Нейрофизиологические механизмы восприятия боли. Механизм восприятия боли Роль головного мозга в формировании болевой реакции

Наиболее распространенным и актуальным определением боли, разработанным Международной ассоциацией по изучению боли (IASP), является определение, согласно которому «боль – это неприятное сенсорное и эмоциональное переживание, связанное с острым или потенциальным повреждением ткани, или описанное в терминах такого повреждения, или и то, и другое». Хотя для объяснения физиологических основ боли было предложено несколько теоретических схем, ни одна теория не смогла полностью охватить все аспекты восприятия боли.

Четырьмя наиболее общепризнанными теориями восприятия боли являются теория специфичности, интенсивности, теория паттернов и теории воротного контроля. Однако в 1968 году Melzack и Casey описали боль как многомерную, где измерения не являются независимыми, а скорее интерактивными. Эти измерения включают сенсорно-дискриминативный, аффективно-мотивационный и когнитивно-оценочный компоненты.

Определение наиболее вероятного механизма (механизмов) боли имеет крайне важное значение во время клинической оценки, поскольку это может служить руководством для определения наиболее подходящего лечения. Таким образом, критерии, на которых клиницисты могут основывать свои решения в отношении соответствующих классификаций, были установлены с помощью экспертного консенсусного перечня клинических показателей.

Друзья, 30 ноября — 1 декабря в Москве состоится семинар от авторов легендарного бестселлера Explain Pain.

Приведенные ниже таблицы были взяты у Smart и соавт. (2010), которые классифицировали болевые механизмы как «ноцицептивные», «периферические невропатические» и «центральные», и выделили как субъективные, так и объективные клинические показатели для каждого механизма. Таким образом, эти таблицы являются дополнением к любым общепринятым данным и служат основой для принятия клинических решений при определении наиболее подходящего механизма (механизмов) боли.

Кроме того, знание факторов, которые могут изменить боль и восприятие боли, может помочь в определении имеющегося у пациента механизма боли. Ниже перечислены факторы риска, которые могут изменить боль и восприятие боли.

  • Биомедецинский.
  • Психосоциальный или поведенческий.
  • Социальный и экономический.
  • Профессиональный /связанный с работой.

Механизм ноцицептивной боли

Ноцицептивная боль связана с активацией периферических окончаний первичных афферентных нейронов в ответ на вредные химические (воспалительные), механические или ишемические стимулы.

Субъективные показатели

  • Четкий, пропорциональная механическая/анатомическая природа провоцирующих и облегчающих факторов.
  • Боль, связанная и пропорциональная травме, или патологическому процессу (воспалительный ноцицептивный), или двигательной / постуральной дисфункции (ишемический ноцицептивный).
  • Боль, локализованная в области травмы/дисфункции (с/без отраженного компонента).
  • Обычно быстрое уменьшение/исчезновение боли в соответствии с ожидаемым временем заживления/восстановления ткани.
  • Эффективность нестероидных противовоспалительных препаратов/анальгетиков.
  • Периодический (резкий) характер боли, что может быть связано с движениями/механической нагрузкой; может быть постоянной тупой ноющей или пульсирующей.
  • Боль в сочетании с другими симптомами воспаления (например, отек, покраснение, жар).
  • Отсутствие неврологических симптомов.
  • Боль, которая началась недавно.
  • Четкая суточная или 24-часовая картина симптомов (т.е. утренняя скованность).
  • Отсутствие или незначительная связь с неадаптивными психосоциальными факторами (например, негативными эмоциями, низкой самоэффективностью).

Объективные показатели

  • Четкий, последовательный и пропорциональный механический/анатомический характер воспроизведения боли при движении/механическом тестировании тканей-мишеней.
  • Локализованная боль при пальпации.
  • Отсутствие или ожидаемое/ пропорциональное соотношение результатов (первичной и/или вторичной) гипералгезии и/или аллодинии.
  • Анталгические (то есть обезболивающие) позы/движения.
  • Наличие других кардинальных признаков воспаления (отек, покраснение, жар).
  • Отсутствие неврологических признаков: отрицательные нейродинамические тесты (например, тест подъема прямой ноги, тест натяжения плечевого сплетения, тест Тинеля).
  • Отсутствие дезадаптивного болевого поведения.

Механизм периферической нейропатической боли

Периферическая невропатическая боль инициируется или вызывается первичным поражением или дисфункцией периферической нервной системы (ПНС) и включает в себя многочисленные патофизиологические механизмы, связанные с измененным функционированием нерва и его реактивностью. Механизмы включают в себя повышенную возбудимость и аномальную генерацию импульсов, а также повышенную механическую, термическую и химическую чувствительность.

Субъективные показатели

  • Боль описывается как жгучая, стреляющая, острая, ноющая или подобная удару электрическим током.
  • История травмы нерва, патологии или механического повреждения.
  • Боль в сочетании с другими неврологическими симптомами (например, покалывание, онемение, слабость).
  • Боль характеризуется дерматомальным распределением.
  • Боль не меняется в ответ на применение НПВС/анальгетиков и уменьшается при приеме противоэпилептических препаратов (например, Нейронтин, Лирика) или антидепрессантов (например, Амитриптилин).
  • Боль высокой степени выраженности (т.е. легко провоцируемая и требующая больше времени для успокоения).
  • Механическая закономерность к отягчающим и смягчающим факторам, связанным с деятельностью/постурой, связанными с движением, нагрузкой или сжатием нервной ткани.
  • Боль в сочетании с другими дизестезиями (например, ползание мурашек, электрический ток, тяжесть).
  • Отсроченная боль в ответ на движение/механические нагрузки.
  • Боль усиливается ночью и связана с нарушением сна.
  • Боль, связанная с психологическими факторами (такими как дистресс, эмоциональные расстройства).

Объективные показатели

  • Провоцирование боли/симптомов с помощью механических/двигательных тестов (т. е. активных/пассивных, нейродинамических), которые перемещают/нагружают/сжимают нервную ткань.
  • Провокация боли/симптомов при пальпации соответствующих нервов.
  • Положительные неврологические результаты (включая измененные рефлексы, ощущения и мышечную силу в дерматомальном/миотомическом или кожном распределении).
  • Анталгическое положение пораженной конечности/части тела.
  • Положительные результаты гипералгезии (первичной или вторичной) и/или аллодинии и/или гиперпатии в пределах зоны распределения боли.
  • Отсроченная боль в ответ на движение/механическое тестирование.
  • Клинические исследования, подтверждающие периферический невропатический характер (например, МРТ, КТ, тесты нервной проводимости).
  • Признаки вегетативной дисфункции (такие как трофические изменения).

Примечание: вспомогательные клинические исследования (например, МРТ) могут не понадобиться для того, чтобы врачи-клиницисты могли классифицировать боль, как «периферическую невропатическую».

Механизм центральной боли

Центральная боль - это боль, инициированная или являющаяся следствием первичного поражения или дисфункции центральной нервной системы (ЦНС).

Субъективные показатели

  • Непропорциональный, немеханический, непредсказуемый характер провокации боли в ответ на множественные/неспецифические факторы обострения/ослабления.
  • Боль, сохраняющаяся за пределами ожидаемого времени заживления тканей / восстановления патологии.
  • Боль, несоразмерная характеру и степени травмы или патологии.
  • Широко распространенное, неанатомическое распределение боли.
  • История неудачных вмешательств (медицинских/хирургических /терапевтических).
  • Сильная связь с дезадаптивными психосоциальными факторами (т. е. отрицательные эмоции, низкая самоэффективность, дезадаптивные убеждения и болезненное поведение, измененное семьей / работой / социальной жизнью, медицинский конфликт).
  • Боль не снижается в ответ на НПВС, но становится менее интенсивной на фоне приема противоэпилептических препаратов и антидепрессантов.
  • Сообщения о спонтанной (т.е. независимой от стимула) боли и/или пароксизмальной боли (т.е. внезапных рецидивах и усилении боли).
  • Боль в сочетании с выраженным нарушением дееспособности.
  • Более постоянная/неизменяющаяся боль.
  • Боль по ночам/нарушение сна.
  • Боль в сочетании с другими дизестезиями (жжение, холод, ощущение мурашек).
  • Боль высокой степени выраженности (т.е. легко провоцируемая, требующая много времени для успокоения).
  • Остроченная боль в ответ на движение/механические нагрузки, активность повседневной жизни.
  • Боль в сочетании с симптомами дисфункции вегетативной нервной системы (изменение цвета кожи, чрезмерное потоотделение, трофические нарушения).
  • История расстройства/поражения ЦНС (например, повреждение спинного мозга).

Объективные показатели

  • Непропорциональная, непоследовательная, немеханическая/неанатомическая картина провоцирования боли в ответ на движение/механическое тестирование.
  • Положительные результаты гипералгезии (первичной, вторичной) и/или аллодинии и/или гиперпатии в пределах распределения боли.
  • Диффузные/неанатомические области боли/болезненности при пальпации.
  • Позитивная идентификация различных психосоциальных факторов (например, катастрофизация, избегание, дистресс).
  • Отсутствие признаков повреждения ткани/патологии.
  • Отсроченная боль в ответ на движение/механическое испытание.
  • Атрофии мышц.
  • Признаки дисфункции вегетативной нервной системы (изменение цвета кожи, потливость).
  • Анталгические позы/движения.

Клинические примеры

Следующие клинические примеры дополнят приведенную выше информацию о вероятных механизмах боли.

Случай № 1

Пациент «А» — 58-летняя женщина на пенсии. История текущей жалобы — примерно 1 месяц назад внезапно возникла боль в пояснице, отдающая в правую ногу. Пациентка жалуется на постоянную тупую боль в пояснице справа (Б1), ВАШ 7-8/10, отдающую по передней части правой ноги до колена (Б2), которая является периодической 2/10 и связанной со жгучей болью над коленом. Б1 усугубляется во время керлинга, когда правая нога является ведущей, при ходьбе свыше 15 минут, вождении машины более 30 минут и подъеме по лестнице. Б2 появляется при сидении на твердых поверхностях свыше 30 минут и длительном сгибании. Кашель и чихание не усиливают боль. Пациент «А» около 10 лет назад перенес травму поясницы, прошел курс лечения с хорошим восстановлением. Каков механизм боли?

Случай № 2

Пациент “B” — 30-летний мужчина, бухгалтер. История текущей жалобы — внезапное начало – неспособность повернуть и наклонить шею вправо, что возникло 2 дня назад. При этом у пациента голова находится в положении небольшого поворота и наклона влево. Пациент сообщает о низком уровне боли (ВАШ 2-3/10), но только в момент поворота головы вправо, при этом движение «застревает». Пациент отрицает какое-либо онемение, покалывание или жгучую боль, но НПВС неэффективны. Также известно, что тепло и мягкий массаж уменьшают симптомы. Объективный осмотр указывают на то, что пассивные физиологические и добавочные движения вправо имеют меньшую амплитуду. Все другие движения шейного отдела в пределах нормы. Каков доминирующий механизм боли?

Случай № 3

Пациент «С» — 25-летняя студентка. История текущей жалобы — дорожно-транспортное происшествие около месяца назад по пути на учебу — пациентка получила удар сзади. С тех пор пациентка была на 6 сеансах физиотерапии без каких-либо улучшений в плане постоянных болей в шее. Боль локализуется слева на уровне С2-7 (ВАШ 3-9/10) и варьируется от тупой боли до острой боли в зависимости от положения шеи. Боль усугубляется при сидении и ходьбе в течение более 30 минут и при поворотах влево. Ночью при поворотах в постели пациентка может просыпаться от боли, кашель/чихание не усиливают боль. Боль иногда уменьшается при воздействии тепла и растяжки. НПВС неэффективны. Результаты инструментальной диагностики без особенностей. Общее состояние здоровья в целом хорошее. Незначительные растяжения при занятиях спортом, что никогда не требовало лечения. Пациентка высказывает озабоченность по поводу вождения (ни разу не садилась за руль после аварии). Также пациентка сообщила о повышении чувствительности в нижних конечностях. Каков ведущий механизм боли?

УДК 616-009.7-092

В.Г. Овсянников, А.Е. Бойченко, В.В. Алексеев, Н.С. Алексеева

ИНИЦИАЛЬНЫЕ МЕХАНИЗМЫ ФОРМИРОВАНИЯ БОЛИ

Кафедра патологической физиологии Ростовского государственного медицинского университета,

г. Ростов-на-Дону.

В статье анализируются данные современной литературы, описывающие классификации, структуру и функции болевых рецепторов, нервных волокон, проводящих болевой импульс, а так же роли структур заднего рога спинного мозга. Освещены центральные и периферические механизмы формирования болевой чувствительности.

Ключевые слова: боль, болевой рецептор, нервное волокно, формирование боли, гипералгезия.

V.G. Ovsyannikov, A.E. Boichenko, V.V. Alekseev, N.S. Alekseeva

THE INITIAL FORMATION AND MECHANISMS OF THE PAIN

Department of pathological physiology The Rostov State Medical University.

The article analyzes the data of modern literature, describes the classification, structure and function of pain receptors; the nerve fibers conducting pain impulse and the role of structures of the posterior horns of the spinal cord. Lit Central and peripheral mechanisms of formation of pain sensitivity.

Key words: pain, pain receptor, nerve fiber, the formation of the pain, hyperalgesia.

Боль является таким же ощущением, как прикосновение, зрение, слух, вкус, запах и, тем не менее, она значительно отличается по своей природе и последствиям для организма.

Ее формирование направлено, с одной стороны, на восстановление участка повреждения и, в конечном итоге, на сохранение жизни за счет восстановления нарушенного гомеостаза, а, с другой стороны, является важным патогенетическим звеном развития патологического процесса (шока, стресса).

В сложном механизме формирования боли важную роль играют структуры спинного и головного мозга, а также гуморальные факторы, составляющие основу противоболевой системы, обеспечивающие исчезновение боли за счет активации различных ее звеньев.

Среди важнейших особенностей формирования болевого ощущения следует отметить развитие периферической и центральной сенсибилизации, или гипералгезии, и формирование в результате этого болевого ощущения, даже при действии на организм неповреждающих клетки факторов (тактильное, холодовое, тепловое). Этот феномен получил название аллодиния.

Не менее важной особенностью является формирование, особенно при патологии внутренних органов, ощущения боли в других участках тела (отраженная и проекционная боль).

Особенностью боли является вовлечение всех органов и систем организма, результатом которого и являются, формирование при боли вегетативных, двигательных, поведенческих, эмоциональных реакций, изменение памяти, в том числе и изменение активности различных звеньев антиноцицептивной системы.

Боль - это рефлекторный процесс. Как и при любом виде чувствительности в ее формировании принимают участие три нейрона. Первый нейрон находится в спинальном ганглии, второй - в заднем роге спинного мозга, третий - в зрительном бугре (таламусе). В возникновении боли принимают участие болевые рецепторы, нервные проводники, структуры спинного и головного мозга.

Болевые рецепторы

Свободные нервные окончания А-дельта и С-волокон кожи, мышц, сосудов, внутренних органов, возбуждаемые при действии повреждающих

факторов, получили название ноцицепторов. Они рассматриваются как специализированные болевые рецепторы. Сам процесс болевого восприятия был назван как ноцицепция. В ходе эволюции больше всего болевых рецепторов сформировалось в кожных покровах и слизистых, которые наиболее подвержены повреждающему действию внешних факторов. В коже, на один квадратный сантиметр поверхности, обнаруживается от 100 до 200 болевых точек. На кончике носа, поверхности уха, подошвах и ладонях их количество снижается и колеблется от 40 до 70. Причем, количество болевых рецепторов значительно выше, чем рецепторов тактильных, холода, тепла (Г.Н.Кассиль, 1969) . Значительно меньше болевых рецепторов во внутренних органах. Много болевых рецепторов в надкостнице, мозговых оболочках, плевре, брюшине, синовиальных оболочках, внутренном ухе, наружных половых органах. В то же время кости, ткань мозга, печени, селезенки, альвеолы легких не реагируют на повреждение формированием боли, поскольку в них нет болевых рецепторов.

Часть болевых рецепторов не возбуждаются при действии болевого фактора и они вовлекаются в болевой процесс только при воспалении, которое содействует повышению болевой чувствительности (сенситизация, или гипералгезия). Такие болевые рецепторы получили название «спящих». Болевые рецепторы классифицируются по механизму, характеру их активации, локализации и по их роли в контроле целостности ткани.

По характеру активации нейрофизиологи выделяют три класса болевых рецепторов:

Модальные механические ноцицепторы; Бимодальные механические и термические но-цицепторы;

Полимодальные ноцицепторы. Первая группа ноцицепторов активируется только сильными механическими стимулами в 5 - 1000 раз большей интенсивности, чем необходимо для активации механорецепторов. Причем, в коже эти рецепторы связаны с А - дельта волокнами, а в подкожной клетчатке и во внутренних органах - с С - волокнами.

А - дельта волокна подразделяются на две группы (H.R. Jones et al, 2013) :

группа высокопороговых механорецепторных волокон, возбуждаемых болевыми стимулами высокой интенсивности, а после сенситизации реагирующих на действие теплового ноцицептивного фактора и группа механочувствительных волокон, реагирующих на высокой интенсивности температурное и холодовое воздействие. Возникающая при этом сенситизация этих ноцицепторов вызывает формирование боли при действии механического неболевого фактора (прикосновение).

Вторая группа рецепторов - бимодальных, реагирует одновременно на механические (сжатие, укол, сдавление кожи) и температурные воздействия (повышение температуры свыше 400 С и снижение ниже 100 С). Механически и температурой возбуждаемые рецепторы связаны с миелиновыми А - дельта волокнами. Рецепторы, связанные с С -

волокнами, также возбуждаются механическими и холодовыми факторами.

Полимодальные болевые рецепторы связаны преимущественно только с С - волокнами и возбуждаются механическими, температурными и химическими раздражителями (Ю.П. Лиманский, 1986, Robert B. Daroff et al, 2012, H.R.Jones et al, 2013) .

По механизму возбуждения болевые рецепторы разделяются на механо - и хемонорецепторы. Основная масса механорецепторов связана с А - дельта волокнами и находится в коже, суставных сумках и мышцах. Хемонорецепторы связаны только с С - волокнами. В основном они находятся в коже и мышцах, а также во внутренних органах, и реагируют как на механические, так и на термические факторы.

Соматические ноцицепторы локализованы в коже, мышцах, сухожилиях, суставных капсулах, фасциях, надкостнице. Висцеральные находятся во внутренних органах. В большинстве внутренних органов обнаруживаются полимодальные ноцицеп-торы. В мозге ноцицепторы отсутствуют, но их достаточно много в мозговых оболочках. Как соматические, так и висцеральные ноцицепторы являются свободными нервными окончаниями.

Все болевые рецепторы выполняют сигнальную функцию, ибо информируют организм об опасности раздражителя и его силе, а не о характере (механический, термический, химический). Поэтому некоторые авторы (Л.В.Калюжный, Л.В.Голанов, 1980) разделяют болевые рецепторы в зависимости от их локализации, сигнализирующие о повреждении отдельных частей тела:

Ноцицепторы, контролирующие покровы тела (кожа, слизистые).

Ноцицепторы, контролирующие целостность тканей, гомеостаз. Они расположены в органах, оболочках, в том числе кровеносных сосудов, и реагируют на нарушение метаболизма, дефицит кислорода, растяжение.

Особенности ноцицепторов

Для ноцицепторов характерны следующие особенности:

Возбудимость;

Сенсибилизация (сенситизация);

Отсутствие адаптации.

Болевые рецепторы относятся к высокопороговым структурам.Это значит, что их возбуждение и формирование болевого импульса возможно при действии раздражителей большой интенсивности, способных вызвать повреждение тканей и органов. Необходимо отметить, что порог возбуждения ноцицепторов хотя и является высоким, все же достаточно изменчив, и у человека зависит от наследственно обусловленных особенностей, в том числе свойств личности, эмоционального и соматического состояния, погодных и климатических условий, действия предшествующих факторов. Например, предварительное прогревание кожи повышает чувствительность ноцицепторов к тепловым воздействиям.

Белковые рецепторы (ноцицепторы) представляют собой специфические белковые молекулы, конформация которых под воздействием высокой температуры, химических повреждающих факторов и механических повреждений формируют электрический болевой импульс. На поверхности ноцицеп-торов имеются и много других специфических белковых молекул, возбуждение которых повышает чувствительность ноцицепторов. Образованию веществ, которые с ними взаимодействуют, способствует развитие воспаления. К ним относятся ряд цитокинов, увеличение ионов водорода вследствие расстройств кровообращения и развития гипоксии, образование кининов вследствие активации кини-новой системы плазмы крови, избыток АТФ в результате выхода из разрушенных клеток, гистами-на, серотонина, норадреналина и других. Именно с образованием их в очаге воспаления и связывают повышение чувствительности (гипералгезию) или периферическую болевую сенситизацию.

Считают, что генерация потенциала действия, его распространение осуществляется через открытие кальциевых и натриевых каналов. Доказано, что экзогенные и эндогенные факторы могут облегчать или подавлять (местные анестетики, антиэпилептики) распространение болевого импульса через влияние на натриевые, калиевые, кальциевые, хлорные ионные каналы (Mary Beth Babos et all, 2013) . Причем потенциал действия формируется и распространяется при поступлении в нейрон натрия, кальция, хлора или выходе из клетки калия.

Так как при воспалении образуются многие вещества, формирующие периферическую гиперал-гезию, становится понятным применение для лечения боли нестероидных противовоспалительных препаратов.

Механизм возбуждения болевых рецепторов сложен и заключается в том, что алгогенные факторы повышают проницаемость их мембраны и стимулируют вход натрия с развитием процесса деполяризации, следствием которого является возникновение болевого импульса и его передача по болевым путям.

Детально механизм формирования болевого импульса в ноцицепторе представлен в ряде статей (H.C.Hemmings, T.D.Eden, 2013; G.S. Firestein et al, 2013)

Как показывают исследования академика Г.Н. Крыжановского и его многочисленных учеников возникновение болевого импульса может быть связано с ослаблением различных звеньев анти-ноцицептивной системы, когда нейроны начинают спонтанно подвергаться деполяризации с формированием импульсов, формирующих боль.

Болевая система обладает нейропластичностью, то есть изменяет свою реакцию на поступающие импульсы.

В нормальной ткани болевые ноцицепторы имеют высокий болевой порог и поэтому механические, физические, химические алгогены, чтобы вызвать формирование болевого импульса, должны вызвать повреждение ткани. В очаге воспаления болевой порог снижается и повышается чувстви-

тельность не только ноцицепторов, но и так называемых «спящих» ноцицепторов, которые могут не возбуждаться при первичном действии механических, физических и химических алгогенов.

В очаге воспаления (Gary S. Firestein et al, 2013) высокопороговые ноцицепторы (A - дельта и C - волокна) активируются при небольшом механическом давлении с выделением возбуждающих аминокислот (глютамата и аспартата), а также ней-ропептидов, особенно субстанции Р и кальцитонин ген-связанного пептида (кальцигенин), которые через взаимодействие с АМРА и NMDA - рецепторами, нейропептидными, простагландиновыми, интерлейкиновыми (особенно ^-1-бетта,^-6, TNF-альфа), активируют постсинаптическую мембрану второго нейрона задних рогов спинного мозга. По данным (R.H.Straub et al, 2013, Brenn D. et al, 2007) введение экспериментальным животным IL-6 и ФНО-альфа в сустав вызывает резко увеличение импульсов от сустава по чувствительному нерву, что рассматривается как важный фактор периферической сенситизации.

При нейропатической боли важная роль в формировании сенситизации принадлежит таким про-воспалительным цитокинам как интерферон - гамма, фактор некроза опухоли - альфа, ИЛ-17. В то же время такие противовоспалительные цитокины как ИЛ-4 и ИЛ-10, как полагают, снижают интенсивность гипералгезии (Austin P.J., Gila Moalem-Taylor, 2010) .

Эти изменения ведут к долговременной гиперчувствительности заднекорешкового ганглия.

В спинальном ганглии образуется субстанция Р, 80% которой поступает на периферийные аксоны, а 20% - на терминальные аксоны первого болевого нейрона спинного мозга (M.H. Moskowitz, 2008)

Как уже говорилось ранее, при повреждении из ноцицептора первого болевого нейрона выделяется субстанция Р и кальцитонин ген-связанный пептид. Считают, что эти нейротрансмиттеры обладают выраженным вазодилятаторным, хемо-таксическим действием, также повышают проницаемость микрососудов и, таким образом, способствуют экссудации и эмиграции лейкоцитов. Они стимулируют тучные клетки, моноциты, макрофаги, нейтрофилы, дендритные клетки, обеспечивая провоспалительный эффект. Таким же провоспа-лительным и хемотаксическим эффектом обладает и кальцитонин ген-связанный пептид, а также аминокислота глутамин. Все они высвобождаются периферической нервной терминалью и играют важную роль в формировании и передаче болевого импульса и развитии не только местных (в месте повреждения), но и системных реакций (H.C.Hemmings, T.D.Eden, 2013; G.S.Firestein et al, 2013) . По данным М.Л. Кукушкина с со-авт., 2011, такие возбуждающие кислоты как глю-тамат и аспартат обнаруживаются более чем в половине спинальных ганглиев и, образуясь в них, поступают в пресинаптические терминали, где под влиянием приходящего болевого импульса высвобождаются в синаптическую щель, способствуя распространению импульса в спинном и головном

мозге. Важное значение в формировании периферической сенситизации и гипералгезии придается ряду биологически активных веществ, образующихся в участке повреждения. Это гистамин, се-ротонин, простагландины, особенно брадикинин, цитокины (ФНО-альфа, интерлейкин-1, интер-лейкин-6), ферменты, кислоты, АТФ. Считают, что именно на мембране С - волокон и имеются

рецепторы с которыми они взаимодействуют, формируя периферическую гипералгезию, включая а л л о д и н и ю, и, в конечном итоге, формируют вторичную нелокализованную соматическую и висцеральную боль.

Наиболее изучена структура и функция полимодального ноцицептора С-волокон (Рис.1).

Рис. 1. Примерная структура полимодального ноцицептора С - волокна. (С.З.БЬ^ет, Я.Н^гаиЬ, 2013) . БР - субстанция боли, НА - норадреналин, цитокины (ФНО - альфа, ИЛ-6, ИЛ -1 бетта), ФРН - фактор роста нерва.

Брадикинин увеличивает внутриклеточный кальций и повышает образование простагландинов; субстанция Р увеличивает экспрессию ноцицептора и способствует длительной сенситизации; серото-нин усиливает вход натрия и кальция, увеличивает активность АМРА-рецепторов и формирует гипералгезию; простагландины увеличивают ноцицеп-цию и способствуют гипералгезии.

Это значит, что образующиеся в месте повреждения медиаторы воспаления не только вызывают возбуждение многочисленных рецепторов ноцицептора, но и формируют повышение его чувствительности. Поэтому прием нестероидных противовоспалительных препаратов, блокирующих образование простагландинов и других биологически активных веществ, угнетает проявления боли.

Нервные проводники болевых импульсов

По современным данным болевые импульсы после своего возникновения в ноцицепторах передаются по тонким миелинизированным (А - дельта) и немиелинизированным С - нервным волокнам.

А - дельта волокна обнаруживаются в коже, слизистых оболчках, париетальной брюшине. Эти тонкие миелинизированные нервные волокна про-

водят болевые импульсы достаточно быстро, со скоростью от 0,5 до 30 м/сек. Считают, что ноцицепторы их быстро возбуждаются при действии повреждающих факторов (алгогенов) и формируют острую (первичную) локализованную дискрими-нативную соматическую боль, когда человек или животное точно определяют место повреждения, иными словами, источник боли.

Тонкие немиелинизированные нервные волокна (С - волокна) распределяются в тех же структурах, что и А - дельта волокна, но они значительно распространены в глубоких тканях - мышцах, сухожилиях, висцеральной брюшине и внутренних органах. Они принимают участие в формировании тупой, жгучей и плохо локализованной (вторичной) боли.

В мышцах и суставах имеются имеются А - альфа и А - бета волокна. Первые волокна важны для проприоцепции, а А - бета реагируют на механическую стимуляцию, такую как прикосновение, вибрация. Им придается большое значении в механизмах акупунктуры (Baoyu Xin, 2007). При акупунктуре афферентные имульсы по толстым А - альфа и А - бета волокнам вызывают торможение желатинозной субстанции,формируя закрытие ворот в соответствии с воротной теорией

Мельзака и Уолла. Если же болевой сигнал значительный, он проходит воротный контроль и формирует ощущение боли. В свою очередь болевой сигнал может вызвать вовлечение центральных структур антиноцицептивной системы и нивелировать боль за счет гуморальных и нисходящих ингибиторных влияний.

Генерируют также болевой импульс, как правило, медиаторы, образуемые в участке повреждения (например, в очаге воспаления). Болевой импульс распространяется по таким волокнам (С - волокнам) медленнее (со скоростью 0,5 - 2 м/сек). Скорость распространения болевого импульса примерно в 10 раз медленнее по сравнению с А - дельта волокнами и их болевой порог значительно выше. Поэтому алгогенный фактор должен быть

значительно большей интенсивности. Эти волокна принимают участие в формировании вторичной, тупой, плохо локализованной, диффузной, продолжительной боли. В участке повреждения образуется ряд химических медиаторов боли, таких как субстанция Р, простагландины, лейкотриены, брадикинин, серотонин, гистамин, катехоламины, цитокины, возбуждая преимущественно C - ноцицепторы. (Henry M. Seidel et al, 2011) .

Большинство первичных афферентов образуются нейронами, локализованными в спинальных ганглиях. Что касается висцеральных ноцицептивных афферентных волокон (А-дельта и С - волокна), то они также являются производными заднего корешкового ганглия, но идут в составе вегетативных нервов (симпатических и парасимпатических) (Рис. 2).

Paravertebral ganglia

Lumbar colonic п.

Рис. 2. Симпатическая (слева) и парасимпатическая (справа) иннервация различных внутренних органов. (Чг - чревный ганглий; Вбг - верхний брыжеечный ганглий; Нбг - нижний брыжеечный ганглий). (С.ЕСеЬЬаЛ, 2000).

Роль структур спинного мозга в формировании боли

По современным представлениям, болевые импульсы поступают только по тонким миелини-зированным (А-дельта) и немиелинизированным С-волокнам к клеткам I - VI пластин дорсального рога (серое вещество спинного мозга). А - дельта и С - волокна образуют ветви или коллатерали, проникающие в спинной мозг на короткие расстояния, образуя синапсы. Это обеспечивает вовлечение нескольких сегментов спинного мозга в формирование болевого ощущения. По мнению А.Б. Данилова и О.С. Давыдова, 2007 , А-дельта волокна заканчиваются в I, III, V пластинах. С-волокна (немиелинизированные) поступают во II

пластину. Кроме задних рогов спинного мозга импульсы поступают в ядро тройничного нерва, как аналога спинного мозга. Что касается первичных болевых афферентов от висцеральных органов, то, по данным Bayers and Bonica (2001), они поступают диффузно в I, V, X пластины задних рогов спинного мозга. По данным H.R. Jones et al, 2013 ; M.H. Moskowitz, 2008 специфические болевые нейроны, реагирующие исключительно на болевые стимулы, обнаружены в I, II, IV, V, VI пластинах задних рогов спинного мозга, вызывая формирование постсинаптических потенциалов.

По мнению Susuki R., Dickenson A.N. (2009), периферические терминали болевых и неболевых волокон поступают в различные слои спинного мозга (Рис. 3).

Онкефал иновыи нейрон

А - альфа, А - бета

А - дельта, С - волокна - о-

Второй нейрон

Рис. 3. Поступление болевой и неболевой информации в различные слои поясничного отдела спинного мозга (R. Susuki, A.H. Dickenson, 2009; E. Ottestad, M.S. Angst, 2013) .

В заднем роге спинного мозга терминаль первичного болевого нейрона образует синапсы со вторичным нейроном (I и II пластины) и интернейронами, находящимися в различных слоях заднего рога.

Считают, что висцеральные афферентные волокна заканчиваются в V и меньше в I пластине заднего рога. По данным Дж. Моргана-мл. и С. Мэгид (1998) , V пластина реагирует на ноци- и неноцицеп-тивные сенсорные импульсы и принимает участие в формировании соматической и висцеральной боли.

Важное значение в формировании боли и анти-ноцицепции принадлежит нейронам, локализованным в V слое (пластине) заднего рога спинного мозга (A.D. (Bud) Craig, 2003) . Это большие

нервные клетки, дендриты которых распространяются в большинстве слоев задних рогов спинного мозга.Они получают афферентную информацию от механо- и проприоцепторов по большим мие-линизированным афферентным волокнам от кожи и глубоких структур, а также болевые импульсы по А-дельта и C- волокнам. В V слое заднего рога имеются большие клетки, дендриты которых распространяются в большинстве слоев заднего рога. По ним поступает информация по большого диаметра миелинизированным первичным афферентам от кожи и глубоких структур также, как и по А -дельта волокнам и полимодальным С - волокнам, то есть сюда поступает информация от механо-, проприо-, а также и от ноцицепторов (Рис. 4).

Острая Жгучйд холод

Боль бсгль

Рис. 4. Анатомическая основа для афферентного потока к специфическим клеткам заднего рога спинного мозга к пластинке I и интеграция с клетками пластинки V. (A.D. Craig 2003) .

Поступающие в спинной мозг болевые импульсы по тонким немиелинизированным С - волокнам высвобождают два важнейших нейротрансмиттера - глютамат и субстанцию Р.

Глютамат действует мгновенно и его эффект продолжается несколько миллисекунд. Он стимулирует вход кальция в пресинаптическую тер-миналь и формирует центральную сенситизацию боли. Реализация идет через возбуждение NMDA, АМРА-рецепторы.

Субстанция Р выделяется медленно, повышая концентрацию в течение секунд или минут. Она активирует NMDA, АМРА и нейрокинин - 1 рецепторы, формируя кратковременную и долговременную сенситизацию.

Субстанция Р, которая потенцирует высвобождение глютамата и аспартата, которые, также как и субстанция Р, кальцитонин ген-связанный пептид, нейрокинин - А и галанин, повышают болевую чувствительность в спинном мозге. АТФ взаимодействует с р2У рецепторами, увеличивает поступление кальция в терминаль первого нейрона. Се-ротонин увеличивает вход в терминаль натрия и кальция, повышает активность AMPA - рецепторов и также формирует гипералгезию. Простаглан-дины увеличивают чувствительность, формируя центральную гипералгезию. Норадреналин, через альфа-1 адренорецепторы, повышает чувствительность. (Gary S. Firestein at al, 2013) (Рис. 5).

Рис. 5. Нейротрансмиттеры, способствующие передаче нервных импульсов и формирующих центральную

гипералгезию. (М.В. ВаЬов е! а1, 2013) .

Как показывают исследования, терминальный отдел нейронов спинального ганглия образует синапсы с интернейронами заднего рога спинного мозга, способствующие выделению веществ, инги-бирующих передачу болевых импульсов (ГАМК, эн-кефалины, норадреналин, глицин).

Интернейроны передают импульсы в различные структуры головного мозга. Они играют важную роль и в передаче нисходящих тормозных влияний из структур ствола и межуточного мозга на уровне задних рогов спинного мозга. Две группы рецепторов широко распространены в задних рогах спинного мозга (моноаминергическая, включая адрен-, дофамин- и серотонинергические и ГАМК/ глицинергические). Все они активируются при нисходящем контроле боли. Кроме этого, с помощью интернейронов заднего рога, передаются к мото- и симпатическим нейронам переднего рога спинного мозга, формируя неосознанную двигательную реакцию сегментарного уровня и симпатический эффект.

Большинство интернейронов, как уже упоминалось, локализованы в I и II пластинах заднего рога спинного мозга, имеют древовидную форму, дендри-ты которых проникают в глубь нескольких пластин.

По данным E.Ottestad, M.S.Angst, 2013 , во II слое заднего рога, в зависимости от строения и функции, выделяют островковые, центральные, радиальные и вертикальные интернейроны. Остров-ковые клетки ингибиторные (выделяют ГАМК) и имеют удлиненную дендритную форму, распространяющуюся вдоль рострокаудальной оси. Центральные клетки аналогичной конфигурации, но с более короткими дендритными разветвлениями. Полагают, что функция их ингибиторная и возбуждающая. Радиальные клетки имеют компактные дендриты вертикальной конической веерной формы. Радиальные и большинство вертикальных вставочных нейронов выполняют функцию передачи импульсов (возбуждения), поскольку выделяют главный ней-ротрансмиттер боли - глутамат.

Имеются доказательства того, что островковые интернейроны и большинство центральных получают болевую информацию по С - волокнам, в то время как вертикальные и радиальные клетки - по С и А - дельта афферентам.

В передаче и распространении болевых импульсов принимают участие такие рецепторы синапсов заднего рога спинного мозга, как NMDA, АМРА

и NK - 1. В настоящее время установлено, что NMDA - рецепторы обнаружены на мембранах всех нейронов нервной системы. Их активность, а также АМРА - рецепторов, нейрокинин - 1

рецепторов подавляется наличием ионов магния. Возбуждение же их связано с поступлением кальция (C.W. Slipman et al, 2008; M.H. Moskowitz, 2008; R.H. Straub, 2013) (Рис. 6).

Глутамат

Псесинапгическэя

Терминала

Рис. 6. Схема синаптической передачи болевого импульса в заднем роге спинного мозга.

Как уже говорилось ранее, поступление болевого импульса в пресинаптическую терминаль стимулирует выделение главных нейротрансмиттеров боли (глутамата, субстанции Р), которые, поступая в пресинаптическую терминаль, взаимодействуют с NMDA-, АМРА-, нейрокинин - 1- (N^1-) рецепторами, обеспечивая поступление ионов кальция и вытесняя ионы магния, которые в норме блокируют их активность. Выделяющийся глутамат является источником для образования ГАМК - важнейшего гуморального механизма антиноцицепции на уровне спинного мозга.

При активации NMDA - рецепторов постси-наптической мембраны стимулируется образование оксида азота (N0), который, поступая в пре-синаптическую терминаль, усиливает выделение глутамата из пресинаптической терминали, спо-

собствуя формированию центральной гипералге-зии на уровне спинного мозга.

Нейротрансмиттеры заднего рога спинного мозга, взаимодействуя с рецепторами, открывают деполяризующие натриевые и кальциевые каналы, обеспечивая поступлениие болевых импульсов в ЦНС. Глутамат - с NMDA и АМРА - рецепторами, АТФ соединяется с Р2Х-рецепторами, субстанция Р - с N^1 - рецепторами. Выделяющиеся здесь же, под влиянием импульсов из центральной нервной системы, ГАМК - А и -В вызывают гиперполяризацию хлорных и калиевых каналов, а опиаты, норадреналин стимулируют гиперполяризацию калиевых каналов и, таким образом, блокируют передачу импульса в ЦНС. (М.В. Babos, 2013) . Это является основой так называемой системы нисходящих тормозных влияний на уровне заднего рога спинного мозга (Рис. 7).

Рис. 7. Механизмы нисходящих тормозных влияний на уровне заднего рога спинного мозга.

Важное значение в механизме формирования боли придают глиальным клеткам и астроцитам. Они выполняют интегральную функцию в формировании болевого ошущения. Микроглиальные клетки - это макрофаги ЦНС, обеспечивающие иммунологический надзор и защиту хозяина. Кроме фагоцитарной активности они выделяют комплемент, цитокины. Поскольку астроциты располагаются рядом с нейронами, они образуют синапсы и выделяют не только АТФ, но и связываются с хе-мокинами, цитокинами и простаноидами. Считают, что глиальные клетки участвуют в модуляции боли при их активации в результате травмы и воспаления. Нейроны заднего рога спинного мозга образуют неоспинноталамический тракт, формирующий быструю или первичную локализованную боль. Вторичные нейроны, расположенные в V пласти-

не заднего рога, известные как широкодинамичные нейроны, поскольку они активируются и болевыми стимулами соматического и висцерального происхождения, и импульсами от тактильных, температурных и рецепторов глубокой чувствительности. Эти нейроны образуют палеоспинноталамический тракт, формирующий вторичную или нелокализо-ванную боль. (Mary Beth Babos et al, 2013) .

В спинном мозге болевые импульсы поступают в головной мозг по латеральной (неоспинаталами-ческий, неотригеминоталаминческий, заднестол-бовый, спиноцервикальный путь) и медиальной системам (палеоспиноталамический, палиотри-геминоталамический путь, мультисинаптические проприоспинальные восходящие системы) (А.Б. Данилов, О.С. Давыдов, 2007 , Решетняк В.К., 2009) .

ЛИТЕРАТУРА

1. Кассиль, Г.Н. Наука о боли. - М., 1969. - 374 с.

2. Jones H.R., Burns T.M., Aminoff M.J., Pomeroy S.L. Pain. Pain Anatomy Ascending Pathways Endorphin System // Netter Collection of Medical Illustrations: Spinal Cord and Peripheral Motor and Sensory Systems. - 2013. -Second Edition, Section 8. - P. 201 - 224.

3. Лиманский, Ю.П. Физиология боли. - Киев, 1986. - 93 с.

4. Robert B. Daroff, Gerald M. Fenichel, Joseph Jankovic, John C. Mazziotta. Principles of Pain Management // Bradley"s Neurology in Clinical Practice. - 2012. - Sixth Edition, Ch. 44. - P. 783 - 801.

5. Mary Beth Babos, BCPS, PharmD, CDE, Brittany Grady, Warren Wisnoff, DO, Christy McGhee, MPAS PA-C. Pathophysiology of Pain. Disease-a-Month, 2013 -10-01, volume 59, Issue 10, P. 330-335

6. Hemmings H.C., Eden T.D. Pharmacology and Physiology for Anesthesia // Nociceptive physiology. - 2013. - Chapter 14. - P. 235-252.

7. Straub R.H., Gary S. Firestein, R.C. Budd, S.E.Gabriel, I.B.Mclinnes, J.R. O Doll. Neural Regulation of Pain and Inflammation // Kelly"s Textbook of Rheanimatology, Ninth edition. - 2013. - Chapter 29. - P. 413-429.

8. Austin P.J., Gila Moalem - Taylor. The neuro-immune balance in neuropathic pain: Involvment of inflammatory immune cells and cytokines // Journal of Neuroimmunology. - 2010. - № 229. - P. 26-50.

9. Moskowitz M.H. Central influenses on Pain // Intrventional spine an algorithmic approach / Curtis W., Slipman M.D., Richard Derby M.D. et al. - Elsevier. - 2008. - P. 39-52.

10. Seidel H.M., Ball J.W., Dains J.E., Flynn J.A., Solomon B.S., Stewart R.W. Assesment of Pain // In Mosby"s Guide to physical Examination. - 2011. - Seventh edition. - Chapter 7. - P. 140 - 149.

11. Данилов, А.Б., Давыдов, О.С. Нейропатическая боль. - М., 2007. - 191 с.

12. Ottesad E. Nociceptive Physiology/ E. Ottestad, M.S. Angst // Pharmacology and Physiology for Anesthesia // H.C. Hemmings et al. - Philadelphia: Saunders; Elsevier. - 2013. - Ch. 14. - P. 235-252.

13. Морган Эдвард Дж.- мл., Мэгид С. Клиническая анестезиология: руководство для врачей - анестезиологов, реаниматологов и студентов мед. вузов / Пер. с англ. под ред. А.А.Бунятяна. - С-Пб.: Невский Диалект: М.: БИНОМ. - 1998. - Кн. 1: Оборудование и мониторинг. Регионарная анестезия. Лечение боли. - 431 с.

14. Crage A.D. (Bud). Pain mechanisms: Labeled lines versus convergense in Central processing // Ann. Rev. Neurosci. - 2003. - № 26. - P. 1-30.

15. Slipman C.W., Derby R. Frederic, A. Simione, Tom G. Mayer. Chou, L.H., Lenrow D.A., Salahidin Abdi, K.R.Chin / Interventional Spine: An Algorithmic Approach, First Edition, / Elsevier Inc. - Chapter 5, 39-52. 2008, Central influences on Pain.

16. Решетняк В.К. Механизмы регуляции боли // Российский журнал боли. - 2009. - № 3 (24). - С. 38-40.

БОЛЬ. ЭКСТРЕМАЛЬНЫЕ СОСТОЯНИЯ

Составили: д.м.н., профессор Д.Д.Цырендоржиев

к.м.н., доцент Ф.Ф.Мизулин

Обсуждено на методическом совещании кафедры патофизиологии "____" _______________ 1999 г.

Протокол №

План лекции

I. БОЛЬ, МЕХАНИЗМЫ РАЗВИТИЯ,

ОБЩАЯ ХАРАКТЕРИСТИКА И ВИДЫ

Введение

С незапамятных времен люди смотрят на боль как на сурового и неизбежного спутника. Не всегда человек понимает, что она верный страж, бдительный часовой организма, постоянный союзник и деятельный помощник врача. Именно боль учит человека осторожности, заставляет его беречь свое тело, предупреждая о грозящей опасности и сигнализируя о болезни. Во многих случаях боль позволяет оценить степень и характер нарушения целостности организма.

«Боль – это сторожевой пес здоровья», - говорили в Древней Греции. И в самом деле, несмотря на то, боль всегда мучительна, несмотря на то, что она угнетает человека, снижает его работоспособность, лишает сна, она необходима и до известных пределов полезна. Чувство боли предохраняет нас от обморожения и ожогов, предупреждает о грозящей опасности.

Для физиолога боль сводится к аффективной, эмоциональной окраске ощущения, вызываемого грубым прикосновением, теплом, холодом, ударом, уколом, ранением. Для врача проблема боли решается относительно просто – это предупреждение о нарушении функций. Медицина рассматривает боль с точки зрения пользы, которую она приносит организму и без которой болезнь может стать неизлечимой еще до того, как ее удается обнаружить.

Победить боль, уничтожить в самом зародыше это подчас непонятное «зло», преследующее все живое, - постоянная мечта человечества, уходящая корнями в глубь веков. За всю историю цивилизации найдены тысячи средств унять боль: травы, лекарства, физические воздействия.

Механизмы возникновения болевого ощущения одновременно и просты, и необыкновенно сложны. Не случайно до сих пор не затихают споры между представителями разных специальностей, изучающими проблему боли.

Итак, что же такое боль?

1.1. Понятие о боли и ее определения

Боль - сложное понятие, включающее в себя своеобразное ощущение боли и реакцию на это ощущение с эмоциональным напряжением, изменениями функций внутренних органов, двигательными безусловными рефлексами и волевыми усилиями, направленными на избавление от болевого фактора.

Боль реализуется специальной системой болевой чувствительности и эмоциональными структурами мозга. Она сигнализирует о воздействиях вызывающих повреждение, или об уже существующих повреждениях возникших вследствие действия экзогенных повреждающих факторов или развития патологических процессов в тканях.

Боль представляет собой результат раздражения в системе рецепторов, проводников и центров болевой чувствительности на разных уровнях неровной системы. Наиболее выраженные болевые синдромы возникают при поражении нервов и их ветвей чувствительных задних корешков спинного мозга и корешков чувствительных черепных нервов и оболочек головного и спинного мозга и, наконец, зрительного бугра.

Различают боли:

Местные боли – локализуются в очаге развития патологического процесса;

Проекционные боли ощущаются по периферии нерва при раздражении ее проксимальном участке;

Иррадиирующими называют болевые ощущения в области иннервации одной ветви при наличии раздражающего очага в зоне другой ветви того же нерва;

Отраженные боли возникают по типу висцерокутанного рефлекса при заболеваниях внутренних органов. При этом болезненный процесс во внутреннем органе, вызывая раздражение афферентных вегетативных нервных волокон ведет к появлению болевых ощущений в определенном участке кожи, связанном с соматическим нервом. Территории, где возникают висцеросенсорные боли, именуются зонами Захарьина-Геда.

Каузалгия (жгучая, интенсивная, нередко непереносимая боль) – особая категория болей, возникающих иногда после ранения нерва (чаще срединного богатого симпатическими волокнами). В основе каузалгии лежит частичное повреждение нерва с неполным нарушением проводимости и явленями раздражения вегетативных волокон. При этом в процесс вовлекаются узлы пограничного симпатического ствола и зрительный бугор.

Фантомные боли – иногда появляются после ампутации конечности. Боли обусловлены раздражением рубцом нерва в культе. Болевое раздражение проецируется сознанием в те области, которые были связаны с этими корковыми центрами ранее, в норме.

Помимо физиологической боли существует и патологическая боль – имеющее дизадаптивное и патогенетическое значение для организма. Непреодолимая, тяжелая, хроническая патологическая боль вызывает психические и эмоциональные расстройства и дизинтеграцию деятельности ЦНС, нередко приводит к суицидальным попыткам.

Патологическая боль имеет ряд характерных признаков, которых нет при физиологической боли.

К признакам патологической боли относятся:

    каузалгия;

    гиперпатия (сохранение сильной боли после прекращения провоцирующей стимуляции);

    гипералгезия (интенсивная боль при ноцицитивном раздражении зоны повреждения – первичная гипералгезия); либо соседних, или отдаленных зон – вторичная гипералгезия):

    аллодиния (провокация боли при действии не ноцициптивных раздражителей, отраженные боли, фантомные боли и т.д.)

Периферическими источниками раздражений, вызывающих патологически усиленную боль, могут быть тканевые ноцицепторы. При их активации – при воспалительных процессах в тканях; при сдавлении рубцом или разросшейся костной тканью нервов; при действии продуктов распада тканей (например, опухолей); под влиянием БАВ, продуцирующихся при этом, занчительно повышается возбудимость ноцицепторов. Причем, последние приобретают способность реагировать даже на обычные, неноцицивные воздействия (явление сенситизации рецепторов).

Центральным источником патологически усиленной боли может быть измененные образования ЦНС, которые входят в систему болевой чувствительности или модулируют ее деятельность. Так, агрегаты гиперактивных ноцициптивных нейронов, образующих ГПУВ в дорсальных оргах или в каудальном ядре тройничного нерва служат источниками, вовлекающий в процесс систему болевой чувствительности. Подобного рода боли центрального происхождения возникают и при изменениях в других образованиях системы болевой чувствительности – например, ретикулярными формациями продолговатого мозга, в таламических ядрах и др.

Все эти центрального происхождения болевые информации появляются при действии на указанные образования при травме, интоксикации, ишемии и др.

Каковы механизмы боли и ее биологическое значение?

1.2. Периферические механизмы боли.

До настоящего времени нет единого мнения о существовании строго специализированных структур (рецепторов) воспринимающих боль.

Существуют 2 теории восприятия боли:

Сторонники первой теории, так называемой «теории специфичности», сформулированной в конце 19 века немецким ученым Максом Фреем, признают существование в коже 4-х самостоятельных воспринимающих «приборов» – тепла, холода, прикосновения и боли – с 4-мя раздельными системами передачи импульсов в ЦНС.

Приверженцы второй теории – «теории интенсивности» Гольдшейдера соотечественника Фрея – допускают, что одни и те рецепторы и те же системы отвечают в зависимости от силы раздражения как неболевым так и болевым ощущениям. Чувство прикосновения, давления, холода, тепла может сделаться болевым, если вызвавший его раздражитель отличается чрезмерной силой.

Многие исследователи считают, что истина находится где-то посередине и большинство современных ученых признают, что болевое чувство воспринимается свободными окончаниями нервных волокон, разветвляющихся в поверхностных слоях кожи. Эти окончания могут иметь самую разнообразную форму: волосков, сплетений, спиралей, пластинок и т.д. Они и являются болевыми рецепторами или ноцицепторами.

Передача болевого сигнала передаются 2 типами болевых нервов: толстыми миелинизированными нервными волокнами типа А, по которым сигналы передаются быстро (со скоростью около 50-140 м/с) и, более тонкими безмиелиновыми нервными волокнами типа С - передаются сигналы значительно медленннее (со скоростью приблизительно 0,6-2 м/с). Соответствующие сигналы называют быстрой и медленной болью. Быстрая жгучая боль является реакцией на ранение или иное повреждение и обычно строго локализована. Медленная боль часто представляет собой тупое болевое ощущение и обычно менее четко локализована.

Боль – сложное психоэмоциональное неприятное ощущение, формирующееся под действием патогенного раздражителя и в результате возникновения органических или функциональных нарушений в организме, реализующееся специальной системой болевой чувствительности и высшими отделами мозга, относящимися к психоэмоциональной сфере. Боль – не только особый психофизиологический феномен, но и важнейший симптом многих разных по природе заболеваний и патологических процессов, имеющий сигнальное и патогенное значение. Болевой сигнал обеспечивает мобилизацию организма для защиты от патогенного агента и охранительное ограничение функции поврежденного органа. Боль постоянный спутник и важнейшее составляющее жизни человека. Боль ценнейшее приобретение эволюции животного мира. Она формирует и активирует различные защитно-приспособительные реакции, обеспечивает восстановление нарушенного гомеостаза и его сохранение. Недаром есть крылатое выражение «Боль – сторожевой пес организма, здоровья». Однако часто боль является компонентом патогенеза различных патологических процессов, участвует в формировании «порочных кругов», способствует утяжелению течения болезни, может сама быть причиной расстройств функций ЦНС, структурно-функциональных изменений и повреждения внутренних органов. Различают механизмы формирования боли (ноцицептивная система) и механизмы контроля чувства боли (антиноцицептивная система). Согласно современных взглядов, боль возникает вследствие превалирования активности ноцицептивной (алгогенной) системы над активностью постоянно функционирующей в здоровом организме антиноцицептивной (антиалгогенной) системы. Чувство боли формируется на разных уровнях ноцицептивной системы: от воспринимающих болевые ощущения чувствительных нервных окончаний до проводящих путей и центральных нервных структур. Предполагается наличие особых рецепторов боли, ноцицепторов, активизирующихся под воздействием специфических раздражителей, алгогенов (кинины, гистамин, ионы водорода, АХ, субстанция Р, КА и ПГ в высоких концентрациях).

Ноцицептивные раздражители воспринимаются:

Свободными нервными окончаниями, способными регистрировать воздействия разных агентов как болевые;

Специализированными ноцицепторами – свободными нервными окончаниями, активизирующимися только при действии специфических ноцицептивных агентов и алгогенов;

Чувствительными нервными окончаниями различных модальностей: механо-, хемо-, терморецепторами и др., подвергающимися сверхсильным, зачастую разрушающим воздействиям.

Сверхсильное воздействие на чувствительные нервные окончания других модальностей также может вызывать болевые ощущения.

Проводниковый аппарат ноцицептивной системы представлен различными афферентными нервными путями, передающими импульсы с участием синапсов нейронов спинного и головного мозга. Передача болевой афферентной импульсации осуществляется с участием таких нервных трактов, как спиноталамических, лемнисковых, спиноретикулярных, спиномезэнцефальных, проприоретикулярных и др.

Центральный аппарат формирования чувства боли включает кору больших полушарий переднего мозга (первую и вторую соматосенсорные зоны), а также моторную область коры больших полушарий, структуры таламуса и гипоталамуса.

Чувство боли контролируют нейрогенные и гуморальные механизмы, входящие в состав антиноцицептивной системы. Нейрогенные механизмы антиноцицептивной системы обеспечиваются импульсацией от нейронов серого вещества гипокампа, покрышки мозга, миндалевидного тела, ретикулярной формации, отдельных ядер мозжечка, которая тормозит поток восходящей болевой информации на уровне синапсов в задних рогах спинного мозга и ядер среднего шва продолговатого мозга (nucleus raphe magnus). Гуморальные механизмы представлены опиоидергической, серотонинергической, норадренергической и ГАМКергической системами мозга. Нейрогенные и гуморальные механизмы антиноцицептивной системы тесно взаимодействуют друг с другом. Они способны блокировать болевую импульсацию на всех уровнях ноцицептивной системы: от рецепторов до ее центральных структур.

Различают эпикритическую и протопатическую боль.

Эпикритическая («быстрая», «первая») боль возникает в результате воздействия раздражителей малой и средней силы на рецепторные образования кожи и слизистых оболочек. Эта боль острая, непродолжительная, к ней быстро развивается адаптация.

Протопатическая («медленная», «тягостная», «длительная») боль возникает под действием сильных, «разрушительных», «масштабных» раздражителей. Ее источником обычно бывают патологические процессы во внутренних органах и тканях. Эта боль тупая, ноющая, долго сохраняется, имеет более "разлитой" характер по сравнению с эпикритической. К ней медленно развивается или вовсе не развивается адаптация.

Эпикритическая боль является результатом восхождения болевой импульсации по таламокортикальному пути к нейронам соматосенсорной и моторной областей коры больших полушарий мозга и возбуждения их, формирующих субъективные ощущения боли. Протопатическая боль развивается в результате активации главным образом нейронов таламуса и гипоталамических структур, что и обуславливает системный ответ организма на болевой стимул, включающий вегетативный, двигательный, эмоциональный и поведенческий компоненты. Только сочетанная, протопатическая и эпикритическая боль даёт возможность оценить локализацию патологического процесса, его характер, выраженность, масштаб.

По биологической значимости выделяют физиологическую и патологическую боль.

Физиологическая боль характеризуется адекватной реакцией нервной системы, во-первых, на раздражающие или разруша­ющие ткани стимулы, во-вторых, на воздействия, являющиеся потенциально опасными, а значит, предупреждающие об опасности дальнейших повреждений.

Патологическая боль характеризуется неадекватной реакцией организма на действие алгогенного раздражителя, возникаю­щей при патологии центрального и периферического отделов нервной системы. Такая реакция формируется при болевой афферентации при отсутствии части тела или возникающей в ответ на действие психогенных факторов.

Основные причины формирования патологической боли периферического происхождения:

Хронические воспалительные процессы;

Действие продуктов распада ткани (при злокачественных новообразованиях);

Хронические повреждения (сдавливание рубцами) и регенерация чувствительных нервов, демиелинизация и дегенеративные изменения нервных волокон, что делает их высокочувствительным к гуморальным воздействиям (адреналина, К + и др.), на которые они не реагировали в нормальных условиях;

Формирование неврином – образований из хаотически разросшихся нервных волокон, окончания которых чрезмерно чувствительны к различным экзогенным и эндогенным воздействиям.

Уровни и факторы повреждения приводящие к формированию патологической боли периферического происхождения: чрезмерное раздражение ноцицепторов; повреждение ноцицептивных волокон; повреждение спинномозговых ганглиев (гиперактивация нейронов); повреждение задних корешков.

Особенностью патогенеза патологической боли периферического происхождения является то, что ноцицептивная стимуляция с периферии может вызвать приступ боли в том случае, если она преодолевает «воротный контроль» в задних рогах спинного мозга, состоящий из аппарата тормозных нейронов роландовой (желатинозной) субстанции, который регулирует потоки входящей в задние рога и восходящей ноцицептивной стимуляции. Такой эффект имеет место при интенсивной ноцицептивной стимуляции либо при недостаточности тормозных механизмов «воротного контроля».

Патологическая боль центрального происхождения возникает при гиперактивации ноцицептивных нейронов на спинальном и супраспинальном уровнях (дорзальные рога спинного мозга, каудальное ядро тройничного нерва, ретикулярная формация ствола мозга, таламус, кора головного мозга.

Гиперактивированные нейроны образуют генераторы патологически усиленного возбуждения. При формировании генератора патологически усиленного возбуждения в задних рогах спинного мозга возникает центральный болевой синдром спинального происхождения, в ядрах тройничного нерва – тригеминальная невралгия, в ядрах таламуса – таламический болевой синдром и др.

Возникший в афферентном входе (дорзальные рога спинного мозга или каудальное ядро тройничного нерва) генератор сам по себе не способен вызвать патологическую боль. Только при вовлечении в процесс высших отделов системы болевой чувствительности (таламус, ретикулярная формация ствола мозга, кора головного мозга) боль проявляется как синдром, как страдание. Тот отдел ноцицептивной системы, под влиянием которого образуется патологическая боль, играет роль первичной детерминанты. Из первично и вторично измененных образований системы болевой чувствительности формируется и закрепляется пластическими процессами ЦНС новая патологическая интеграция – патологическая алгическая система. Образования измененной ноцицептивной системы различных уровней составляют основной ствол патологической алгической системы. Уровни поражения ноцицептивной системы, ответственные за формирование патологической алгической системы, представлены в таблице 27.

Таблица 27

Уровни и образования измененной ноцицептивной системы, составляющие основу патологической алгической системы

Уровни поражения ноцицептивной системы Структуры измененной ноцицептивной системы
Периферические отделы Сенситизированные ноцицепторы, очаги эктопического возбуждения (поврежденные и регенерирующие нервы, демиелинизированные участки нервов, невринома); группы гиперактивированных нейронов спинальных ганглиев
Спинальный уровень Агрегаты гиперактивных нейронов (генераторы) в афферентных ноцицептивных реле - в дорсальных рогах спинного мозга и в ядрах спинального тракта тройничного нерва (каудальное ядро)
Супраспинальный уровень Ядра ретикулярной формации ствола, ядра таламуса, сенсо-моторная и орбитофронтальная кора, эмоциогенные структуры

По патогенезу различают три основных вида болевых синдромов: соматогенные, нейрогенные, психогенные.

Соматогенные болевые синдромы возникают в результате активации ноцицептивных рецепторов в момент и после травмы, при воспалении ткани, опухолях, различных повреждениях и заболеваниях внутренних органов. Они проявляются развитием чаще эпикритической, реже протопатической боли. Боль всегда воспринимается в зоне повреждения или воспаления, однако она может выходить и за ее пределы.

Нейрогенные болевые синдромы возникают в результате значительных повреждений периферических и (или) центральных структур ноцицептивной системы. Они отличаются значительной вариабельностью, что зависит от характера, степени и локализации повреждения нервной системы. Развитие нейрогенных болевых синдромов обусловлено морфологическими, метаболическими и функциональными нарушениями в структурах ноцицептивной системы.

Психогенные болевые синдромы возникают в результате значительного психоэмоционального напряжения при отсутствии выраженных соматических расстройств. Психогенная боль часто проявляется развитием головных и мышечных болей и сопровождается отрицательными эмоциями, психическим перенапряжением, межличностными конфликтами и т.д. Психогенная боль может возникать как при функциональных (истерическом, депрессивном неврозе), так и при органических (шизофрении и других видах психозов) расстройствах ВНД.

К особым разновидностям клинических болевых синдромов относят каузалгию и фантомную боль. Каузалгия – приступообразная, усиливающаяся жгучая боль в области повреждённых нервных стволов (обычно лицевого, тройничного, седалищного и др.). Фантомная боль формируется в сознании как субъективное болевое ощущение в отсутствующей части тела и возникает вследствие раздражения центральных концов перерезанных при ампутации нервов.

Среди других видов боли также выделяют проекционные, иррадиирующие, отраженные и головные боли. Проекционные боли ощущаются в периферическом участке нерва, при раздражении его центрального (проксимального) участка. Иррадиирующие боли возникают в области иннервации одной ветви нерва при наличии очага раздражения в зоне иннервации другой ветви этого же нерва. Отраженные боли возникают в участках кожи, иннервируемых из того же сегмента спинного мозга, что и внутренние органы, где расположен очаг повреждения. Головные боли отличаются очень большим разнообразием по характеру, типу, форме, интенсивности, длительности, тяжести, локализации с вовлечением как соматических, так и вегетативных реакций. К ним приводят многообразные расстройства мозгового и системного кровообращения, нарушения кислородного и субстратного обеспечения мозга, а также различные повреждения.

Боль в условиях затянувшейся патологии выступает в роли важного патогенетического фактора развития патологических процессов и заболеваний.

В современной медицинской практике с целью обезболивания используются подходы направленные на снижение активности ноцицептивной системы и повышение активности антиноцицептивных систем. Для этого применяется этиотропная, патогенетическая и симптоматическая терапия боли и следующие методы обезболивания:

Фармакологические (используются средства местного, общего и комбинированного обезболивания);

Психологические (внушение, самовнушение, гипноз и др.);

Физические (электроакупунктура, электронаркоз, электрофорез, диадинамические токи, горчичники, массаж);

Хирургические (иммобилизация костей при их переломах, вправление вывихов, удаление опухолей, желчных или почечных камней, иссечение соединительнотканных рубцов, при длительных нетерпимых болях проводят коагуляцию нервных структур, волокон – источника болевой афферентации).

Боль и обезболивание всегда остаются важнейшими проблемами медицины, а облегчение страданий больного человека, снятие боли или уменьшение ее интенсивности - одна из самых важных задач врача. В последние годы достигнуты определенные успехи в понимании механизмов восприятия и формирования боли. Однако остается еще много нерешенных теоретических и практических вопросов.

Боль представляет собой неприятное ощущение, реализующееся специальной системой болевой чувствительности и высшими отделами мозга, относящимися к психоэмоциональной сфере. Она сигнализирует о воздействиях, вызывающих повреждение ткани или об уже существующих повреждениях, возникших вследствие действия экзогенных факторов или развития патологических процессов.

Систему восприятия и передачи болевого сигнала называют ноцицептивной системой (nocere-повреждение, cepere- воспринимать, лат.).

Классификация боли . Выделяют физиологическую и патологическую боль. Физиологическая (нормальная) боль возникает как адекватная реакция нервной системы на опасные для организма ситуации, и в этих случаях она выступает как фактор предупреждения о процессах, потенциально опасных для организма. Обычно физиологической болью называют ту, которая возникает при целостной нервной системе в ответ на повреждающие или тканеразрушающие стимулы. Главным биологическим критерием, отличающим патологическую боль, является ее дизадаптивное и патогенное значение для организма. Патологическая боль осуществляется измененной системой болевой чувствительности.

По характеру выделяют острую и хроническую (постоянную) боль. По локализации выделяются кожные, головные, лицевые, сердечные, печеночные, желудочные, почечные, суставные, поясничные и др. В соответствии с классификацией рецепторов выделяют поверхностную (экстероцептивную), глубокую (проприоцептивную ) и висцеральную (интероцептивную ) боль.

Различают боли соматические (при патологических процессах в коже, мышцах, костях), невралгические (обычно локализованные) и вегетативные (обычно диффузные). Возможны так называемые иррадиирующие боли, например, в левую руку и лопатку при стенокардии, опоясывающие при панкреатите, в мошонку и бедро при почечной колике. По характеру, течению, качеству и субъективным ощущениям боли различают: приступообразные, постоянные, молниеносные, разлитые, тупые, иррадиирующие, режущие, колющие, жгучие, давящие, сжимающие и др.

Ноцицептивная система . Боль, являясь рефлекторным процессом, включает и все основные звенья рефлекторной дуги: рецепторы (ноцицепторы), болевые проводники, образования спинного и головного мозга, а также медиаторы, осуществляющие передачу болевых импульсов.


Согласно современным данным, ноцицепторы в большом количестве содержатся в различных тканях и органах и имеют множество концевых разветвлений с мелкими аксо-плазматическими отростками, которые и являются структурами, активируемыми болевым воздействием. Считается, что по сути своей они являются свободными немиелизированными нервными окончаниями. Более того, в коже, и, особенно, в дентине зубов были обнаружены своеобразные комплексы свободных нервных окончаний с клетками иннервируемой ткани, которые рассматриваются как сложные рецепторы болевой чувствительности. Особенностью как поврежденных нервов, так и свободных немиелинизированных нервных окончаний является их высокая хемочувствительность.

Установлено, что любое воздействие, приводящее к повреждению тканей и являющееся адекватным для ноцицептора, сопровождается высвобождением алгогенных (вызывающих боль) химических агентов. Выделяют три типа таких веществ.

а) тканевые (серотонин, гистамин, ацетилхолин, простагландины, ионы К и Н);

б) плазменные (брадикинин, каллидин);

в) выделяющиеся из нервных окончаний (субстанция P).

Предложено немало гипотез о ноцицептивных механизмах алгогенных субстанций. Считается, что субстанции, содержащиеся в тканях, непосредственно активируют концевые разветвления немиелинизированных волокон и вызывают импульсную активность в афферентах. Другие (простагландины), сами не вызывают боли, но усиливают эффект ноцицептивного воздействия иной модальности. Третьи (субстанция P) выделяются непосредственно из терминалей и взаимодействуют с рецепторами, локализованными на их мембране, и, деполяризуя ее, вызывают генерацию импульсного ноцицептивного потока. Предполагается также, что субстанция P, содержащаяся в сенсорных нейронах спинномозговых ганглиев, действует и как синаптический передатчик в нейронах заднего рога спинного мозга.

В качестве химических агентов, активирующих свободные нервные окончания, рассматриваются не идентифицированные до конца вещества или продукты разрушения тканей, образующиеся при сильных повреждающих воздействиях, при воспалении, при локальной гипоксии. Свободные нервные окончания активируются и интенсивным механическим воздействием, вызывающим их деформацию, обусловленную сжатием ткани, растяжением полого органа с одновременным сокращением его гладкой мускулатуры.

По мнению Гольдшайдера, боль возникает не в результате раздражения специальных ноцицепторов, а вследствие избыточной активации всех типов рецепторов различных сенсорных модальностей, которые в норме реагируют только на не болевые, "не ноцицептивные" стимулы. В формировании боли в этом случае главенствующее значение имеет интенсивность воздействия, а также пространственно-временное соотношение афферентной информации, конвергенция и суммация афферентных потоков в ЦНС. В последние годы получены весьма убедительные данные о наличии "неспецифических" ноцицепторов в сердце, кишечнике, легких.

В настоящее время считается общепризнанным, что основными проводниками кожной и висцеральной болевой чувствительности являются тонкие миэлиновые А- дельта и без миэлиновые С волокна, различающиеся по ряду физиологических свойств.

Сейчас общепринято следующее разделение боли на:

1) первичную- светлую, коротко латентную, хорошо локализованную и качественно детерминированную боль;

2) вторичную- темную, длинно латентную, плохо локализованную, тягостную, тупую боль.

Показано, что "первичная" боль связана с афферентной импульсацией в А- дельта волокнах, а "вторичная" - с C-волокнами.

Восходящие пути болевой чувствительности . Существуют два основные "классические" - лемнисковые и экстралемнисковые восходящие системы. В пределах спинного мозга одна из них располагается в дорсальной и дорсолатеральной зоне белого вещества, другая - в его вентролатеральной части. В ЦНС не существует специализированных путей болевой чувствительности, и интеграция боли осуществляется на различных уровнях ЦНС на основе сложного взаимодействия лемнисковых и экстралемнисковых проекций. Однако, доказано, что значительно большую роль в передаче восходящей ноцицептивной информации играют вентролатеральные проекции.

Структуры и механизмы интеграции боли . Одной из главных зон восприятия афферентного притока и его переработки является ретикулярная формация головного мозга. Именно здесь оканчиваются пути и коллатерали восходящих систем и начинаются восходящие проекции к вентро-базальным и интраламинарным ядрам таламуса и далее - в соматосенсорную кору. В ретикулярной формации продолговатого мозга существуют нейроны, активирующиеся исключительно ноцицептивными стимулами. Наибольшее их количество (40-60%) выявлено в медиальных ретикулярных ядрах. На основе информации, поступающей в ретикулярную формацию, формируются соматические и висцеральные рефлексы, которые интегрируются в сложные соматовисцеральные проявления ноцицепции. Через связи ретикулярной формации с гипоталамусом, базальными ядрами и лимбическим мозгом реализуются нейроэндокринные и эмоционально - аффективные компоненты боли, сопровождающие реакции защиты.

Таламус . Выделяют 3 основных ядерных комплекса, имеющих непосредственное отношение к интеграции боли: вентро-базальный комплекс, задняя группа ядер, медиальные и интраламинарные ядра.

Вентро-базальный комплекс является главным релейным ядром всей соматосенсорной афферентной системы. В основном здесь оканчиваются восходящие лемнисковые проекции. Считается, что мультисенсорная конвергенция на нейронах вентро-базального комплекса обеспечивает точную соматическую информацию о локализации боли, ее пространственную соотнесенность. Разрушение вентро-базального комплекса проявляется проходящим устранением "быстрой", хорошо локализованной боли и изменяет способность к распознаванию ноцицептивных стимулов.

Считается, что задняя группа ядер наряду с вентро-базальным комплексом участвует в передаче и оценке информации о локализации болевого воздействия и частично в формировании мотивационно-аффективных компонентов боли.

Клетки медиальных и интраламинарных ядер отвечают на соматические, висцеральные, слуховые, зрительные и болевые стимулы. Разно модальные ноцицептивные раздражения - пульпы зуба, А-дельта, С-кожных волокон, висцеральных афферентов, а также механические, термические и др. вызывают отчетливые, увеличивающиеся пропорционально интенсивности стимулов, ответы нейронов. Предполагается, что клетки интраламинарных ядер осуществляют оценку и раскодирование интенсивности ноцицептивных стимулов, различая их по продолжительности и паттерну разрядов.

Кора головного мозга . Традиционно считалось, что основное значение в переработке болевой информации имеет вторая соматосенсорная зона. Эти представления связаны с тем, что передняя часть зоны получает проекции из вентро-базального таламуса, а задняя - из медиальных, интраламинарных и задних групп ядер. Однако в последние годы представления об участии различных зон коры в перцепции и оценке боли существенно дополняются и пересматриваются.

Схема корковой интеграции боли в обобщенном виде может быть сведена к следующему. Процесс первичного восприятия осуществляется в большей мере соматосенсорной и фронто-орбитальной областями коры, в то время как другие области, получающие обширные проекции различных восходящих систем, участвуют в качественной ее оценке, в формировании мотивационно-аффективных и психодинамических процессов, обеспечивающих переживание боли и реализацию ответных реакций на боль.

Следует подчеркнуть, что боль в отличие от ноцицепции это не только и даже не столько сенсорная модальность, но и ощущение, эмоция и "своеобразное психическое состояние" (П.К. Анохин). Поэтому боль как психофизиологический феномен формируется на основе интеграции ноцицептивных и антиноцицептивных систем и механизмов ЦНС.

Антиноцицептивная система . Ноцицептивная система имеет свой функциональный антипод - антиноцицептив-ную систему, которая контролирует деятельность структур ноцицептивной системы.

Антиноцицептивная система состоит из разнообразных нервных образований, относящихся к разным отделам и уровням организации ЦНС, начиная с афферентного входа в спинном мозге и кончая корой головного мозга.

Антиноцицептивная система играет существенную роль в механизмах предупреждения и ликвидации патологической боли. Включаясь в реакцию при чрезмерных ноцицептивных раздражениях, она ослабляет поток ноцицептивной стимуляции и интенсивность болевого ощущения, благодаря чему боль остается под контролем и не приобретает патологического значения. При нарушении же деятельности антиноцицептивной системы ноцицептивные раздражения даже небольшой интенсивности вызывают чрезмерную боль.

Антиноцицептивная система имеет свое морфологическое строение, физиологические и биохимические механизмы. Для нормального его функционирования необходим постоянный приток афферентной информации, при ее дефиците функция антиноцицептивной системы ослабляется.

Антиноцицептивная система представлена сегментарным и центральным уровнями контроля, а также гуморальными механизмами - опиоидной, моноаминергической (норадреналин, дофамин, серотонин), холин-ГАМК-эргическими системами.

Опиатные механизмы обезболивания . Впервые в 1973 г. было установлено избирательное накопление веществ, выделенных из опия, например морфина или его аналогов, в определенных структурах мозга. Эти образования получили название опиатных рецепторов. Наибольшее их количество находится в отделах мозга, передающих ноцицептивную информацию. Показано, что опиатные рецепторы связываются с веществами типа морфина или его синтетическими аналогами, а также с аналогичными веществами, образующимися в самом организме. В последние годы доказана неоднородность опиатных рецепторов. Выделены Мю-, дельта-, каппа-, сигма-опиатные рецепторы. Так, например, морфиноподобные опиаты соединяются с Мю-рецепторами, опиатные пептиды - с дельта рецепторами.

Эндогенные опиаты . Выяснено, что в крови и спинномозговой жидкости человека имеются вещества, обладающие способностью соединяться с опиатными рецепторами. Они выделены из мозга животных, имеют структуру олигопептидов и получили название энкефалинов (мет- и лей-энкефалин). Из гипоталамуса и гипофиза были получены вещества с еще большей молекулярной массой, имеющие в своем составе молекулы энкефалина и названные большими эндорфинами . Эти соединения об- разуются при расщеплении бета-липотропина, а учитывая, что он является гормоном гипофиза, можно объяснить гормональное происхождение эндогенных опиоидов. Из других тканей получены вещества с опиатными свойствами и иной химической структуры - это лей-бета-эндорфин, киторфин, динорфин и др.

Различные области ЦНС имеют неодинаковую чувствительность эндорфинам и энкефалинам. Например, гипофиз в 40 раз чувствительнее к эндорфинам, чем к энкефалинам. Опиатные рецепторы обратимо соединяются с наркотическими аналгетиками, и последние могут быть вытеснены их антагонистами с восстановлением болевой чувствительности.

Каков же механизм обезболивающего действия опиатов? Считается, что они соединяются с рецепторами (ноцицепторами) и, так как имеют большие размеры, препятствуют соединению с ними нейротрансмиттера (субстанции P). Известно также, что эндогенные опиаты обладают и пресинаптическим действием. В результате этого уменьшается выделение дофамина, ацетилхолина, субстанции P, а также простагландинов. Предполагают, что опиаты вызывают угнетение в клетке функции аденилатциклазы, уменьшение образования цАМФ и, как следствие, торможение выделения медиаторов в синаптическую щель.

Адренэргичекие механизмы обезболивания. Установлено, что норадреналин тормозит проведение ноцицептивных импульсов как на сегментарном (спинной мозг), так и стволовом уровнях. Этот его эффект реализуется при взаимодействии с альфа-адренорецепторами. При болевом воздействии (равно как и стрессе) резко активируется симпатоадреналовая система (САС), мобилизуются тропные гормоны, бета-липотропин и бета-эндорфин как мощные аналгетические полипептиды гипофиза, энкефалины. Попадая в спинномозговую жидкость, они влияют на нейроны таламуса, центрального серого вещества мозга, задние рога спинного мозга, тормозя образование медиатора боли- субстанции Р и обеспечивая, таким образом глубокую анальгезию. Одновременно с этим усиливается образование серотонина в большом ядре шва, который также тормозит реализацию эффектов субстанции Р. Считается, что эти же механизмы обезболивания включаются при акупунктурной стимуляции не болевых нервных волокон.

Для иллюстрации многообразия компонентов антиноцицептивной системы следует сказать, что выявлено много гормональных продуктов, оказывающих аналгетический эффект без активации опиатной системы. Это вазопрессин, ангиотензин, окситоцин, соматостатин, нейротензин. Причем, аналгетический эффект их может быть в несколько раз сильнее энкефалинов.

Есть и другие механизмы обезболивания. Доказано, что активация холинэргической системы усиливает, а блокада ее ослабляет морфийную систему. Предполагают, что связывание ацетилхолина с определенными центральными М- рецепторами стимулирует высвобождение опиоидных пептидов. Гамма-аминомасляная кислота регулирует болевую чувствительность, подавляя эмоционально-поведенческие реакции на боль. Боль, активируя ГАМК и ГАМК - эргическую передачу, обеспечивает адаптацию организма к болевому стрессу.

Острая боль . В современной литературе можно встретить несколько теорий, объясняющих происхождение боли. Наибольшее распространение получила т.н. "воротная" теория Р. Мельзака и П. Уолла. Она заключается в том, что желатинозная субстанция заднего рога, которая обеспечивает контроль поступающих в спинной мозг афферентных импульсов, выступает в роли ворот, пропускающих ноцицептивные импульсы вверх. Причем, важное значение принадлежит Т-клеткам желатинозной субстанции, где происходит пресинаптическое торможение терминалей, в этих условиях болевые импульсы не проходят дальше в центральные мозговые структуры и боль не возникает. По современным представлениям, закрытие "ворот" связано с образование энкефалинов, которые тормозят реализацию эффектов важнейшего медиатора боли - субстанции Р. Если увеличивается приток афферентации по А-дельта и С-волокнам, активируются Т- клетки и ингибируются клетки желатинозной субстанции, что снимает ингибиторный эффект нейронов желатинозной субстанции на терминали афферентов с Т-клетками. Поэтому активность Т-клеток превышает порог возбуждения и возникает боль вследствие облегчения передачи болевых импульсов в мозг. "Входные ворота" для болевой информации в этом случае открываются.

Важным положением этой теории является учет центральных влияний на "воротный контроль" в спинном мозге, ибо такие процессы, как жизненный опыт, внимание оказывают влияние на формирование боли. ЦНС осуществляет контроль сенсорного входа за счет ретикулярных и пирамидных влияний на воротную систему. Например, Р. Мельзак приводит такой пример: женщина неожиданно обнаруживает у себя уплотнение в груди и, беспокоясь, что это рак, может вдруг почувствовать боль в груди. Боль может усиливаться и даже распространяться на плечо и руку. Если врачу удастся убедить ее, что это уплотнение не представляет опасности, может наступить моментальное прекращение боли.

Формирование боли обязательно сопровождается активацией антиноцицептивной системы. Что же влияет на уменьшение или исчезновение боли? Это, прежде всего информация, которая поступает по толстым волокнам и на уровне задних рогов спинного мозга, усиливает образование энкефалинов (об их роли мы говорили выше). На уровне ствола мозга включается нисходящая аналгетическая система (ядра шва), которая посредством серотонин-, норадреналин-, энкефалинэргических механизмов оказывает нисходящие влияния на задние рога и таким образом на болевую информацию. За счет возбуждения САС также тормозится передача болевой информации, и это является важнейшим фактором усиления образования эндогенных опиатов. Наконец, за счет возбуждения гипоталамуса и гипофиза активируется образование энкефалинов и эндорфинов, а также усиливается прямое влияние нейронов гипоталамуса на задние рога спинного мозга.

Хроническая боль .При длительном повреждении тканей (воспаление, переломы, опухоли и т.д.) формирование боли происходит так же, как и при острой, только постоянная болевая информация, вызывая резкую активацию гипоталамуса и гипофиза, САС, лимбических образований мозга, сопровождается более сложными и продолжительными изменениями со стороны психики, поведения, эмоциональных проявлений, отношения к окружающему миру (уход в боль).

По теории Г.Н. Крыжановского хроническая боль возникает в результате подавления тормозных механизмов, особенно на уровне задних рогов спинного мозга и таламуса. При этом в мозге формируется генератор возбуждения. Под влиянием экзогенных и эндогенных факторов в определенных структурах ЦНС вследствие недостаточности тормозных механизмов возникают генераторы патологически усиленного возбуждения (ГПУВ), активирующие положительные связи, вызывая эпилептизацию нейронов одной группы и повышение возбудимости других нейронов.

Фантомные боли (боли в ампутированных конечностях) объясняются в основном дефицитом афферентной информации и в результате этого тормозное влияние Т-клеток на уровне рогов спинного мозга снимается, а любая афферентация из области заднего рога воспринимается как болевая.

Отраженная боль . Ее возникновение связано с тем, что афференты внутренних органов и кожи связаны с одними и теми же нейронами заднего рога спинного мозга, которые дают начало спинно-таламическому тракту. Поэтому афферентация, идущая от внутренних органов (при их поражении), повышает возбудимость и соответствующего дерматома, что воспринимается как боль в этом участке кожи.

Основные различия проявлений острой и хронической боли следующие: .

1. При хронической боли автономные рефлекторные реакции постепенно уменьшаются и, в конечном счете исчезают, а превалируют вегетативные расстройства.

2.При хронической боли, как правило, не бывает самопроизвольного купирования боли, для ее нивелирования требуется вмешательство врача.

3.Если острая боль выполняет защитную функцию, то хроническая вызывает более сложные и длительные расстройства в организме и приводит (J.Bonica,1985) к прогрессивному "изнашиванию", вызванному нарушением сна и аппетита, снижением физической активности, часто избыточным лечением.

4. Кроме страха, характерного для острой и хронической боли, для последней свойственны также депрессия, ипохондрия, безнадежность, отчаяние, устранение больных от социально-полезной деятельности (вплоть до суицидальных идей).

Нарушения функций организма при боли . Расстройства функций Н.С. при интенсивной боли проявляются нарушением сна, сосредоточенности, полового влечения, повышенной раздражительностью. При хронической интенсивной боли резко уменьшается двигательная активность человека. Больной находится в состоянии депрессии, повышается болевая чувствительность в результате снижения болевого порога.

Небольшая боль учащает, а очень сильная замедляет дыхание вплоть до его остановки. Может увеличиться частота пульса, системное АД, развиться спазм периферических сосудов. Кожные покровы бледнеют, а если боль непродолжительна, спазм сосудов сменяется их расширением, что проявляется покраснением кожи. Изменяется секреторная и двигательная функция ЖКТ. За счет возбуждения САС сначала выделяется густая слюна (в целом слюноотделение увеличивается), а затем за счет активации парасимпатического отдела нервной системы - жидкая. В последующем уменьшается секреция слюны, желудочного и панкреатического сока, замедляется моторика желудка и кишечника, возможна рефлекторная олиго- и анурия. При очень резкой боли появляется угроза развития шока.

Биохимические изменения проявляются в виде повышения потребления кислорода, распада гликогена, гипергликемии, гиперлипидемии.

Хронические боли сопровождаются сильными вегетативными реакциями. Например, кардиалгии и головные боли сочетаются с подъемом АД, температуры тела, тахикардией, диспепсией, полиурией, повышенным потоотделением, тремором, жаждой, головокружением.

Постоянным компонентом реакции на болевое воздействие является гиперкоагуляция крови. Доказано повышение свертываемости крови у больных на высоте приступа болей, во время оперативных вмешательств, в раннем послеоперационном периоде. В механизме гиперкоагуляции при боли основное значение имеют ускорение тромбиногенеза. Вы знаете, что внешний механизм активации свертывания крови инициируется тканевым тромбопластином, а при боли (стрессе) наблюдается выброс тромбопластина из интактной сосудистой стенки. Кроме того, при болевом синдроме уменьшается содержание в крови физиологических ингибиторов свертывания крови: антитромбина, гепарина. Еще одним характерным изменением при боли в системе гемостаза является перераспределительный тромбоцитоз (поступление в кровь зрелых тромбоцитов из депо- легких).

Болевая рецепция полости рта .

Особое значение для врача-стоматолога имеет изучение болевой чувствительности полости рта. Болевое ощущение может возникнуть либо при воздействии повреждающего фактора на специальный «болевой» рецептор – ноцицептор , либо при сверхсильных раздражениях других рецепторов. Ноцицептор составляют 25-40 % всех рецепторных образований. Они представлены свободными некапсулированными нервными окончаниями, имеющими разнообразную форму.

В полости рта наиболее изучена болевая чувствительность слизистой оболочки альвеолярных отростков и твердого неба, которые являются участками протезного ложа.

Выраженной болевой чувствительностью обладает часть слизистой оболочки на вестибулярной поверхности нижней челюсти в области боковых резцов. Оральная поверхность слизистой оболочки десен обладает наименьшей болевой чувствительностью. На внутренней поверхности щеки имеется узкий участок, лишенный болевой чувствительности. Самое большое количество болевых рецепторов находится в тканях зуба. Так, на 1 см 2 дентина расположено 15000-30000 болевых рецепторов, на границе эмали и дентина их количество доходит до 75000. На 1 см 2 кожи – не более 200 болевых рецепторов.

Раздражение рецепторов пульпы зуба вызывает исключительно сильное болевое ощущение. Даже легкое прикосновение сопровождается острой болью. Зубная боль, относящаяся к самым жестоким болям, возникает при поражении зуба патологическим процессом. Лечение зуба прерывает его и устраняет боль. Но само лечение подчас является чрезвычайно болезненной манипуляцией. Кроме того, при зубном протезировании нередко приходится препарировать здоровый зуб, что также вызывает болезненные ощущения.

Возбуждение от ноцицепторов слизистой оболочки рта, рецепторов пародонта, языка и пульпы зуба проводится по нервным волокнам, относящимся к группам А и С. Большая часть этих волокон принадлежит второй и третьей ветвям тройничного нерва. Чувствительные нейроны заложены в ганглии тройничного нерва. Центральные отростки направляются в продолговатый мозг, где заканчиваются на нейронах тригеминального комплекса ядер, состоящего из главного сенсорного ядра и спинального тракта. Наличие большого количества коллатералей обеспечивает функциональную взаимосвязь между различными ядрами тригеминального комплекса. От вторых нейронов тригеминального комплекса ядер возбуждения направляются к задним и вентральным специфическим ядрам таламуса. Помимо этого, за счет обширных коллатералей к ретикулярной формации продолговатого мозга, ноцицептивное возбуждение паллидо-спино-бульбо-таламических проекционных путей адресуется к срединной и внутри пластинчатой группам ядер таламуса. Это обеспечивает широкую генерализацию ноцицептивных возбуждений в передних отделах мозга и включение антиноцицептивной системы.

Loading...Loading...