Is there a negative degree? Raising a number to a negative power

First level

Degree and its properties. Comprehensive guide (2019)

Why are degrees needed? Where will you need them? Why should you take the time to study them?

To learn everything about degrees, what they are for, how to use your knowledge in Everyday life read this article.

And, of course, knowledge of degrees will bring you closer to success passing the OGE or the Unified State Exam and admission to the university of your dreams.

Let's go... (Let's go!)

Important note! If you see gobbledygook instead of formulas, clear your cache. To do this, press CTRL+F5 (on Windows) or Cmd+R (on Mac).

FIRST LEVEL

Exponentiation is a mathematical operation just like addition, subtraction, multiplication or division.

Now I'll explain everything human language with very simple examples. Be careful. The examples are elementary, but explain important things.

Let's start with addition.

There is nothing to explain here. You already know everything: there are eight of us. Everyone has two bottles of cola. How much cola is there? That's right - 16 bottles.

Now multiplication.

The same example with cola can be written differently: . Mathematicians are cunning and lazy people. They first notice some patterns, and then figure out a way to “count” them faster. In our case, they noticed that each of the eight people had the same number of cola bottles and came up with a technique called multiplication. Agree, it is considered easier and faster than.


So, to count faster, easier and without errors, you just need to remember multiplication table. Of course, you can do everything slower, more difficult and with mistakes! But…

Here is the multiplication table. Repeat.

And another, more beautiful one:

What other clever counting tricks have lazy mathematicians come up with? Right - raising a number to a power.

Raising a number to a power

If you need to multiply a number by itself five times, then mathematicians say that you need to raise that number to the fifth power. For example, . Mathematicians remember that two to the fifth power is... And they solve such problems in their heads - faster, easier and without mistakes.

All you need to do is remember what is highlighted in color in the table of powers of numbers. Believe me, this will make your life a lot easier.

By the way, why is it called the second degree? square numbers, and the third - cube? What does it mean? Very good question. Now you will have both squares and cubes.

Real life example #1

Let's start with the square or the second power of the number.

Imagine a square pool measuring one meter by one meter. The pool is at your dacha. It's hot and I really want to swim. But... the pool has no bottom! You need to cover the bottom of the pool with tiles. How many tiles do you need? In order to determine this, you need to know the bottom area of ​​the pool.

You can simply calculate by pointing your finger that the bottom of the pool consists of meter by meter cubes. If you have tiles one meter by one meter, you will need pieces. It's easy... But where have you seen such tiles? The tile will most likely be cm by cm. And then you will be tortured by “counting with your finger.” Then you have to multiply. So, on one side of the bottom of the pool we will fit tiles (pieces) and on the other, too, tiles. Multiply by and you get tiles ().

Did you notice that to determine the area of ​​the pool bottom we multiplied the same number by itself? What does it mean? Since we are multiplying the same number, we can use the “exponentiation” technique. (Of course, when you have only two numbers, you still need to multiply them or raise them to a power. But if you have a lot of them, then raising them to a power is much easier and there are also fewer errors in calculations. For the Unified State Exam, this is very important).
So, thirty to the second power will be (). Or we can say that thirty squared will be. In other words, the second power of a number can always be represented as a square. And vice versa, if you see a square, it is ALWAYS the second power of some number. A square is an image of the second power of a number.

Real life example #2

Here's a task for you: count how many squares there are on the chessboard using the square of the number... On one side of the cells and on the other too. To calculate their number, you need to multiply eight by eight or... if you notice that a chessboard is a square with a side, then you can square eight. You will get cells. () So?

Real life example #3

Now the cube or the third power of a number. The same pool. But now you need to find out how much water will have to be poured into this pool. You need to calculate the volume. (Volumes and liquids, by the way, are measured in cubic meters. Unexpected, right?) Draw a pool: a bottom measuring a meter and a depth of a meter and try to count how many cubes measuring a meter by a meter will fit into your pool.

Just point your finger and count! One, two, three, four...twenty-two, twenty-three...How many did you get? Not lost? Is it difficult to count with your finger? So that! Take an example from mathematicians. They are lazy, so they noticed that in order to calculate the volume of the pool, you need to multiply its length, width and height by each other. In our case, the volume of the pool will be equal to cubes... Easier, right?

Now imagine how lazy and cunning mathematicians are if they simplified this too. We reduced everything to one action. They noticed that the length, width and height are equal and that the same number is multiplied by itself... What does this mean? This means you can take advantage of the degree. So, what you once counted with your finger, they do in one action: three cubed is equal. It is written like this: .

All that remains is remember the table of degrees. Unless, of course, you are as lazy and cunning as mathematicians. If you like to work hard and make mistakes, you can continue to count with your finger.

Well, to finally convince you that degrees were invented by quitters and cunning people to solve their life problems, and not to create problems for you, here are a couple more examples from life.

Real life example #4

You have a million rubles. At the beginning of each year, for every million you make, you make another million. That is, every million you have doubles at the beginning of each year. How much money will you have in years? If you are sitting now and “counting with your finger,” then you are a very hardworking person and... stupid. But most likely you will give an answer in a couple of seconds, because you are smart! So, in the first year - two multiplied by two... in the second year - what happened, by two more, in the third year... Stop! You noticed that the number is multiplied by itself times. So two to the fifth power is a million! Now imagine that you have a competition and the one who can count the fastest will get these millions... It’s worth remembering the powers of numbers, don’t you think?

Real life example #5

You have a million. At the beginning of each year, for every million you make, you earn two more. Great isn't it? Every million is tripled. How much money will you have in a year? Let's count. The first year - multiply by, then the result by another... It’s already boring, because you already understood everything: three is multiplied by itself times. So to the fourth power it is equal to a million. You just have to remember that three to the fourth power is or.

Now you know that by raising a number to a power you will make your life a lot easier. Let's take a further look at what you can do with degrees and what you need to know about them.

Terms and concepts... so as not to get confused

So, first, let's define the concepts. What do you think, what is an exponent? It's very simple - it's the number that is "at the top" of the power of the number. Not scientific, but clear and easy to remember...

Well, at the same time, what such a degree basis? Even simpler - this is the number that is located below, at the base.

Here's a drawing for good measure.

Well in general view, in order to generalize and better remember... A degree with a base “ ” and an exponent “ ” is read as “to the degree” and is written as follows:

Power of a number with natural exponent

You probably already guessed: because the exponent is natural number. Yes, but what is it natural number? Elementary! Natural numbers are those numbers that are used in counting when listing objects: one, two, three... When we count objects, we do not say: “minus five,” “minus six,” “minus seven.” We also do not say: “one third”, or “zero point five”. These are not natural numbers. What numbers do you think these are?

Numbers like “minus five”, “minus six”, “minus seven” refer to whole numbers. In general, integers include all natural numbers, numbers opposite to natural numbers (that is, taken with a minus sign), and number. Zero is easy to understand - it is when there is nothing. What do negative (“minus”) numbers mean? But they were invented primarily to indicate debts: if you have a balance on your phone in rubles, this means that you owe the operator rubles.

All fractions are rational numbers. How did they arise, do you think? Very simple. Several thousand years ago, our ancestors discovered that they lacked natural numbers to measure length, weight, area, etc. And they came up with rational numbers... Interesting, isn't it?

Is there some more irrational numbers. What are these numbers? In short, endless decimal. For example, if you divide the circumference of a circle by its diameter, you get an irrational number.

Summary:

Let us define the concept of a degree whose exponent is a natural number (i.e., integer and positive).

  1. Any number to the first power is equal to itself:
  2. To square a number means to multiply it by itself:
  3. To cube a number means to multiply it by itself three times:

Definition. Raising a number to a natural power means multiplying the number by itself times:
.

Properties of degrees

Where did these properties come from? I will show you now.

Let's see: what is it And ?

A-priory:

How many multipliers are there in total?

It’s very simple: we added multipliers to the factors, and the result is multipliers.

But by definition, this is a power of a number with an exponent, that is: , which is what needed to be proven.

Example: Simplify the expression.

Solution:

Example: Simplify the expression.

Solution: It is important to note that in our rule Necessarily there must be the same reasons!
Therefore, we combine the powers with the base, but it remains a separate factor:

only for the product of powers!

Under no circumstances can you write that.

2. that's it th power of a number

Just as with the previous property, let us turn to the definition of degree:

It turns out that the expression is multiplied by itself times, that is, according to the definition, this is the th power of the number:

In essence, this can be called “taking the indicator out of brackets.” But you can never do this in total:

Let's remember the abbreviated multiplication formulas: how many times did we want to write?

But this is not true, after all.

Power with negative base

Up to this point, we have only discussed what the exponent should be.

But what should be the basis?

In powers of natural indicator the basis may be any number. Indeed, we can multiply any numbers by each other, be they positive, negative, or even.

Let's think about which signs ("" or "") will have powers of positive and negative numbers?

For example, is the number positive or negative? A? ? With the first one, everything is clear: no matter how many positive numbers we multiply by each other, the result will be positive.

But the negative ones are a little more interesting. We remember the simple rule from 6th grade: “minus for minus gives a plus.” That is, or. But if we multiply by, it works.

Determine for yourself what sign the following expressions will have:

1) 2) 3)
4) 5) 6)

Did you manage?

Here are the answers: In the first four examples, I hope everything is clear? We simply look at the base and exponent and apply the appropriate rule.

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In example 5) everything is also not as scary as it seems: after all, it doesn’t matter what the base is equal to - the degree is even, which means the result will always be positive.

Well, except when the base is zero. The base is not equal, is it? Obviously not, since (because).

Example 6) is no longer so simple!

6 examples to practice

Analysis of the solution 6 examples

If we ignore the eighth power, what do we see here? Let's remember the 7th grade program. So, do you remember? This is the formula for abbreviated multiplication, namely the difference of squares! We get:

Let's look carefully at the denominator. It looks a lot like one of the numerator factors, but what's wrong? The order of the terms is wrong. If they were reversed, the rule could apply.

But how to do that? It turns out that it’s very easy: the even degree of the denominator helps us here.

Magically the terms changed places. This “phenomenon” applies to any expression to an even degree: we can easily change the signs in parentheses.

But it's important to remember: all signs change at the same time!

Let's go back to the example:

And again the formula:

Whole we call the natural numbers, their opposites (that is, taken with the " " sign) and the number.

positive integer, and it is no different from natural, then everything looks exactly like in the previous section.

Now let's look at new cases. Let's start with an indicator equal to.

Any number to the zero power is equal to one:

As always, let us ask ourselves: why is this so?

Let's consider some degree with a base. Take, for example, and multiply by:

So, we multiplied the number by, and we got the same thing as it was - . What number should you multiply by so that nothing changes? That's right, on. Means.

We can do the same with an arbitrary number:

Let's repeat the rule:

Any number to the zero power is equal to one.

But there are exceptions to many rules. And here it is also there - this is a number (as a base).

On the one hand, it must be equal to any degree - no matter how much you multiply zero by itself, you will still get zero, this is clear. But on the other hand, like any number to the zero power, it must be equal. So how much of this is true? The mathematicians decided not to get involved and refused to raise zero to the zero power. That is, now we cannot not only divide by zero, but also raise it to the zero power.

Let's move on. In addition to natural numbers and numbers, integers also include negative numbers. To understand what a negative degree is, let’s do as last time: multiply some normal number to the same to a negative degree:

From here it’s easy to express what you’re looking for:

Now let’s extend the resulting rule to an arbitrary degree:

So, let's formulate a rule:

A number with a negative power is the reciprocal of the same number with a positive power. But at the same time The base cannot be null:(because you can’t divide by).

Let's summarize:

I. The expression is not defined in the case. If, then.

II. Any number to the zero power is equal to one: .

III. A number not equal to zero to a negative power is the inverse of the same number to a positive power: .

Tasks for independent solution:

Well, as usual, examples for independent solutions:

Analysis of problems for independent solution:

I know, I know, the numbers are scary, but on the Unified State Exam you have to be prepared for anything! Solve these examples or analyze their solutions if you couldn’t solve them and you will learn to cope with them easily in the exam!

Let's continue to expand the range of numbers “suitable” as an exponent.

Now let's consider rational numbers. What numbers are called rational?

Answer: everything that can be represented as a fraction, where and are integers, and.

To understand what it is "fractional degree", consider the fraction:

Let's raise both sides of the equation to a power:

Now let's remember the rule about "degree to degree":

What number must be raised to a power to get?

This formulation is the definition of the root of the th degree.

Let me remind you: the root of the th power of a number () is a number that, when raised to a power, is equal to.

That is, the root of the th power is the inverse operation of raising to a power: .

It turns out that. Obviously this special case can be expanded: .

Now we add the numerator: what is it? The answer is easy to obtain using the power-to-power rule:

But can the base be any number? After all, the root cannot be extracted from all numbers.

None!

Let us remember the rule: any number raised to an even power is a positive number. That is, it is impossible to extract even roots from negative numbers!

This means that such numbers cannot be raised to a fractional power with an even denominator, that is, the expression does not make sense.

What about the expression?

But here a problem arises.

The number can be represented in the form of other, reducible fractions, for example, or.

And it turns out that it exists, but does not exist, but these are just two different records of the same number.

Or another example: once, then you can write it down. But if we write down the indicator differently, we will again get into trouble: (that is, we got a completely different result!).

To avoid such paradoxes, we consider only positive base exponent with fractional exponent.

So if:

  • - natural number;
  • - integer;

Examples:

Rational exponents are very useful for transforming expressions with roots, for example:

5 examples to practice

Analysis of 5 examples for training

Well, now comes the hardest part. Now we'll figure it out degree with irrational exponent.

All the rules and properties of degrees here are exactly the same as for a degree with a rational exponent, with the exception

After all, by definition, irrational numbers are numbers that cannot be represented as a fraction, where and are integers (that is, irrational numbers are all real numbers except rational ones).

When studying degrees with natural, integer and rational exponents, each time we created a certain “image”, “analogy”, or description in more familiar terms.

For example, a degree with a natural exponent is a number multiplied by itself several times;

...number to the zeroth power- this is, as it were, a number multiplied by itself once, that is, they have not yet begun to multiply it, which means that the number itself has not even appeared yet - therefore the result is only a certain “blank number”, namely a number;

...negative integer degree- it’s as if some “reverse process” had occurred, that is, the number was not multiplied by itself, but divided.

By the way, in science a degree with complex indicator, that is, the indicator is not even a real number.

But at school we don’t think about such difficulties; you will have the opportunity to comprehend these new concepts at the institute.

WHERE WE ARE SURE YOU WILL GO! (if you learn to solve such examples :))

For example:

Decide for yourself:

Analysis of solutions:

1. Let's start with the usual rule for raising a power to a power:

Now look at the indicator. Doesn't he remind you of anything? Let us recall the formula for abbreviated multiplication of difference of squares:

IN in this case,

It turns out that:

Answer: .

2. We reduce fractions in exponents to the same form: either both decimals or both ordinary ones. We get, for example:

Answer: 16

3. Nothing special, we use the usual properties of degrees:

ADVANCED LEVEL

Determination of degree

A degree is an expression of the form: , where:

  • degree base;
  • - exponent.

Degree with natural indicator (n = 1, 2, 3,...)

Raising a number to the natural power n means multiplying the number by itself times:

Degree with an integer exponent (0, ±1, ±2,...)

If the exponent is positive integer number:

Construction to the zero degree:

The expression is indefinite, because, on the one hand, to any degree is this, and on the other hand, any number to the th degree is this.

If the exponent is negative integer number:

(because you can’t divide by).

Once again about zeros: the expression is not defined in the case. If, then.

Examples:

Power with rational exponent

  • - natural number;
  • - integer;

Examples:

Properties of degrees

To make it easier to solve problems, let’s try to understand: where did these properties come from? Let's prove them.

Let's see: what is and?

A-priory:

So, on the right side of this expression we get the following product:

But by definition it is a power of a number with an exponent, that is:

Q.E.D.

Example : Simplify the expression.

Solution : .

Example : Simplify the expression.

Solution : It is important to note that in our rule Necessarily there must be the same reasons. Therefore, we combine the powers with the base, but it remains a separate factor:

Another important note: this rule - only for product of powers!

Under no circumstances can you write that.

Just as with the previous property, let us turn to the definition of degree:

Let's regroup this work like this:

It turns out that the expression is multiplied by itself times, that is, according to the definition, this is the th power of the number:

In essence, this can be called “taking the indicator out of brackets.” But you can never do this in total: !

Let's remember the abbreviated multiplication formulas: how many times did we want to write? But this is not true, after all.

Power with a negative base.

Up to this point we have only discussed what it should be like index degrees. But what should be the basis? In powers of natural indicator the basis may be any number .

Indeed, we can multiply any numbers by each other, be they positive, negative, or even. Let's think about which signs ("" or "") will have powers of positive and negative numbers?

For example, is the number positive or negative? A? ?

With the first one, everything is clear: no matter how many positive numbers we multiply by each other, the result will be positive.

But the negative ones are a little more interesting. We remember the simple rule from 6th grade: “minus for minus gives a plus.” That is, or. But if we multiply by (), we get - .

And so on ad infinitum: with each subsequent multiplication the sign will change. We can formulate the following simple rules:

  1. even degree, - number positive.
  2. Negative number raised to odd degree, - number negative.
  3. A positive number to any degree is a positive number.
  4. Zero to any power is equal to zero.

Determine for yourself what sign the following expressions will have:

1. 2. 3.
4. 5. 6.

Did you manage? Here are the answers:

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In the first four examples, I hope everything is clear? We simply look at the base and exponent and apply the appropriate rule.

In example 5) everything is also not as scary as it seems: after all, it doesn’t matter what the base is equal to - the degree is even, which means the result will always be positive. Well, except when the base is zero. The base is not equal, is it? Obviously not, since (because).

Example 6) is no longer so simple. Here you need to find out which is less: or? If we remember that, it becomes clear that, and therefore the basis less than zero. That is, we apply rule 2: the result will be negative.

And again we use the definition of degree:

Everything is as usual - we write down the definition of degrees and divide them by each other, divide them into pairs and get:

Before we look at the last rule, let's solve a few examples.

Calculate the expressions:

Solutions :

If we ignore the eighth power, what do we see here? Let's remember the 7th grade program. So, do you remember? This is the formula for abbreviated multiplication, namely the difference of squares!

We get:

Let's look carefully at the denominator. It looks a lot like one of the numerator factors, but what's wrong? The order of the terms is wrong. If they were reversed, rule 3 could apply. But how? It turns out that it’s very easy: the even degree of the denominator helps us here.

If you multiply it by, nothing changes, right? But now it turns out like this:

Magically the terms changed places. This “phenomenon” applies to any expression to an even degree: we can easily change the signs in parentheses. But it's important to remember: All signs change at the same time! You can’t replace it with by changing only one disadvantage we don’t like!

Let's go back to the example:

And again the formula:

So now the last rule:

How will we prove it? Of course, as usual: let’s expand on the concept of degree and simplify it:

Well, now let's open the brackets. How many letters are there in total? times by multipliers - what does this remind you of? This is nothing more than a definition of an operation multiplication: There were only multipliers there. That is, this, by definition, is a power of a number with an exponent:

Example:

Degree with irrational exponent

In addition to information about degrees for the average level, we will analyze the degree with an irrational exponent. All the rules and properties of degrees here are exactly the same as for a degree with a rational exponent, with the exception - after all, by definition, irrational numbers are numbers that cannot be represented as a fraction, where and are integers (that is, irrational numbers are all real numbers except rational numbers).

When studying degrees with natural, integer and rational exponents, each time we created a certain “image”, “analogy”, or description in more familiar terms. For example, a degree with a natural exponent is a number multiplied by itself several times; a number to the zero power is, as it were, a number multiplied by itself once, that is, they have not yet begun to multiply it, which means that the number itself has not even appeared yet - therefore the result is only a certain “blank number”, namely a number; a degree with an integer negative exponent - it’s as if some “reverse process” had occurred, that is, the number was not multiplied by itself, but divided.

It is extremely difficult to imagine a degree with an irrational exponent (just as it is difficult to imagine a 4-dimensional space). It is rather a purely mathematical object that mathematicians created to extend the concept of degree to the entire space of numbers.

By the way, in science a degree with a complex exponent is often used, that is, the exponent is not even a real number. But at school we don’t think about such difficulties; you will have the opportunity to comprehend these new concepts at the institute.

So what do we do if we see an irrational exponent? We are trying our best to get rid of it! :)

For example:

Decide for yourself:

1) 2) 3)

Answers:

  1. Let's remember the difference of squares formula. Answer: .
  2. We reduce the fractions to the same form: either both decimals or both ordinary ones. We get, for example: .
  3. Nothing special, we use the usual properties of degrees:

SUMMARY OF THE SECTION AND BASIC FORMULAS

Degree called an expression of the form: , where:

Degree with an integer exponent

a degree whose exponent is a natural number (i.e., integer and positive).

Power with rational exponent

degree, the exponent of which is negative and fractional numbers.

Degree with irrational exponent

a degree whose exponent is an infinite decimal fraction or root.

Properties of degrees

Features of degrees.

  • Negative number raised to even degree, - number positive.
  • Negative number raised to odd degree, - number negative.
  • A positive number to any degree is a positive number.
  • Zero is equal to any power.
  • Any number to the zero power is equal.

NOW YOU HAVE THE WORD...

How do you like the article? Write below in the comments whether you liked it or not.

Tell us about your experience using degree properties.

Perhaps you have questions. Or suggestions.

Write in the comments.

And good luck on your exams!

From school we all know the rule about exponentiation: any number with exponent N is equal to the result of multiplication given number at yourself N number of times. In other words, 7 to the power of 3 is 7 multiplied by itself three times, that is, 343. Another rule is that raising any quantity to the power of 0 gives one, and raising a negative quantity is the result of ordinary raising to the power if it is even, and the same result with a minus sign if it is odd.

The rules also give the answer to how to raise a number to a negative power. To do this, you need to raise the required value by the modulus of the indicator in the usual way, and then divide the unit by the result.

From these rules it becomes clear that the implementation real problems handling large quantities will require availability technical means. Manually you can multiply by yourself a maximum range of numbers up to twenty to thirty, and then no more than three or four times. This is not to mention then dividing one by the result. Therefore, for those who do not have a special engineering calculator at hand, we will tell you how to raise a number to a negative power in Excel.

Solving problems in Excel

To solve problems involving exponentiation, Excel allows you to use one of two options.

The first is the use of a formula with a standard “lid” sign. Enter the following data into the worksheet cells:

In the same way, you can raise the desired value to any power - negative, fractional. Let's do it the following actions and answer the question of how to raise a number to a negative power. Example:

You can correct =B2^-C2 directly in the formula.

The second option is to use the ready-made “Degree” function, which takes two required arguments - a number and an exponent. To start using it, just put the equal sign (=) in any free cell, indicating the beginning of the formula, and enter the above words. All that remains is to select two cells that will participate in the operation (or specify specific numbers manually) and press the Enter key. Let's look at a few simple examples.

Formula

Result

DEGREE(B2;C2)

DEGREE(B3;C3)

0,002915

As you can see, there is nothing complicated about how to raise a number to a negative power and to a regular power using Excel. After all, to solve this problem, you can use both the familiar “lid” symbol and the program’s built-in function, which is easy to remember. This is a definite plus!

Let's move on to more complex examples. Let's remember the rule about how to raise a number to a negative fractional power, and we will see that this problem is very easily solved in Excel.

Fractional indicators

In short, the algorithm for calculating a number with a fractional exponent is as follows.

  1. Convert a fraction to a proper or improper fraction.
  2. Raise our number to the numerator of the resulting converted fraction.
  3. From the number obtained in the previous paragraph, calculate the root, with the condition that the exponent of the root will be the denominator of the fraction obtained at the first stage.

Agree that even when operating with small numbers and correct fractions Such calculations can take a lot of time. It’s good that the Excel spreadsheet processor doesn’t care what number is raised to what power. Try solving the following example on an Excel worksheet:

Using the above rules, you can check and make sure that the calculation was done correctly.

At the end of our article, we will present in the form of a table with formulas and results several examples of how to raise a number to a negative power, as well as several examples of operating with fractional numbers and powers.

Example table

Check out the following examples in your Excel worksheet. For everything to work correctly, you need to use a mixed reference when copying the formula. Fix the number of the column containing the number being raised and the number of the row containing the indicator. Your formula should have approximately next view: "=$B4^C$3".

Number/Degree

Please note that positive numbers (even non-integers) can be calculated without problems for any exponent. There are no problems with raising any numbers to integers. But the construction negative number to a fractional power will turn into an error for you, since it is impossible to follow the rule indicated at the beginning of our article about raising negative numbers, because parity is a characteristic exclusively of a WHOLE number.


Continuing the conversation about the power of a number, it is logical to figure out how to find the value of the power. This process is called exponentiation. In this article we will study how exponentiation is performed, and we will touch on everything possible indicators degrees – natural, whole, rational and irrational. And according to tradition, we will consider in detail solutions to examples of raising numbers to various powers.

Page navigation.

What does "exponentiation" mean?

Let's start by explaining what is called exponentiation. Here is the relevant definition.

Definition.

Exponentiation- this is finding the value of the power of a number.

Thus, finding the value of the power of a number a with exponent r and raising the number a to the power r are the same thing. For example, if the task is “calculate the value of the power (0.5) 5,” then it can be reformulated as follows: “Raise the number 0.5 to the power 5.”

Now you can go directly to the rules by which exponentiation is performed.

Raising a number to a natural power

In practice, equality based on is usually applied in the form . That is, when raising a number a to a fractional power m/n, first the nth root of the number a is taken, after which the resulting result is raised to an integer power m.

Let's look at solutions to examples of raising to a fractional power.

Example.

Calculate the value of the degree.

Solution.

We will show two solutions.

First way. By definition of a degree with a fractional exponent. We calculate the value of the degree under the root sign, and then extract the cube root: .

Second way. By the definition of a degree with a fractional exponent and based on the properties of the roots, the following equalities are true: . Now we extract the root , finally, we raise it to an integer power .

Obviously, the obtained results of raising to a fractional power coincide.

Answer:

Note that a fractional exponent can be written as a decimal fraction or a mixed number, in these cases it should be replaced with the corresponding ordinary fraction, and then raised to a power.

Example.

Calculate (44.89) 2.5.

Solution.

Let us write the exponent in the form common fraction(if necessary, see the article): . Now we perform the raising to a fractional power:

Answer:

(44,89) 2,5 =13 501,25107 .

It should also be said that raising numbers to rational powers is a rather labor-intensive process (especially when the numerator and denominator of the fractional exponent contain quite a few big numbers), which is usually carried out using computer technology.

To conclude this point, let us dwell on raising the number zero to a fractional power. We gave the following meaning to the fractional power of zero of the form: when we have , and at zero to the m/n power is not defined. So, zero to a fractional positive power is zero, for example, . And zero in a fractional negative power does not make sense, for example, the expressions 0 -4.3 do not make sense.

Raising to an irrational power

Sometimes it becomes necessary to find out the value of the power of a number with an irrational exponent. In this case, for practical purposes it is usually sufficient to obtain the value of the degree accurate to a certain sign. Let us immediately note that in practice this value is calculated using electronic computers, since raising it to an irrational power manually requires large quantity cumbersome calculations. But still we will describe in general outline the essence of the action.

To obtain an approximate value of the power of a number a with an irrational exponent, some decimal approximation of the exponent is taken and the value of the power is calculated. This value is an approximate value of the power of the number a with an irrational exponent. The more accurate the decimal approximation of a number is taken initially, the more exact value degree will be obtained in the end.

As an example, let's calculate the approximate value of the power of 2 1.174367... . Let's take the following decimal approximation of the irrational exponent: . Now we raise 2 to the rational power 1.17 (we described the essence of this process in the previous paragraph), we get 2 1.17 ≈2.250116. Thus, 2 1,174367... ≈2 1,17 ≈2,250116 . If we take a more accurate decimal approximation of the irrational exponent, for example, then we obtain a more accurate value of the original exponent: 2 1,174367... ≈2 1,1743 ≈2,256833 .

Bibliography.

  • Vilenkin N.Ya., Zhokhov V.I., Chesnokov A.S., Shvartsburd S.I. Mathematics textbook for 5th grade. educational institutions.
  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebra: textbook for 7th grade. educational institutions.
  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebra: textbook for 8th grade. educational institutions.
  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebra: textbook for 9th grade. educational institutions.
  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. and others. Algebra and the beginnings of analysis: Textbook for grades 10 - 11 of general education institutions.
  • Gusev V.A., Mordkovich A.G. Mathematics (a manual for those entering technical schools).

First level

Degree and its properties. The Comprehensive Guide (2019)

Why are degrees needed? Where will you need them? Why should you take the time to study them?

To learn everything about degrees, what they are needed for, and how to use your knowledge in everyday life, read this article.

And, of course, knowledge of degrees will bring you closer to successfully passing the Unified State Exam or Unified State Exam and to entering the university of your dreams.

Let's go... (Let's go!)

Important note! If you see gobbledygook instead of formulas, clear your cache. To do this, press CTRL+F5 (on Windows) or Cmd+R (on Mac).

FIRST LEVEL

Exponentiation is a mathematical operation just like addition, subtraction, multiplication or division.

Now I will explain everything in human language using very simple examples. Be careful. The examples are elementary, but explain important things.

Let's start with addition.

There is nothing to explain here. You already know everything: there are eight of us. Everyone has two bottles of cola. How much cola is there? That's right - 16 bottles.

Now multiplication.

The same example with cola can be written differently: . Mathematicians are cunning and lazy people. They first notice some patterns, and then figure out a way to “count” them faster. In our case, they noticed that each of the eight people had the same number of cola bottles and came up with a technique called multiplication. Agree, it is considered easier and faster than.


So, to count faster, easier and without errors, you just need to remember multiplication table. Of course, you can do everything slower, more difficult and with mistakes! But…

Here is the multiplication table. Repeat.

And another, more beautiful one:

What other clever counting tricks have lazy mathematicians come up with? Right - raising a number to a power.

Raising a number to a power

If you need to multiply a number by itself five times, then mathematicians say that you need to raise that number to the fifth power. For example, . Mathematicians remember that two to the fifth power is... And they solve such problems in their heads - faster, easier and without mistakes.

All you need to do is remember what is highlighted in color in the table of powers of numbers. Believe me, this will make your life a lot easier.

By the way, why is it called the second degree? square numbers, and the third - cube? What does it mean? Very good question. Now you will have both squares and cubes.

Real life example #1

Let's start with the square or the second power of the number.

Imagine a square pool measuring one meter by one meter. The pool is at your dacha. It's hot and I really want to swim. But... the pool has no bottom! You need to cover the bottom of the pool with tiles. How many tiles do you need? In order to determine this, you need to know the bottom area of ​​the pool.

You can simply calculate by pointing your finger that the bottom of the pool consists of meter by meter cubes. If you have tiles one meter by one meter, you will need pieces. It's easy... But where have you seen such tiles? The tile will most likely be cm by cm. And then you will be tortured by “counting with your finger.” Then you have to multiply. So, on one side of the bottom of the pool we will fit tiles (pieces) and on the other, too, tiles. Multiply by and you get tiles ().

Did you notice that to determine the area of ​​the pool bottom we multiplied the same number by itself? What does it mean? Since we are multiplying the same number, we can use the “exponentiation” technique. (Of course, when you have only two numbers, you still need to multiply them or raise them to a power. But if you have a lot of them, then raising them to a power is much easier and there are also fewer errors in calculations. For the Unified State Exam, this is very important).
So, thirty to the second power will be (). Or we can say that thirty squared will be. In other words, the second power of a number can always be represented as a square. And vice versa, if you see a square, it is ALWAYS the second power of some number. A square is an image of the second power of a number.

Real life example #2

Here's a task for you: count how many squares there are on the chessboard using the square of the number... On one side of the cells and on the other too. To calculate their number, you need to multiply eight by eight or... if you notice that a chessboard is a square with a side, then you can square eight. You will get cells. () So?

Real life example #3

Now the cube or the third power of a number. The same pool. But now you need to find out how much water will have to be poured into this pool. You need to calculate the volume. (Volumes and liquids, by the way, are measured in cubic meters. Unexpected, right?) Draw a pool: the bottom is a meter in size and a meter deep, and try to count how many cubes measuring a meter by a meter will fit into your pool.

Just point your finger and count! One, two, three, four...twenty-two, twenty-three...How many did you get? Not lost? Is it difficult to count with your finger? So that! Take an example from mathematicians. They are lazy, so they noticed that in order to calculate the volume of the pool, you need to multiply its length, width and height by each other. In our case, the volume of the pool will be equal to cubes... Easier, right?

Now imagine how lazy and cunning mathematicians are if they simplified this too. We reduced everything to one action. They noticed that the length, width and height are equal and that the same number is multiplied by itself... What does this mean? This means you can take advantage of the degree. So, what you once counted with your finger, they do in one action: three cubed is equal. It is written like this: .

All that remains is remember the table of degrees. Unless, of course, you are as lazy and cunning as mathematicians. If you like to work hard and make mistakes, you can continue to count with your finger.

Well, to finally convince you that degrees were invented by quitters and cunning people to solve their life problems, and not to create problems for you, here are a couple more examples from life.

Real life example #4

You have a million rubles. At the beginning of each year, for every million you make, you make another million. That is, every million you have doubles at the beginning of each year. How much money will you have in years? If you are sitting now and “counting with your finger,” then you are a very hardworking person and... stupid. But most likely you will give an answer in a couple of seconds, because you are smart! So, in the first year - two multiplied by two... in the second year - what happened, by two more, in the third year... Stop! You noticed that the number is multiplied by itself times. So two to the fifth power is a million! Now imagine that you have a competition and the one who can count the fastest will get these millions... It’s worth remembering the powers of numbers, don’t you think?

Real life example #5

You have a million. At the beginning of each year, for every million you make, you earn two more. Great isn't it? Every million is tripled. How much money will you have in a year? Let's count. The first year - multiply by, then the result by another... It’s already boring, because you already understood everything: three is multiplied by itself times. So to the fourth power it is equal to a million. You just have to remember that three to the fourth power is or.

Now you know that by raising a number to a power you will make your life a lot easier. Let's take a further look at what you can do with degrees and what you need to know about them.

Terms and concepts... so as not to get confused

So, first, let's define the concepts. What do you think, what is an exponent? It's very simple - it's the number that is "at the top" of the power of the number. Not scientific, but clear and easy to remember...

Well, at the same time, what such a degree basis? Even simpler - this is the number that is located below, at the base.

Here's a drawing for good measure.

Well, in general terms, in order to generalize and remember better... A degree with a base “ ” and an exponent “ ” is read as “to the degree” and is written as follows:

Power of a number with natural exponent

You probably already guessed: because the exponent is a natural number. Yes, but what is it natural number? Elementary! Natural numbers are those numbers that are used in counting when listing objects: one, two, three... When we count objects, we do not say: “minus five,” “minus six,” “minus seven.” We also do not say: “one third”, or “zero point five”. These are not natural numbers. What numbers do you think these are?

Numbers like “minus five”, “minus six”, “minus seven” refer to whole numbers. In general, integers include all natural numbers, numbers opposite to natural numbers (that is, taken with a minus sign), and number. Zero is easy to understand - it is when there is nothing. What do negative (“minus”) numbers mean? But they were invented primarily to indicate debts: if you have a balance on your phone in rubles, this means that you owe the operator rubles.

All fractions are rational numbers. How did they arise, do you think? Very simple. Several thousand years ago, our ancestors discovered that they lacked natural numbers to measure length, weight, area, etc. And they came up with rational numbers... Interesting, isn't it?

There are also irrational numbers. What are these numbers? In short, it's an infinite decimal fraction. For example, if you divide the circumference of a circle by its diameter, you get an irrational number.

Summary:

Let us define the concept of a degree whose exponent is a natural number (i.e., integer and positive).

  1. Any number to the first power is equal to itself:
  2. To square a number means to multiply it by itself:
  3. To cube a number means to multiply it by itself three times:

Definition. Raising a number to a natural power means multiplying the number by itself times:
.

Properties of degrees

Where did these properties come from? I will show you now.

Let's see: what is it And ?

A-priory:

How many multipliers are there in total?

It’s very simple: we added multipliers to the factors, and the result is multipliers.

But by definition, this is a power of a number with an exponent, that is: , which is what needed to be proven.

Example: Simplify the expression.

Solution:

Example: Simplify the expression.

Solution: It is important to note that in our rule Necessarily there must be the same reasons!
Therefore, we combine the powers with the base, but it remains a separate factor:

only for the product of powers!

Under no circumstances can you write that.

2. that's it th power of a number

Just as with the previous property, let us turn to the definition of degree:

It turns out that the expression is multiplied by itself times, that is, according to the definition, this is the th power of the number:

In essence, this can be called “taking the indicator out of brackets.” But you can never do this in total:

Let's remember the abbreviated multiplication formulas: how many times did we want to write?

But this is not true, after all.

Power with negative base

Up to this point, we have only discussed what the exponent should be.

But what should be the basis?

In powers of natural indicator the basis may be any number. Indeed, we can multiply any numbers by each other, be they positive, negative, or even.

Let's think about which signs ("" or "") will have powers of positive and negative numbers?

For example, is the number positive or negative? A? ? With the first one, everything is clear: no matter how many positive numbers we multiply by each other, the result will be positive.

But the negative ones are a little more interesting. We remember the simple rule from 6th grade: “minus for minus gives a plus.” That is, or. But if we multiply by, it works.

Determine for yourself what sign the following expressions will have:

1) 2) 3)
4) 5) 6)

Did you manage?

Here are the answers: In the first four examples, I hope everything is clear? We simply look at the base and exponent and apply the appropriate rule.

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In example 5) everything is also not as scary as it seems: after all, it doesn’t matter what the base is equal to - the degree is even, which means the result will always be positive.

Well, except when the base is zero. The base is not equal, is it? Obviously not, since (because).

Example 6) is no longer so simple!

6 examples to practice

Analysis of the solution 6 examples

If we ignore the eighth power, what do we see here? Let's remember the 7th grade program. So, do you remember? This is the formula for abbreviated multiplication, namely the difference of squares! We get:

Let's look carefully at the denominator. It looks a lot like one of the numerator factors, but what's wrong? The order of the terms is wrong. If they were reversed, the rule could apply.

But how to do that? It turns out that it’s very easy: the even degree of the denominator helps us here.

Magically the terms changed places. This “phenomenon” applies to any expression to an even degree: we can easily change the signs in parentheses.

But it's important to remember: all signs change at the same time!

Let's go back to the example:

And again the formula:

Whole we call the natural numbers, their opposites (that is, taken with the " " sign) and the number.

positive integer, and it is no different from natural, then everything looks exactly like in the previous section.

Now let's look at new cases. Let's start with an indicator equal to.

Any number to the zero power is equal to one:

As always, let us ask ourselves: why is this so?

Let's consider some degree with a base. Take, for example, and multiply by:

So, we multiplied the number by, and we got the same thing as it was - . What number should you multiply by so that nothing changes? That's right, on. Means.

We can do the same with an arbitrary number:

Let's repeat the rule:

Any number to the zero power is equal to one.

But there are exceptions to many rules. And here it is also there - this is a number (as a base).

On the one hand, it must be equal to any degree - no matter how much you multiply zero by itself, you will still get zero, this is clear. But on the other hand, like any number to the zero power, it must be equal. So how much of this is true? The mathematicians decided not to get involved and refused to raise zero to the zero power. That is, now we cannot not only divide by zero, but also raise it to the zero power.

Let's move on. In addition to natural numbers and numbers, integers also include negative numbers. To understand what a negative power is, let’s do as last time: multiply some normal number by the same number to a negative power:

From here it’s easy to express what you’re looking for:

Now let’s extend the resulting rule to an arbitrary degree:

So, let's formulate a rule:

A number with a negative power is the reciprocal of the same number with a positive power. But at the same time The base cannot be null:(because you can’t divide by).

Let's summarize:

I. The expression is not defined in the case. If, then.

II. Any number to the zero power is equal to one: .

III. A number not equal to zero to a negative power is the inverse of the same number to a positive power: .

Tasks for independent solution:

Well, as usual, examples for independent solutions:

Analysis of problems for independent solution:

I know, I know, the numbers are scary, but on the Unified State Exam you have to be prepared for anything! Solve these examples or analyze their solutions if you couldn’t solve them and you will learn to cope with them easily in the exam!

Let's continue to expand the range of numbers “suitable” as an exponent.

Now let's consider rational numbers. What numbers are called rational?

Answer: everything that can be represented as a fraction, where and are integers, and.

To understand what it is "fractional degree", consider the fraction:

Let's raise both sides of the equation to a power:

Now let's remember the rule about "degree to degree":

What number must be raised to a power to get?

This formulation is the definition of the root of the th degree.

Let me remind you: the root of the th power of a number () is a number that, when raised to a power, is equal to.

That is, the root of the th power is the inverse operation of raising to a power: .

It turns out that. Obviously, this special case can be expanded: .

Now we add the numerator: what is it? The answer is easy to obtain using the power-to-power rule:

But can the base be any number? After all, the root cannot be extracted from all numbers.

None!

Let us remember the rule: any number raised to an even power is a positive number. That is, it is impossible to extract even roots from negative numbers!

This means that such numbers cannot be raised to a fractional power with an even denominator, that is, the expression does not make sense.

What about the expression?

But here a problem arises.

The number can be represented in the form of other, reducible fractions, for example, or.

And it turns out that it exists, but does not exist, but these are just two different records of the same number.

Or another example: once, then you can write it down. But if we write down the indicator differently, we will again get into trouble: (that is, we got a completely different result!).

To avoid such paradoxes, we consider only positive base exponent with fractional exponent.

So if:

  • - natural number;
  • - integer;

Examples:

Rational exponents are very useful for transforming expressions with roots, for example:

5 examples to practice

Analysis of 5 examples for training

Well, now comes the hardest part. Now we'll figure it out degree with irrational exponent.

All the rules and properties of degrees here are exactly the same as for a degree with a rational exponent, with the exception

After all, by definition, irrational numbers are numbers that cannot be represented as a fraction, where and are integers (that is, irrational numbers are all real numbers except rational ones).

When studying degrees with natural, integer and rational exponents, each time we created a certain “image”, “analogy”, or description in more familiar terms.

For example, a degree with a natural exponent is a number multiplied by itself several times;

...number to the zeroth power- this is, as it were, a number multiplied by itself once, that is, they have not yet begun to multiply it, which means that the number itself has not even appeared yet - therefore the result is only a certain “blank number”, namely a number;

...negative integer degree- it’s as if some “reverse process” had occurred, that is, the number was not multiplied by itself, but divided.

By the way, in science a degree with a complex exponent is often used, that is, the exponent is not even a real number.

But at school we don’t think about such difficulties; you will have the opportunity to comprehend these new concepts at the institute.

WHERE WE ARE SURE YOU WILL GO! (if you learn to solve such examples :))

For example:

Decide for yourself:

Analysis of solutions:

1. Let's start with the usual rule for raising a power to a power:

Now look at the indicator. Doesn't he remind you of anything? Let us recall the formula for abbreviated multiplication of difference of squares:

In this case,

It turns out that:

Answer: .

2. We reduce fractions in exponents to the same form: either both decimals or both ordinary ones. We get, for example:

Answer: 16

3. Nothing special, we use the usual properties of degrees:

ADVANCED LEVEL

Determination of degree

A degree is an expression of the form: , where:

  • degree base;
  • - exponent.

Degree with natural indicator (n = 1, 2, 3,...)

Raising a number to the natural power n means multiplying the number by itself times:

Degree with an integer exponent (0, ±1, ±2,...)

If the exponent is positive integer number:

Construction to the zero degree:

The expression is indefinite, because, on the one hand, to any degree is this, and on the other hand, any number to the th degree is this.

If the exponent is negative integer number:

(because you can’t divide by).

Once again about zeros: the expression is not defined in the case. If, then.

Examples:

Power with rational exponent

  • - natural number;
  • - integer;

Examples:

Properties of degrees

To make it easier to solve problems, let’s try to understand: where did these properties come from? Let's prove them.

Let's see: what is and?

A-priory:

So, on the right side of this expression we get the following product:

But by definition it is a power of a number with an exponent, that is:

Q.E.D.

Example : Simplify the expression.

Solution : .

Example : Simplify the expression.

Solution : It is important to note that in our rule Necessarily there must be the same reasons. Therefore, we combine the powers with the base, but it remains a separate factor:

Another important note: this rule - only for product of powers!

Under no circumstances can you write that.

Just as with the previous property, let us turn to the definition of degree:

Let's regroup this work like this:

It turns out that the expression is multiplied by itself times, that is, according to the definition, this is the th power of the number:

In essence, this can be called “taking the indicator out of brackets.” But you can never do this in total: !

Let's remember the abbreviated multiplication formulas: how many times did we want to write? But this is not true, after all.

Power with a negative base.

Up to this point we have only discussed what it should be like index degrees. But what should be the basis? In powers of natural indicator the basis may be any number .

Indeed, we can multiply any numbers by each other, be they positive, negative, or even. Let's think about which signs ("" or "") will have powers of positive and negative numbers?

For example, is the number positive or negative? A? ?

With the first one, everything is clear: no matter how many positive numbers we multiply by each other, the result will be positive.

But the negative ones are a little more interesting. We remember the simple rule from 6th grade: “minus for minus gives a plus.” That is, or. But if we multiply by (), we get - .

And so on ad infinitum: with each subsequent multiplication the sign will change. The following simple rules can be formulated:

  1. even degree, - number positive.
  2. Negative number raised to odd degree, - number negative.
  3. A positive number to any degree is a positive number.
  4. Zero to any power is equal to zero.

Determine for yourself what sign the following expressions will have:

1. 2. 3.
4. 5. 6.

Did you manage? Here are the answers:

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In the first four examples, I hope everything is clear? We simply look at the base and exponent and apply the appropriate rule.

In example 5) everything is also not as scary as it seems: after all, it doesn’t matter what the base is equal to - the degree is even, which means the result will always be positive. Well, except when the base is zero. The base is not equal, is it? Obviously not, since (because).

Example 6) is no longer so simple. Here you need to find out which is less: or? If we remember that, it becomes clear that, which means the base is less than zero. That is, we apply rule 2: the result will be negative.

And again we use the definition of degree:

Everything is as usual - we write down the definition of degrees and divide them by each other, divide them into pairs and get:

Before we look at the last rule, let's solve a few examples.

Calculate the expressions:

Solutions :

If we ignore the eighth power, what do we see here? Let's remember the 7th grade program. So, do you remember? This is the formula for abbreviated multiplication, namely the difference of squares!

We get:

Let's look carefully at the denominator. It looks a lot like one of the numerator factors, but what's wrong? The order of the terms is wrong. If they were reversed, rule 3 could apply. But how? It turns out that it’s very easy: the even degree of the denominator helps us here.

If you multiply it by, nothing changes, right? But now it turns out like this:

Magically the terms changed places. This “phenomenon” applies to any expression to an even degree: we can easily change the signs in parentheses. But it's important to remember: All signs change at the same time! You can’t replace it with by changing only one disadvantage we don’t like!

Let's go back to the example:

And again the formula:

So now the last rule:

How will we prove it? Of course, as usual: let’s expand on the concept of degree and simplify it:

Well, now let's open the brackets. How many letters are there in total? times by multipliers - what does this remind you of? This is nothing more than a definition of an operation multiplication: There were only multipliers there. That is, this, by definition, is a power of a number with an exponent:

Example:

Degree with irrational exponent

In addition to information about degrees for the average level, we will analyze the degree with an irrational exponent. All the rules and properties of degrees here are exactly the same as for a degree with a rational exponent, with the exception - after all, by definition, irrational numbers are numbers that cannot be represented as a fraction, where and are integers (that is, irrational numbers are all real numbers except rational numbers).

When studying degrees with natural, integer and rational exponents, each time we created a certain “image”, “analogy”, or description in more familiar terms. For example, a degree with a natural exponent is a number multiplied by itself several times; a number to the zero power is, as it were, a number multiplied by itself once, that is, they have not yet begun to multiply it, which means that the number itself has not even appeared yet - therefore the result is only a certain “blank number”, namely a number; a degree with an integer negative exponent - it’s as if some “reverse process” had occurred, that is, the number was not multiplied by itself, but divided.

It is extremely difficult to imagine a degree with an irrational exponent (just as it is difficult to imagine a 4-dimensional space). It is rather a purely mathematical object that mathematicians created to extend the concept of degree to the entire space of numbers.

By the way, in science a degree with a complex exponent is often used, that is, the exponent is not even a real number. But at school we don’t think about such difficulties; you will have the opportunity to comprehend these new concepts at the institute.

So what do we do if we see an irrational exponent? We are trying our best to get rid of it! :)

For example:

Decide for yourself:

1) 2) 3)

Answers:

  1. Let's remember the difference of squares formula. Answer: .
  2. We reduce the fractions to the same form: either both decimals or both ordinary ones. We get, for example: .
  3. Nothing special, we use the usual properties of degrees:

SUMMARY OF THE SECTION AND BASIC FORMULAS

Degree called an expression of the form: , where:

Degree with an integer exponent

a degree whose exponent is a natural number (i.e., integer and positive).

Power with rational exponent

degree, the exponent of which is negative and fractional numbers.

Degree with irrational exponent

a degree whose exponent is an infinite decimal fraction or root.

Properties of degrees

Features of degrees.

  • Negative number raised to even degree, - number positive.
  • Negative number raised to odd degree, - number negative.
  • A positive number to any degree is a positive number.
  • Zero is equal to any power.
  • Any number to the zero power is equal.

NOW YOU HAVE THE WORD...

How do you like the article? Write below in the comments whether you liked it or not.

Tell us about your experience using degree properties.

Perhaps you have questions. Or suggestions.

Write in the comments.

And good luck on your exams!

As you know, in mathematics there are not only positive numbers, but also negative ones. If acquaintance with positive powers begins with determining the area of ​​a square, then with negative powers everything is somewhat more complicated.

This you should know:

  1. Raising a number to a natural power is the multiplication of a number (in the article we will consider the concepts of number and digit equivalent) by itself in such an amount as the exponent (in the future we will use in parallel and simply the word exponent). 6^3 = 6*6*6 = 36*6 =216. In general, it looks like this: m^n = m*m*m*…*m (n times).
  2. It must be taken into account that when a negative number is raised to a natural power, it will become positive if the exponent is even.
  3. Raising a number to an exponent of 0 gives one, provided that it is not equal to zero. Zero to the zero power is considered undefined. 17^0 = 1.
  4. Extracting the root of a certain power from a number is finding a number that, when raised to the appropriate exponent, will give the desired value. So, the cube root of 125 is 5, since 5^3 = 125.
  5. If you want to raise a number to a positive fractional power, then you need to raise the number to the denominator exponent and extract the root of the numerator exponent from it. 6^5/7 = the seventh root of the product 6*6*6*6*6.
  6. If you want to raise a number to a negative exponent, then you need to find the inverse of the given number. x^-3 = 1/x^3. 8^-4 = 1/8^4 = 1/8*8*8*8 = 1/4096.

Raising a number modulo zero to one to a negative power

First we should remember what is a module. This is the distance on the coordinate line from the value we have chosen to the origin (zero of the coordinate line). By definition, it can never be negative.

Value greater than zero

When the value of a digit is between zero and one, a negative indicator gives an increase in the digit itself. This happens because the denominator decreases while remaining positive.

Let's look at examples:

  • 1/7^-3 = 1/(1/7^3) = 1/(1/343) = 343;
  • 0,2^-5 = 1/0,2^5 = 1/0,2*0,2*0,2*0,2*0,2 = 1/0,00032 = 3125.

Moreover, the larger the module of the indicator, the more actively the figure grows. As the denominator tends to zero, the fraction itself tends to plus infinity.

Value less than zero

Now let's look at how to raise to a negative power if the number is less than zero. The principle is the same as in the previous part, but here the sign of the indicator matters.

Let's look at the examples again:

  • -19 / 21^-4 = 1/(-19/21)^4 = 1/(-19)^4/21^4 = 21^4/(-19)^4 = 21*21*21*21/(-19)*(-19)*(-19)*(-19) = 194481/130321 = 1,4923228;
  • -29/40^-5 = 1/(-29/40)^5 = 1/(-29)^5/40^5 = 40^5/(-29)^5 = 40*40*40*40*40/(-29)*(-29)*(-29)*(-29)*(-29) = 102400000/(-20511149) = -4,9924.

In this case, we see that module continues to grow, but the sign depends on whether the indicator is even or odd.

It should be noted that if we build a unit, it will always remain by itself. If you need to raise a number minus one, then with an even exponent it will turn into one, and with an odd exponent it will remain minus one.

Raising to a negative integer power if the modulus is greater than one

For numbers whose modulus is greater than one, has its own peculiarities of actions. First of all, you need to convert the whole part of the fraction into the numerator, that is, convert it into an improper fraction. If we have a decimal fraction, then it must be converted to a regular fraction. This is done as follows:

  • 6 integers 7/17 = 109/17;
  • 2,54 = 254/100.

Now let's look at how to raise a number to a negative power under these conditions. Already from the above, we can assume what we can expect from the result of the calculations. Since a double fraction is inverted during simplifications, the module of the figure will decrease the faster, the larger the module of the exponent.

First, let's consider the situation when the number given in the task is positive.

First of all, it becomes clear that final result will be greater than zero, because dividing two positive ones always gives a positive one. Let's look again at examples of how this is done:

  • 6 integers 1/20 to the minus fifth power = 121/20^-5 = 1/(121/20)^5 = 1/121^5/20^5 = 20^5/121^5 = 3200000/25937424601 = 0 ,0001234;
  • 2,25^-6 = (225/100)^-6 = 1/(225/100)^6 = 1/225^6/100^6 = 100^6/225^6 = 100*100*100*100*100*100/225*225*225*225*225*225 = 0,007413.

As you can see, the actions do not pose any particular difficulties, and all our initial assumptions turned out to be true.

Now let's turn to the case of a negative digit.

To begin with, we can assume that if the indicator is even, then the result will be positive, if the indicator is odd, then the result will be negative. All our previous calculations in this part will be considered valid now. Let's look at examples again:

  • -3 whole 1/2 to the minus sixth power = (-7/2)^-6 = 1/(-7/2)^6 = 1/(-7)^6/2^6 = 2*2*2 *2*2*2/(-7)*(-7)*(-7)*(-7)*(-7)*(-7) = 64/117649 = 0.000544;
  • -1,25^-5 = (-125/100)^-5 = 1/(-125/100)^5 = 1/(-125)^5/100^5 = 100^5/(-125)^5 = 100*100*100*100*100/(-125)*(-125)*(-125)*(-125)*(-125) = 10000000000/(-30517578125) = -0.32768.

Thus, all our reasoning turned out to be correct.

Construction in the case of a negative fractional exponent

Here you need to remember that such a construction exists extracting the root of the power of the denominator from a number to the power of the numerator. All our previous reasoning remains true this time. Let's explain our actions with an example:

  • 4^-3/2 = 1/4^3/2 = 1/rad(4^3) = 1/rad64 = 1/8.

In this case, you need to keep in mind that extracting roots high level is possible only in a specially selected form and, most likely, you will not be able to get rid of the sign of the radical (square root, cubic root, etc.) with accurate calculations.

Nevertheless, having studied the previous chapters in detail, you should not expect difficulties in school calculations.

It should be noted that the description of this chapter also includes construction with a deliberately irrational indicator, for example, if the indicator is equal to minus PI. You need to act according to the principles described above. However, calculations in such cases become so complex that only powerful electronic computers can do it.

Conclusion

The action we studied is one of the most difficult problems in mathematics(especially in the case of fractional-rational or irrational meaning). However, by studying these instructions in detail and step by step, you can learn how to do this fully automatically without any problems.

Loading...Loading...