Бесконечная периодическая дробь в виде обыкновенной. Периодические десятичные дроби

§ 114. Обращение обыкновенной дроби в десятичную.

Обратить обыкновенную дробь в десятичную - это значит найти такую десятичную дробь, которая была бы равна данной обыкновенной дроби. При обращении обыкновенных дробей в десятичные мы встретимся с двумя случаями:

1) когда обыкновенные дроби могут быть обращены в десятичные точно ;

2) когда обыкновенные дроби могут быть обращены в десятичные лишь приближённо . Рассмотрим эти случаи последовательно.

1. Как обратить обыкновенную несократимую дробь в десятичную, или, иными словами, как заменить обыкновенную дробь равной ей десятичной?

В случае, когда обыкновенные дроби могут быть точно обращены в десятичные, существует два способа такого обращения.

Вспомним, как заменить одну дробь другой, равной первой, или как перейти от одной дроби к другой, не изменяя величины первой. Этим мы занимались, когда приводили дроби к общему знаменателю (§86). Когда мы приводим дроби к общему знаменателю, то поступаем следующим образом: находим общий знаменатель для данных дробей, вычисляем для каждой дроби дополнительный множитель и потом умножаем числитель и знаменатель каждой дроби на этот множитель.

Заметив это, возьмём несократимую дробь 3 / 20 и попробуем обратить её в десятичную. Знаменатель данной дроби равен 20, а нужно привести её к другому знаменателю, который изображался бы единицей с нулями. Мы будем искать наименьший из знаменателей, выражающихся единицей с последующими нулями.

Первый способ обращения обыкновенной дроби в десятичную основан на разложении знаменателя на простые множители.

Необходимо узнать, на какое число следует умножить 20, чтобы произведение выразилось единицей с нулями. Чтобы это узнать, нужно сначала вспомнить, на какие простые множители разлагаются числа, изображаемые единицей с нулями. Вот эти разложения:

10 = 2 5,
100 = 2 2 5 . 5,
1 000 = 2 2 2 5 5 5,
10 000 = 2 2 2 2 5 5 5 5.

Мы видим, что число, изображаемое единицей с нулями, разлагается только на двойки и пятёрки, а иных множителей в разложении нет. Кроме того, двойки и пятёрки входят в разложение в одинаковом числе. И, наконец, число тех и других множителей в отдельности равно числу нулей, стоящих после единицы в изображении данного числа.

Посмотрим теперь, как разлагается 20 на простые множители: 20 = 2 2 5. Из этого видно, что двоек в разложении числа 20 две, а пятёрок одна. Значит, если к этим множителям мы добавим одну пятёрку, то получим число, изображаемое единицей с нулями. Иными словами, для того, чтобы в знаменателе вместо числа 20 получилось число, изображаемое единицей с нулями, нужно 20 умножить на 5, а чтобы величина дроби не изменилась, нужно умножить на 5 и её числитель, т. е.

Таким образом, чтобы обратить обыкновенную дробь в десятичную, нужно знаменатель этой обыкновенной дроби разложить на простые множители и затем уравнять в нём число двоек и пятёрок, введя в него (и, конечно, в числитель) недостающие множители в необходимом числе.

Применим этот вывод к некоторым дробям.

Обратить в десятичную дробь 3 / 50 . Знаменатель этой дроби разлагается так:

значит, в нём недостаёт одной двойки. Добавим её:

Обратить в десятичную дробь 7 / 40 .

Знаменатель этой дроби разлагается так: 40 = 2 2 2 5, т. е. в нём недостаёт двух пятёрок. Введём их в числитель и знаменатель в качестве множителей:

Из того, что изложено, нетрудно сделать вывод, какие обыкновенные дроби обращаются точно в десятичные. Совершенно очевидно, что несократимая обыкновенная дробь, знаменатель которой не содержит никаких иных простых множителей, кроме 2 и 5, обращается точно в десятичную. Десятичная дробь, которая получается от обращения некоторой обыкновенной, будет иметь столько десятичных знаков, сколько раз в состав знаменателя обыкновенной дроби после её сокращения входит численно преобладающий множитель 2 или 5.

Если мы возьмём дробь 9 / 40 , то, во-первых, она обратится в десятичную, потому что в состав её знаменателя входят множители 2 2 2 5, во-вторых, полученная десятичная дробь будет иметь 3 десятичных знака, потому что численно преобладающий множитель 2 входит в разложение три раза. В самом деле:

Второй способ (посредством деления числителя на знаменатель).

Пусть требуется обратить в десятичную дробь 3 / 4 . Мы знаем, что 3 / 4 есть частное от деления 3 на 4. Это частное мы можем найти, разделив 3 на 4. Сделаем это:

Таким образом, 3 / 4 = 0,75.

Ещё пример: обратить в десятичную дробь 5 / 8 .

Таким образом, 5 / 8 = 0,625.

Итак, чтобы обратить обыкновенную дробь в десятичную, достаточно разделить числитель обыкновенной дроби на её знаменатель.

2. Рассмотрим теперь второй из указанных в начале параграфа случаев, т. е. тот случай, когда обыкновенная дробь не может быть обращена в точную десятичную.

Обыкновенная несократимая дробь, знаменатель которой содержит какие-либо простые множители, отличные от 2 и 5, не может обратиться точно в десятичную. В самом деле, например, дробь 8 / 15 не может обратиться в десятичную, так как её знаменатель 15 разлагается на два множителя: 3 и 5.

Мы не можем исключить тройку из знаменателя и не можем подобрать такого целого числа, чтобы после умножения на него данного знаменателя произведение выразилось единицей с нулями.

В таких случаях можно говорить только о приближённом обращении обыкновенных дробей в десятичные.

Как это делается? Это делается посредством деления числителя обыкновенной дроби на знаменатель, т. е. в этом случае применяют второй способ обращения обыкновенной дроби в десятичную. Значит, этот способ применяется и при точном обращении и при приближённом.

Если обыкновенная дробь обращается точно в десятичную, то от деления получается конечная десятичная дробь.

Если обыкновенная дробь не обращается в точную десятичную, то от деления получается бесконечная десятичная дробь.

Так как мы не можем выполнить бесконечного процесса деления, то мы должны прекратить деление на каком-нибудь десятичном знаке, т. е. сделать приближённое деление. Мы можем, например, прекратить деление на первом десятичном знаке, т. е. ограничиться десятыми долями; в случае надобности мы можем остановиться на втором десятичном знаке, получив сотые доли, и т. д. В этих случаях говорят, что мы округляем бесконечную десятичную дробь. Округление делается с той точностью, какая при решении данной задачи необходима.

§ 115. Понятие о периодической дроби.

Бесконечная десятичная дробь, у которой одна или несколько цифр неизменно повторяются в одной и той же последовательности, называется периодической десятичной дробью. Например:

0,33333333...; 1,12121212...; 3,234234234...

Совокупность повторяющихся цифр называется периодом этой дроби. Период первой из написанных выше дробей есть 3, период второй дроби 12, период третьей дроби 234. Значит, период может состоять из нескольких цифр - из одной, из двух, из трёх и т. д. Первая совокупность повторяющихся цифр называется первым периодом, вторая совокупность - вторым периодом и т. д., т. е.

Периодические дроби бывают чистые и смешанные. Периодическая дробь называется чистой, если её период начинается тотчас после запятой. Значит, написанные выше периодические дроби будут чистыми. Напротив, периодическая дробь называется смешанной, если у неё между запятой и первым периодом имеется одна или несколько неповторяющихся цифр, например:

2,5333333...; 4,1232323232...; 0,2345345345345... 160

Для сокращения письма можно цифры периода писать один раз в скобках и не ставить после скобок многоточия, т. е. вместо 0,33... можно писать 0,(3); вместо 2,515151... можно писать 2,(51); вместо 0,2333... можно писать 0,2(3); вместо 0,8333... можно писать 0,8(3).

Читаются периодические дроби так:

0,(3) - 0 целых, 3 в периоде.

7,2(3) - 7 целых, 2 до периода, 3 в периоде.

5,00(17) - 5 целых, два нуля до периода, 17 в периоде.

Как возникают периодические дроби? Мы уже видели, что при обращении обыкновенных дробей в десятичные может быть два случая.

Во-первых , знаменатель обыкновенной несократимой дроби не содержит никаких иных множителей, кроме 2 и 5; в этом случае обыкновенная дробь обращается в конечную десятичную.

Во-вторых, знаменатель обыкновенной несократимой дроби содержит в себе какие-либо простые множители, отличные от 2 и 5; в этом случае обыкновенная дробь не обращается в конечную десятичную. В этом последнем случае при попытке обратить обыкновенную дробь в десятичную посредством деления числителя на знаменатель получается бесконечная дробь, которая всегда будет периодической.

Чтобы в этом убедиться, рассмотрим какой-нибудь пример. Попробуем обратить дробь- 18 / 7 в десятичную.

Мы, конечно, заранее знаем, что дробь с таким знаменателем не может обратиться в конечную десятичную, и ведём речь только о приближённом обращении. Разделим числитель 18 на знаменатель 7.

Мы получили в частном восемь десятичных знаков. Нет надобности продолжать деление дальше, потому что оно всё равно не окончится. Но отсюда понятно, что деление можно продолжать бесконечно долго и, таким образом, получать в частном новые цифры. Эти новые цифры будут возникать потому, что у нас всё время будут получаться остатки; но никакой остаток не может быть больше делителя, который у нас равен 7.

Посмотрим, какие у нас были остатки: 4; 5; 1; 3; 2; б, т. е. это были числа, меньшие 7. Очевидно, их не может быть больше шести, и при дальнейшем продолжении деления они должны будут повторяться, а вслед за ними будут повторяться и цифры частного. Приведённый выше пример подтверждает эту мысль: десятичные знаки в частном идут в таком порядке: 571428, а после этого снова появились цифры 57. Значит, у нас окончился первый период и начинается второй.

Таким образом, бесконечная десятичная дробь, получающаяся при обращении обыкновенной дроби, всегда будет периодической.

Если периодическая дробь встречается при решении какой-нибудь задачи, то она берётся с той точностью, какая требуется условием задачи (до десятой, до сотой, до тысячной и т. д.).

§ 116. Совместные действия с обыкновенными и десятичными дробями.

При решении различных задач мы встретимся с такими случаями, когда в задачу входят и обыкновенные, и десятичные дроби.

В этих случаях можно идти различными путями.

1. Обратить все дроби в десятичные. Это удобно потому, что вычисления над десятичными дробями легче, чем над обыкновенными. Например,

Обратим дроби 3 / 4 и 1 1 / 5 в десятичные:

2. Обратить все дроби в обыкновенные. Так чаще всего поступают в тех случаях, когда встречаются обыкновенные дроби, не обращающиеся в конечные десятичные.

Например,

Обратим десятичные дроби в обыкновенные:

3. Вычисления ведут без обращения одних дробей в другие.

Это особенно удобно в тех случаях, когда в пример входят только умножение и деление. Например,

Перепишем пример так:

4. В некоторых случаях обращают все обыкновенные дроби в десятичные (даже те, которые обращаются в периодические) и находят приближённый результат. Например,

Обратим 2 / 3 в десятичную дробь, ограничившись тысячными долями.

Помните, как в самом первом уроке про десятичные дроби я говорил, что существуют числовые дроби, не представимые в виде десятичных (см. урок «Десятичные дроби »)? Мы еще учились раскладывать знаменатели дробей на множители, чтобы проверить, нет ли там чисел, отличных от 2 и 5.

Так вот: я наврал. И сегодня мы научимся переводить абсолютно любую числовую дробь в десятичную. Заодно познакомимся с целым классом дробей с бесконечной значащей частью.

Периодическая десятичная дробь - это любая десятичная дробь, у которой:

  1. Значащая часть состоит из бесконечного количества цифр;
  2. Через определенные интервалы цифры в значащей части повторяются.

Набор повторяющихся цифр, из которых состоит значащая часть, называется периодической частью дроби, а количество цифр в этом наборе - периодом дроби. Остальной отрезок значащей части, который не повторяется, называется непериодической частью.

Поскольку определений много, стоит подробно рассмотреть несколько таких дробей:

Эта дробь встречается в задачах чаще всего. Непериодическая часть: 0; периодическая часть: 3; длина периода: 1.

Непериодическая часть: 0,58; периодическая часть: 3; длина периода: снова 1.

Непериодическая часть: 1; периодическая часть: 54; длина периода: 2.

Непериодическая часть: 0; периодическая часть: 641025; длина периода: 6. Для удобства повторяющиеся части отделены друг от друга пробелом - в настоящем решении так делать не обязательно.

Непериодическая часть: 3066; периодическая часть: 6; длина периода: 1.

Как видите, определение периодической дроби основано на понятии значащей части числа . Поэтому если вы забыли что это такое, рекомендую повторить - см. урок « ».

Переход к периодической десятичной дроби

Рассмотрим обыкновенную дробь вида a /b . Разложим ее знаменатель на простые множители. Возможны два варианта:

  1. В разложении присутствуют только множители 2 и 5. Эти дроби легко приводятся к десятичным - см. урок «Десятичные дроби ». Такие нас не интересуют;
  2. В разложении присутствует что-то еще, кроме 2 и 5. В этом случае дробь непредставима в виде десятичной, зато из нее можно сделать периодическую десятичную дробь.

Чтобы задать периодическую десятичную дробь, надо найти ее периодическую и непериодическую часть. Как? Переведите дробь в неправильную, а затем разделите числитель на знаменатель «уголком».

При этом будет происходить следующее:

  1. Сначала разделится целая часть , если она есть;
  2. Возможно, будет несколько чисел после десятичной точки;
  3. Через некоторое время цифры начнут повторяться .

Вот и все! Повторяющиеся цифры после десятичной точки обозначаем периодической частью, а то, что стоит спереди - непериодической.

Задача. Переведите обыкновенные дроби в периодические десятичные:

Все дроби без целой части, поэтому просто делим числитель на знаменатель «уголком»:

Как видим, остатки повторяются. Запишем дробь в «правильном» виде: 1,733 ... = 1,7(3).

В итоге получается дробь: 0,5833 ... = 0,58(3).

Записываем в нормальном виде: 4,0909 ... = 4,(09).

Получаем дробь: 0,4141 ... = 0,(41).

Переход от периодической десятичной дроби к обыкновенной

Рассмотрим периодическую десятичную дробь X = abc (a 1 b 1 c 1). Требуется перевести ее в классическую «двухэтажную». Для этого выполним четыре простых шага:

  1. Найдите период дроби, т.е. подсчитайте, сколько цифр находится в периодической части. Пусть это будет число k ;
  2. Найдите значение выражения X · 10 k . Это равносильно сдвигу десятичной точки на полный период вправо - см. урок «Умножение и деление десятичных дробей »;
  3. Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь ;
  4. В полученном уравнении найти X . Все десятичные дроби переводим в обыкновенные.

Задача. Приведите к обыкновенной неправильной дроби числа:

  • 9,(6);
  • 32,(39);
  • 0,30(5);
  • 0,(2475).

Работаем с первой дробью: X = 9,(6) = 9,666 ...

В скобках содержится лишь одна цифра, поэтому период k = 1. Далее умножаем эту дробь на 10 k = 10 1 = 10. Имеем:

10X = 10 · 9,6666 ... = 96,666 ...

Вычитаем исходную дробь и решаем уравнение:

10X − X = 96,666 ... − 9,666 ... = 96 − 9 = 87;
9X = 87;
X = 87/9 = 29/3.

Теперь разберемся со второй дробью. Итак, X = 32,(39) = 32,393939 ...

Период k = 2, поэтому умножаем все на 10 k = 10 2 = 100:

100X = 100 · 32,393939 ... = 3239,3939 ...

Снова вычитаем исходную дробь и решаем уравнение:

100X − X = 3239,3939 ... − 32,3939 ... = 3239 − 32 = 3207;
99X = 3207;
X = 3207/99 = 1069/33.

Приступаем к третьей дроби: X = 0,30(5) = 0,30555 ... Схема та же самая, поэтому я просто приведу выкладки:

Период k = 1 ⇒ умножаем все на 10 k = 10 1 = 10;

10X = 10 · 0,30555 ... = 3,05555 ...
10X − X = 3,0555 ... − 0,305555 ... = 2,75 = 11/4;
9X = 11/4;
X = (11/4) : 9 = 11/36.

Наконец, последняя дробь: X = 0,(2475) = 0,2475 2475 ... Опять же, для удобства периодические части отделены друг от друга пробелами. Имеем:

k = 4 ⇒ 10 k = 10 4 = 10 000;
10 000X = 10 000 · 0,2475 2475 = 2475,2475 ...
10 000X − X = 2475,2475 ... − 0,2475 2475 ... = 2475;
9999X = 2475;
X = 2475: 9999 = 25/101.

Операция деления предполагает участие в ней нескольких основных компонентов. Первый из них - так называемое делимое, то есть число, которое подвергается процедуре деления. Второй - делитель, то есть число, на которое производится деление. Третий - частное, то есть результат операции деления делимого на делитель.

Результат деления

Самым простым вариантом результата, который может получиться при использовании в качестве делимого и делителя двух целых положительных чисел, является еще одно целое положительное число. Например, при делении 6 на 2 частное будет равно 3. Такая ситуация возможна, если делимое является делителю, то есть без остатка делится на него.

Однако существуют и другие варианты, когда осуществить операцию деления без остатка невозможно. В этом случае частным становится нецелое число, которое можно записать в виде комбинации целой и дробной частей. Например, при делении 5 на 2 частное составит 2,5.

Число в периоде

Один из вариантов, который может получиться в случае, если делимое не является кратным делителю, представляет собой так называемое число в периоде. Оно может возникнуть в результате деления в том случае, если частное оказывается бесконечно повторяющимся набором цифр. Например, число в периоде может появиться при делении числа 2 на 3. В этой ситуации результат, в виде десятичной дроби, будет выражен в виде комбинации бесконечного количества цифр 6 после запятой.

Для того чтобы обозначить результат такого деления, был изобретен специальный способ записи чисел в периоде: такое число обозначается помещением повторяющейся цифры в скобки. Например, результат деления 2 на 3 будет записываться с использованием этого способа как 0,(6). Указанный вариант записи применим также в случае, если повторяющейся является только часть числа, получившегося в результате деления.

Например, при делении 5 на 6 результатом будет периодическое число, имеющее вид 0,8(3). Использование этого способа, во-первых, является наиболее эффективным по сравнению с попыткой записать все или часть цифр числа в периоде, во-вторых, обладает большей точностью в сравнении с другим способом передачи таких чисел - округлением, а кроме того, позволяет отличить числа в периоде от точной десятичной дроби с соответствующим значением при сопоставлении величины этих чисел. Так, например, очевидно, что 0,(6) - существенно больше, чем 0,6.

Как известно, множество рациональных чисел (Q) включает в себя множества целых чисел (Z), которое в свою очередь включает множество натуральных чисел (N). Помимо целых чисел в рациональные числа входят дроби.

Почему же тогда все множество рациональных чисел рассматривают иногда как бесконечные десятичные периодические дроби? Ведь кроме дробей, они включают и целые числа, а также непериодические дроби.

Дело в том, что все целые числа, а также любую дробь можно представить в виде бесконечной периодической десятичной дроби. То есть для всех рациональных чисел можно использовать одинаковый способ записи.

Как представляется бесконечная периодическая десятичная дробь? В ней повторяющуюся группу цифр после запятой берут в скобки. Например, 1,56(12) - это дробь, у которой повторяется группа цифр 12, т. е. дробь имеет значение 1,561212121212... и так без конца. Повторяющаяся группа цифр называется периодом.

Однако в подобном виде мы можем представить любое число, если будем считать его периодом цифру 0, которая также повторяется без конца. Например, число 2 - это то же самое, что 2,00000.... Следовательно, его можно записать в виде бесконечной периодической дроби, т. е. 2,(0).

То же самое можно сделать и с любой конечной дробью. Например:

0,125 = 0,1250000... = 0,125(0)

Однако на практике не используют преобразование конечной дроби в бесконечную периодическую. Поэтому разделяют конечные дроби и бесконечные периодические. Таким образом, правильнее говорить, что к рациональным числам принадлежат

  • все целые числа,
  • конечные дроби,
  • бесконечные периодические дроби.

При этом просто помнят, что целые числа и конечные дроби представимы в теории в виде бесконечных периодических дробей.

С другой стороны, понятия конечной и бесконечной дроби употребимы к десятичным дробям. Если говорить об обыкновенных дробях, то как конечную, так и бесконечную десятичную дробь можно однозначно представить в виде обыкновенной дроби. Значит, с точки зрения обыкновенных дробей, периодические и конечные дроби - это одно и то же. Кроме того, целые числа также могут быть представлены в виде обыкновенной дроби, если представить, что мы делим это число на 1.

Как представить десятичную бесконечную периодическую дробь в виде обыкновенной? Чаще используют примерно такой алгоритм:

  1. Приводят дробь к виду, чтобы после запятой оказался только период.
  2. Умножают бесконечную периодическую дробь на 10 или 100 или … так, чтобы запятая передвинулась вправо на один период (т. е. один период оказался в целой части).
  3. Приравнивают исходную дробь (a) переменной x, а полученную путем умножения на число N дробь (b) - к Nx.
  4. Из Nx вычитают x. Из b вычитаю a. Т. е. составляют уравнение Nx – x = b – a.
  5. При решении уравнения получается обыкновенная дробь.

Пример перевода бесконечной периодической десятичной дроби в обыкновенную дробь:
x = 1,13333...
10x = 11,3333...
10x * 10 = 11,33333... * 10
100x = 113,3333...
100x – 10x = 113,3333... – 11,3333...
90x = 102
x =

Периодическая дробь

бесконечная десятичная дробь, в которой, начиная с некоторого места, стоит только периодически повторяющаяся определённая группа цифр. Например, 1,3181818...; короче эту дробь записывают так: 1,3(18), то есть помещают период в скобки (и говорят: «18 в периоде»). П. д. называется чистой, если период начинается сразу после запятой, например 2(71) = 2,7171..., и смешанной, если после запятой имеются цифры, предшествующие периоду, например 1,3(18). Роль П. д. в арифметике обусловлена тем, что при представлении рациональных чисел, то есть обыкновенных (простых) дробей, десятичными дробями, всегда получаются либо конечные, либо периодические дроби. Точнее: конечная десятичная дробь получается в том случае, когда знаменатель несократимой простой дроби не содержит других простых множителей, кроме 2 и 5; во всех других случаях получается П. д., и притом чистая, если знаменатель данной несократимой дроби вовсе не содержит множителей 2 и 5, и смешанная, если хотя бы один из этих множителей содержится в знаменателе. Всякая П. д. может быть обращена в простую дробь (то есть она равна некоторому рациональному числу). Чистая П. д. равна простой дроби, числителем которой служит период, а знаменатель изображается цифрой 9, написанной столько раз, сколько цифр в периоде; при обращении в простую дробь смешанной П. д. числителем служит разность между числом, изображаемым цифрами, предшествующими второму периоду, и числом, изображаемым цифрами, предшествующими первому периоду; для составления знаменателя надо написать цифру 9 столько раз, сколько цифр в периоде, и приписать справа столько нулей, сколько цифр до периода. Эти правила предполагают, что данная П. д. правильная, то есть не содержит целых единиц; в противном случае целая часть учитывается особо.

Известны также правила определения длины периода П. д., соответствующей данной обыкновенной дроби. Например, для дроби a/p , где р - простое число и 1 ≤ a p - 1, длина периода является делителем р - 1. Так, для известных приближений к числу (см. Пи) 22 / 7 и 355 / 113 период равен 6 и 112 соответственно.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Периодическая дробь" в других словарях:

    Бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определенная группа цифр (период), напр. 0,373737... чисто периодическая дробь или 0,253737... смешанная периодическая дробь … Большой Энциклопедический словарь

    Дробь, бесконечная дробь Словарь русских синонимов. периодическая дробь сущ., кол во синонимов: 2 бесконечная дробь (2) … Словарь синонимов

    Десятичная дробь, ряд цифр которой повторяется в одном и том же порядке. Например, 0,135135135… есть п. д., которой период 135 и которая равна простой дроби 135/999 = 5/37. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф … Словарь иностранных слов русского языка

    Десятичная дробь дробь со знаменателем 10n, где n натуральное число. Имеет особую форму записи: целая часть в десятичной системе счисления, затем запятая и затем дробная часть в десятичной системе счисления, причём количество цифр дробной части … Википедия

    Бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определённая группа цифр (период); например, 0,373737... чисто периодическая дробь или 0,253737... смешанная периодическая дробь. * * * ПЕРИОДИЧЕСКАЯ… … Энциклопедический словарь

    Бесконечная десятичная дробь, в к рой, начиная с нек рого места, периодически повторяется определ. группа цифр (период); напр., 0,373737... чисто П. д. или 0,253737... смешанная П. д … Естествознание. Энциклопедический словарь

    См. часть... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. дробь мелочь, часть; дунст, шарик, шрот, картечь; дробное число Словарь русских синонимов … Словарь синонимов

    периодическая десятичная дробь - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN circulating decimalrecurring decimalperioding decimalperiodic decimalperiodical decimal … Справочник технического переводчика

    Если делится какое нибудь целое число а на другое целое число b, т. е. ищется число x, удовлетворяющее условию bx=а, то могут представиться два случая: или в ряду целых чисел найдется число х, которое этому условию удовлетворит, или же окажется,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Дробь, знаменатель которой есть целая степень числа 10. Д. д. пишут без знаменателя, отделяя в числителе справа запятой столько цифр, сколько нулей содержится в знаменателе. Например, В такой записи часть, стоящая слева… … Большая советская энциклопедия

Loading...Loading...