транспорта, котельных и промышленности, которые активно выделяют в воздух СО2, создавая над городом «пузырь» углекислого газа. Но это не страшно. Пока.

Дом и отель


Мне повезло, и в моём номере всю ночь концентрация СО2 была меньше 600 ppm. Отлично! Я спал не в духоте. Это потому, что попросил номер с окном во двор и смог держать окно на микропроветривании, не просыпаясь от шума машин. Но вентиляции в номере нет, поэтому плата за свежий воздух тоже не малая - московский смог. Была бы вентиляшка с профессиональными фильтрами - было бы на пятерочку!

Надо сказать, что замеры в квартирах с закрытыми окнами часто показывают очень плохие результаты, пара человек в комнате запросто могут «надышать» 2000 ppm минут за 40-60. А окна обычно закрыты, чтобы не было сквозняков и шума с улицы. Вывод тот же, что и в случае с отелем – дома вентиляция must have. При этом проще и дешевле поставить компактные , чем заморачиваться с полноценной вентиляцией.

Рестораны и кинотеатры


Тут картина сильно разная, но одно очевидно (кто-то скажет, что это ясно и без приборов) – любят наши рестораторы экономить на вентиляшке! Например, у меня была деловая встреча в кофейне «Хлеб насущный» на Никольской. Место хорошее, но вот с воздухом беда – 2000 ppm! В такой атмосфере очень сложно думать и решать деловые вопросы. В «Чайхоне №1» на Пушкинской было чуть лучше, до 1500 ppm.

Но есть и хорошие места: в «Старбакс» на Площади революции и в «Пять звёзд» на Павелецкой 700 ppm и 800 ppm соответственно. А вот в самом кинозале этого замечательного кинотеатра было «не айс» - до 1500 ppm весь сеанс. При этом администрация не поскупилась на кондиционеры – в залах было прохладно и это «скрашивало» ситуацию. Но кондеи не заменяют вентиляцию! Температура – температурой, а кислород – кислородом, должно быть и то, и другое.

Пока это вся информация по Москве. Обязуюсь сделать обзорный трип в Новосибирске. Что можно сказать по итогу?

Выводы

По полученным данным однозначно можно констатировать низкое качество воздуха в транспорте, особенно когда в нем много пассажиров. Пара советов, что делать в душном самолёте.
  • Используйте обдув, он есть в каждом самолёте на потолке или «в спинке впереди стоящего кресла». Оттуда воздух идет тоже с превышением по СО2 (проверено), но он хотя бы раздувает тот «пузырь» углекислого газа, который вы вокруг себя «надышали».
  • Если в салоне жарко, раздевайтесь. Пусть будет чуть прохладно. Чем ниже температура тела, тем лучше кровь насыщается кислородом и выводится углекислота.
  • Сведите активность к минимуму. Лучше спать или «медитировать». Постарайтесь не нервничать, не брать в уме тройные интегралы. Помните, мозг потребляет около 20% всего кислорода в крови!
  • Если курите, лучше не курить за несколько часов до полёта. Это позволит очистить кровь от угарного газа и улучшит снабжение мозга кислородом. Лучше используйте никотиновые жвачки/таблетки/пластыри.
  • После прилета проведите часок на улице, продышитесь, сделайте дыхательную гимнастику, нормализуйте биохимию в крови. Дайте мозгу прийти в себя!
Что касается мест отдыха, то там самое коварство - в кондиционерах. Опыт показывает, что в прохладном воздухе создается ощущение комфорта, в то время как уровень СО2 достигает критических значений. Интерьер, комфорт, «атмосфера» есть, а настоящей здоровой атмосферы может не быть. Далеко не во всех заведениях состояние воздуха бывает удовлетворительным. Воздух не видно – значит, на нём можно сэкономить. Если бы все посетители имели портативные датчики и регулярно жаловались на превышение уровня СО2, возможно, тогда владельцы заведений внимательнее относились бы к вопросам вентиляции.

В этот раз не получилось «поохотиться» на СО2 в школах, детсадах и офисах, но есть основания считать, что и там регулярно наблюдаются превышенные концентрации углекислого газа. Немного заспойлерю: уже сделали замеры СО2 в классе одной из новосибирских школ – больше 2000 ppm! А дети же там должны учиться и работать головой. А как требовать от ребенка концентрации и успеваемости, когда голова не варит просто физиологически?

Примечание Tion: скоро будет материал про наше мини-исследование в школе.

Короче, я хочу выбирать места работы и отдыха еще и по качеству воздуха. Верю, что это существенно улучшит «среднюю температуру по палате» - самочувствие моё и моей семьи.

Правообладатель иллюстрации AFP

Средний уровень содержания углекислого газа в атмосфере нашей планеты в 2015 году впервые за время наблюдений достиг критической отметки в 400 долей на миллион, сообщила Всемирная метеорологическая организация.

Критический уровень содержания диоксида углерода зафиксировала станция мониторинга воздуха, расположенная на Гавайях.

Как предполагают эксперты, содержание углекислого газа в атмосфере не опустится ниже 400 долей на миллион в течение всего 2016 года, а возможно, что и в ближайшие десятилетия.

Что это означает для нас с вами?

Ведущий программы "Пятый этаж" Александр Баранов обсуждает тему с директором программы "Климат и энергетика" Всемирного фонда дикой природы Алексе ем Кокорин ым и старшим научным сотрудником Института экологии растений и животных уральского отделения Российской академии наук Евгени ем Зиновьев ым .

А лександр Б аранов: 400 частей на миллион для простого человека, который не разбирается в климатических вопросах, но зато учил арифметику в школе, это очень мало. Так же мало, как 200, 100 или 500. Особенно, когда речь идет о газе без цвета и запаха. Почему вдруг так переполошились ученые?

А лексей Кокорин: CO2 - это один из газов, создающих парниковый эффект, второй после водяного пара, и главный газ, на концентрацию которого в атмосфере оказывает влияние человек.

И то, что человек не оказывает влияние на содержание водяного пара, не сильно облегчает дело, потому что влияние на содержание CO2 велико, и изотопным анализом доказано, что этот CO2 именно от сжигания топлива. Это много.

Число очень маленькое, но это на 30% больше, чем 50-60 лет назад. А до этого уровень был постоянен в течение долгого времени, имеются данные прямых измерений.

А.Б. : Ученые сейчас согласны с тем, что CO2 влияет на изменение климата, а не наоборот? Какое-то время назад некоторые ученые говорили, что на рост выброса углекислого газа влияет нагревание океана. А человек, по сравнению с океаном, выбрасывает намного меньше CO2 в атмосферу. Каков сейчас консенсус по этому поводу?

А.К. : Консенсус практически полный. Я упомянул изотопный анализ, потому что в прошлом, и это тоже доказано, сначала менялась температура, а потом концентрация CO2.

Это было в переходный период между ледниковыми периодами и в других случаях. Корреляция шла в такой последовательности. Здесь корреляция идет в другой последовательности. Но главное, есть доказательства изотопного анализа. Тут консенсус есть.

Е вгений З иновьев: Я не климатолог, я палеонтолог. У нас в институте мы наблюдаем на севере, в Арктике, повышение как содержания CO2, и это показано нашими коллегами дендрохронологами, так и сопутствующие изменения - это наступление границы леса. У нас проводится мониторинг ландшафтов северной части Западно-Сибирской равнины и Полярного и приполярного Урала, и на протяжении последних сорока лет северная граница леса смещается к северу.

Это еще не достигает границ, которые были в климатический оптимум голоцена, когда древесная растительность достигала среднего Ямала, но процесс идет в том направлении и опосредованно связан с потеплением климата. Древесные растения занимают постепенно территории, от которых они когда-то отступили.

То потепление, которое мы сейчас наблюдаем - не самое значительное, сейчас не самый теплый климат. Я могу сравнивать с недавним геологическим прошлым - последние 130-140 тысяч лет. Этот период называется Микулинское межледниковье, и тогда растения и теплолюбивые животные продвигались к северу гораздо дальше, чем сейчас.

В наше время, по объективным данным, пока еще такие уровни не достигнуты. Но то потепление было очень кратковременным, всего около 5 тысяч лет. Потом оно сменилось похолоданием, потом опять потеплением, и потом наступил длительный холодный период, зырянское оледенение, которое тоже делилось на более теплые и более холодные эпохи. Тогда начал формироваться скандинавский ледниковый щит.

А.Б. : То есть в ы говорите о похолодании в Средневековый период?

Е.З. : Это вы говорите про исторические времена, а я имею в виду более ранние границы. Это поздний плейстоцен.

А.Б. : А какие выводы из этого делать нам, неспециалистам? Противники теории глобального потепления, вызванного человеческой деятельностью, говорят, что мы просто находимся в периоде определенного цикла и с этим связаны различные колебания концентрации CO2.

Углекислый газ - пища для растений. В процессе фотосинтеза растения поглощают углекислый газ, выделяют в атмосферу кислород, и чем выше содержание углекислого газа, тем активнее растения начинают его потреблять и тем быстрее они растут.

Е.З. : Развития древесной растительности не наблюдается, наоборот. В Северной Америке, южной Европе леса горят, лесная растительность деградирует, идет аридизация, осушение климата. Легкие планеты сокращаются.

А.Б. : А почему это происходит? По идее, они должны расширяться?

Е.З. : Климат - многовекторная система, могут быть разные факторы, которые мы не всегда можем учитывать. Существует точка зрения, что начнут таять ледники, что связано с потеплением климата, а это происходит.

Деградирует и Гренландский ледниковый щит, и в Арктике то высвободившееся большое количество пресной воды может изменить направление движения Гольфстрима. Тогда эта печка для Европы перестанет обогревать север Европы, и там снова начнется образование ледников. Это будет очень плохо.

Резкое потепление может дать толчок резкому похолоданию. Ледниковая шапка аккумулирует воду, начинается иссушение климата. Исчезают сплошные леса, образуются редкостойные леса. Климат становится сухой, холодный, континентальный, и он таким становится не только в Сибири, но и в Европе тоже.

Все очень сложно и взаимосвязано. Я не стал бы это упрощать, надо учитывать и современный фактор - увеличение выбросов CO2, связанное с промышленной деятельностью человека, с наличием большого количества производств, машин и так далее - с этим не поспоришь. Особенно в крупных мегаполисах, где сосредоточены большие производства.

Но другой вопрос, какие последствия это будет иметь. Человечество привыкло жить в определенных комфортных условиях. Если начнется увеличение или уменьшение уровня мирового океана, то начнутся катастрофы. Их может спровоцировать антропогенное воздействие. Человечество не настолько мало, чтобы не влиять на природную обстановку. Оно стало геологическим фактором, а не только биологическим, оно меняет более фундаментальные вещи в биосфере, в земной коре.

А.Б. : Допустим, человечество сможет сократить выброс CO2. Но это лишь один из факторов , и не самый большой. Может ли это что-то изменить, привести к какому-то резкому улучшению ситуации?

А.К. : Очень важно, с точки зрения физики атмосферы и океана, понимать, что происходит. Происходят два процесса: это процесс естественной изменчивости климата - солнце, самое наглядное, сложные периодические процессы в океане, Атлантическом, Тихом.

Есть и более изученные вещи - перетоки тепла из атмосферы в океан и обратно, которые носят цикличный характер. Эти циклические процессы накладываются на постоянное воздействие, которое носит линейный характер.

За XXI век ожидается повышение температуры в лучшем случае на два градуса, но реально - на три или три с половиной. И при этом циклически будут происходит похолодания и потепления, причем потепления - гораздо быстрее. И совершенно не очевидно, что увеличение числа опасных гидрологических явлений при понижении температуры станет меньше.

А.Б. : Это очень сложно понять человеку, который не занимается этой проблемой и в основном смотрит научно-популярные передачи, где эти вопросы примитивизируются, упрощаются, но простые аргументы действуют на сознание простого человека, который смотрит на это со стороны.

Когда ему дают график изменения температуры в XX веке и говорят: смотрите, пока человек особенно не влиял на атмосферу, температура поднималась, а когда он начал влиять, когда индустриализация была более мощной после 1940 до 1970 года, когда ситуация должна была ухудшиться, мы наблюдали похолодание.

На основе таких графиков люди говорят, что человек на самом деле не влияет, есть какие-то более мощные факторы, не зависящие от нас. Поэтому разговоры про роль человека в глобальном потеплении - миф, за которым стоят те, кому это выгодно.

Е.З. : Начитает срабатывать кумулятивный эффект, воздействие человека идет по нарастающей. На каком-то этапе оно может не проявляться, но потом, по мере увеличения концентрации CO2, парниковых газов, оно рано или поздно проявляется фактически по всему земному шару. Как в развитых районах, так и на севере, в Арктике.

Антропогенный фактор накладывается на факторы астрономические, связанные с орбитой движения Земли, цикличность сильно проявляется и так далее. И когда все друг на друга накладывается, могут произойти совершенно непредсказуемые события.

И антропогенное воздействие будет все увеличиваться, даже если будут введены ограничения на производство и так далее. Очень много выпускается автомобилей, которые загрязняют атмосферу очень сильно. И другие факторы. Они никуда не уйдут.

А травяная и древесная растительность не увеличивается, а, наоборот, происходит деградация лесного покрова.

А.Б. : Но мы видели и сообщения другого рода, что в Бразилии вдруг начали расти леса Амазонки.

Е.З. : Это есть, но вы посмотрите, что в Америке творится? На юго-западе, в Калифорнии? Там массовые лесные пожары. Нужно время, чтобы после пожара лес восстановился. После пожара несколько лет проходит, прежде чем лес начинает подрастать. А где сухо, он просто перестает расти. Лес превращается в степь, пустыню и так далее.

А.Б. : Это серьезные факторы, но для обыденного сознания трудно это совместить с его собственной деятельностью. Можно придерживаться теории, что деятельность человека - это последняя капля, которая может перевесить экологический баланс на фоне более серьезных факторов. Но когда говорят, что есть такой фактор, как пятна на Солнце, активизация Солнца, который представляет собой мощный источник энергии, по сравнению с которым вся наша деятельность - мелочь, даже сравнивать невозможно.

То же показывают графики - когда Солнце активно, температура повышается, а когда менее активно - понижается, все это коррелируется. Потом говорят, что все зависит от того, по какой орбите Земля движется. Если орбита эллиптическая - становится холоднее. И когда все это человеку говорят, он думает: ну что по сравнению с такими космическими явлениями наши несчастные выбросы в атмосферу. Как можно убедить человека, что мы своими действиями можем этот баланс нарушить?

Е.З. : Надо как-то убеждать, потому что это действительно фактор не последний. Например, леса горят и без человека - сухие грозы и так далее. Но человеческая деятельность этому способствует. Каждый должен начинать с себя. Люди должны понимать, что от них многое зависит.

Один человек может сказать: я буду делать, что считаю нужным, все равно от меня ничего не зависит. Но людей - миллионы, и если каждый так будет считать, от этого лучше не будет. Косность человеческого мышления существует, к сожалению.

А.Б. : Как убедить человека, что его машина, на которой он проедет лишние пять километров, тоже влияет на климат, даже на фоне того, что Земля на эллиптической орбите, а не на какой-то другой?

А.К. : Российские климатологи, и не только российские, задумывались, как это наглядно показать. Вероятные реакции Солнца лет через 15-20 с высокой вероятностью снизят температуру на земном шаре примерно на 0,25 градуса. А антропогенное воздействие - как минимум на два градуса. Так же было и в 30-40 годы ХХ века.

И еще характерная вещь такая: прогреваются и стратосфера, и тропосфера. То есть у вас как бы пленка парниковая, и, если греется над пленкой и под пленкой, значит - лампочка стала греть сильнее. А если под пленкой греется, а над пленкой холодает - значит, пленка стала толще. Вот как-то так наглядно можно попытаться объяснить.

А.Б. : Вы допускаете вероятность, что мы действительно находимся между двумя ледниковыми периодами и что-то произойдет, и начнется похолодание на Земле?

Е.З. : Ваш вопрос говорит о том, что мы с коллегой говорим плохо. Безусловно, мы находимся между двумя ледниковыми периодами, тем, который закончился примерно 300 тыс лет назад, и тем, который начнется через несколько тысяч лет - может быть 20, может быть, 100. Об этом мой коллега как климатолог знает лучше. Но это будет абсолютно точно. Мы говорим об иных временных масштабах. В этих масштабах влияние человека на глобальное потепление не может рассматриваться, это сотни тысяч лет.

А.Б. : То есть мы можем до этого похолодания не дожить?

Е.З. : К сожалению, точно не доживем до глобального похолодания, даже из наших правнуков никто не доживет. Будут ли периоды похолодания в течение XXI века? Да, наверное будут. Мы живем в эпоху наложения различных вариаций, в том числе солнечных, на глобальный тренд.

_____________________________________________________________

Загрузить подкаст передачи "Пятый этаж" можно .

Исследователи из Института океанографии Скриппса при Калифорнийском университете в Сан-Диего сообщили USA Today, что содержание углекислого газа в атмосфере Земли достигло самой высокой отметки за последние 800 тысяч лет. Теперь оно составляет 410 ppm (частей на миллион). Это значит, что в каждом кубометре воздуха углекислота занимает объем в 410 мл.

Углекислый газ в атмосфере

Диоксид углерода, или углекислый газ выполняет в атмосфере нашей планеты важную функцию: он пропускает часть излучения от Солнца, которое обогревает Землю. Однако, из-за того, что газ также поглощает тепло, испускаемое планетой, он способствует появлению парникового эффекта. Именно это считается главным фактором глобального потепления.

Постоянный рост содержания углекислоты в атмосфере начался с момента индустриальной революции. До того, концентрация никогда не превышала 300 ppm. В апреле текущего года была установлена самая высокая средняя отметка за последние 800 тысяч лет. В первый раз цифра 410 ppm была зафиксирована на станции мониторинга качества воздуха на Гавайях в апреле 2017 года, но тогда это был скорее из ряда вон выходящий случай. В апреле же 2018 года эта отметка стала средней за весь месяц. Концентрация диоксида углерода повысилась на 30% с момента начала наблюдений исследователями из Института Скриппса.

Почему концентрация повышается

Ученый Ральф Килинг из Института Скриппса, руководитель программы исследований СО2 считает, что концентрация углекислого газа продолжает расти в атмосфере из-за того, что мы постоянно сжигаем топливо. При переработке нефти, газа и угля в атмосферу выделяются такие парниковые газы, как диоксид углерода и метан. Газы вызвали повышение температуры Земли за последнее столетие до уровня, который не может быть объяснен естественной изменчивостью. Это давно известный факт, однако никто не принимает мер для того, чтобы как-то исправить ситуацию.

В свою очередь, Всемирная метеорологическая организация заявила, что увеличение количества парниковых газов способствует изменению климата и делает «планету более опасной и негостеприимной для будущих поколений». Вопрос нужно решать на глобальном уровне, и делать это как можно скорее.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

> Концентрация углекислого газа

Ученые уже давно подозревают, что повышенная концентрация углекислого газа в атмосфере имеет прямое отношение к глобальному потеплению, но, как оказалось, углекислый газ может иметь непосредственное отношение и к нашему здоровью. Человек является основным источником образования углекислого газа в помещении, поскольку мы выдыхаем от 18 до 25 литров этого газа в час. Высокий объем углекислого газа может наблюдаться во всех помещениях, где находятся люди: в школьных классах и институтских аудиториях, в комнатах для совещаний и офисных помещениях, в спальнях и детских комнатах.

То, что нам не хватает кислорода в душном помещении, – это миф. Расчеты показывают, что вопреки существующему стереотипу, головная боль, слабость, и другие симптомы возникают у человека в помещении не от недостатка кислорода, а именно от высокой концентрации углекислого газа.

Еще недавно в Европейских странах и США уровень объема углекислого газа в помещении измеряли только для того, чтоб проверить качество работы вентиляции, и считалось, что СО2 опасен для человека только в больших концентрациях. Исследования же о влиянии на организм человека углекислого газа в концентрации приблизительно 0,1% появились совсем недавно.

Мало кто знает, что чистый воздух за городом содержит около 0,04% углекислого газа, и, чем ближе содержание СО2 в помещении к этой цифре, тем лучше чувствует себя человек.

Осознаем ли мы влияния плохого качества воздуха в помещение на наше здоровье и здоровье наших детей? Понимаем ли мы, как влияет высокое содержание углекислого газа в помещении на нашу работоспособность и на успеваемость учащихся? Можем ли мы понять, почему мы и наши дети такие усталые в конце рабочего дня? В состоянии ли мы решить проблему нашей утренней усталости и раздражительности, а так же плохого ночного сна?

Группой Европейских ученых были проведены исследования того, как влияет высокий (приблизительно 0,1-0,2%) уровень углекислого газа в классах на организм школьников. Исследования показали, что больше половины школьников регулярно испытывают на себе негативное влияние высокого уровня СО2, и следствием этого является то, что проблемы с дыхательной системой, ринит и слабая носоглотка у таких детей наблюдаются гораздо чаще, чем у других детей.

В результате исследований, проведенных в Европе и США было выявлено, что повышенный уровень СО2 в классе ведет к снижении внимания школьников, к ухудшению успеваемости, а так же к увеличению числа пропусков уроков по болезни. Особенно это касается детей, которые больны астмой.

В России подобные исследования никогда не проводились. Однако, в результате комплексного обследования московских детей и подростков в 2004-2004 гг. оказалось, что среди обнаруженных болезней у юных москвичей преобладают заболевания органов дыхания.

В результате недавних исследований, проведенных индийскими учеными среди жителей города Калькутта, выяснено, что даже в низких концентрациях углекислый газ является потенциально токсичным газом. Ученые сделали вывод, что углекислый газ по своей токсичности близок к двуокиси азота, принимая во внимание его воздействие на клеточную мембрану и биохимические изменения, происходящие в крови человека, такие, как ацидоз. Длительный ацидоз в свою очередь приводит к заболеванию сердечнососудистой системы, гипертонии, усталости и другим неблагоприятным для человеческого организма последствиям.

Жители крупного мегаполиса подвергаются негативному влиянию углекислого газа с утра до вечера. Сначала в переполненном общественном транспорте и в собственных автомобилях, которые подолгу стоят в пробках. Затем на работе, где часто бывает душно и нечем дышать.

Очень важно поддерживать хорошее качество воздуха в спальне, т.к. люди проводят там треть своей жизни. Для того, чтоб хорошо выспаться гораздо важнее качественный воздух в спальне, чем продолжительность сна, а уровень углекислого газа в спальнях и детских комнатах должен быть ниже 0,08%. Высокий уровень СО2 в этих помещениях может явиться причиной таких симптомов, как заложенность носа, раздражение горла и глаз, головной боли и бессонницы.

Финские ученые нашли способ решения этой проблемы исходя из аксиомы, что если в природе уровень углекислого газа составляет 0,035-0,04%, то и в помещениях он должен быть приближен к этому уровню. Изобретенное ими устройство удаляет из воздуха помещений избыток углекислого газа. Принцип основан на абсорбции (поглощении) углекислого газа специальным веществом.

Очень велика. Углекислый газ принимает участие в образовании всего живого вещества планеты и вместе с молекулами воды и метана создает так называемый «оранжерейный (парниковый) эффект».

Значение углекислого газа (CO 2 , двуокись или диоксид углерода ) в жизнедеятельности биосферы состоит прежде всего в поддержании процесса фотосинтеза, который осуществляется растениями .

Являясь парниковым газом , двуокись углерода в воздухе оказывает влияние на теплообмен планеты с окружающим пространством, эффективно блокируя переизлучамое тепло на ряде частот, и таким образом участвует в формировании .

В последнее время наблюдается увеличение концентрации углекислого газа в воздухе, что ведет к .

Углерод (С) в атмосфере содержится в основном в виде углекислого газа (СО 2) и в небольшом количестве в виде метана (СН 4), угарного газа и других углеводородов.

Для газов атмосферы применяют понятие «время жизни газа». Это время, за которое газ полностью обновляется, т.е. время, за которое в атмосферу поступает столько же газа, сколько в нем содержится. Так вот, для углекислого газа это время составляет 3-5 лет, для метана - 10-14 лет. СО окисляется до СО 2 в течение нескольких месяцев.

В биосфере значение углерода очень велико, так как он входит в состав всех живых организмов. В пределах живых существ углерод содержится в восстановленном виде, а вне пределов биосферы - в окисленном. Таким образом, формируется химический обмен жизненного цикла: СО 2 ↔ живое вещество.

Источники углерода в атмосфере.

Источником первичной углекислоты являются , при извержении которых в атмосферу выделяется огромное количество газов. Часть этой углекислоты возникает при термическом разложении древних известняков в различных зонах метаморфизма.

Также углерод поступает в атмосферу в виде метана в результате анаэробного разложения органических остатков. Метан под воздействием кислорода быстро окисляется до углекислого газа. Основными поставщиками метана в атмосферу являются тропические леса и .

В свою очередь углекислый газ атмосферы является источником углерода для других геосфер - , биосферы и .

Миграция СО 2 в биосфере.

Миграция СО 2 протекает двумя способами:

При первом способе СО 2 поглощается из атмосферы в процессе фотосинтеза и участвует в образовании органических веществ с последующем захоронением в в виде полезных ископаемых: торфа, нефти, горючих сланцев.

При втором способе углерод участвует в создании карбонатов в гидросфере. СО 2 переходит в Н 2 СО 3 , НСО 3 -1 , СО 3 -2 . Затем с участием кальция (реже магния и железа) происходит осаждение карбонатов биогенным и абиогенным путем. Возникают мощные толщи известняков и доломитов. По оценке А.Б. Ронова, соотношение органического углерода (С орг) к углероду карбонатному (С карб) в истории биосферы составляло 1:4.

Каким образом осуществляется геохимический круговорот углерода в природе и как углекислый газ возвращается снова в атмосферу

Loading...Loading...