Имеют ли оптические изомеры следующие соединения. Пространственная изомерия. Оптически активные вещества

Пространственные изомеры (стереоизомеры) имеют одинаковый качественный и количественный состав и одинаковый порядок связывания атомов (химическое строение), но разное пространственное расположение атомов в молекуле.

Выделяют два вида пространственной изомерии: оптическая и геометрическая.

Оптическая изомерия

В оптической изомерии различные фрагменты молекул располагаются по-разному относительно некоторого атома, т.е. имеют различную конфигурацию. Например:

Такие молекулы не являются идентичными, они относятся друг к другу как предмет и его зеркальное отображение и называются энантиомерами.

Энантиомеры обладают свойствами хиральности . Простейший случай хиральности обусловлен наличием в молекуле центра хиральности (хирального центра), которым может служить атом, содержащий четыре различных заместителя. У такого атома отсутствуют элементы симметрии. В связи с этим его также называют асимметрическим.

Чтобы установить, является ли молекула хиральной, необходимо построить ее модель, модель ее зеркального изображения (рис. 3.1, а) и выяснить, совмещаются ли они в пространстве. Если не совмещаются - молекула хиральна (рис. 3.1, б), если совмещаются - ахиральна.

Рис. 3.1.

Все химические свойства энантиомеров идентичны. Одинаковы и их физические свойства за исключением оптической активности: одна форма вращает плоскость поляризации света влево , другая - на тот же по величине угол вправо .

Смесь равных количеств оптических антиподов ведет себя как индивидуальное химическое соединение, лишенное оптической активности и сильно отличающееся по физическим свойствам от каждого из антиподов. Такое вещество называется рацемической смесью , или рацематом.

При всех химических превращениях, при которых образуются новые асимметричные атомы углерода, всегда получаются рацематы. Существуют специальные приемы разделения рацематов на оптически активные антиподы.

В случае наличия в молекуле нескольких асимметрических атомов возможна ситуация, когда пространственные изомеры не будут оптическими антиподами. Например:


Пространственные изомеры, не являющиеся энантиомерами по отношению друг к другу, называются диастереомерами.

Частный случай диастереомеров - геометрические (цис- траис-) изомеры.

Геометрическая изомерия

Геометрическая (цис-транс-) изомерия свойственна соединениям, содержащим двойные связи (С=С, C=N и др.), а также неароматическим циклическим соединениям и обусловлена невозможностью свободного вращения атомов вокруг двойной связи или в цикле. Заместители в геометрических изомерах могут быть расположены по одну сторону плоскости двойной связи или цикла - ^wc-положение, либо по разные стороны - тирш/с-положение (рис. 3.2).


Рис. 3.2. Дис-изомер (а) и транс -изомер (б)

Геометрические изомеры обычно существенно различаются по физическим свойствам (температурам кипения и плавления, растворимости, дипольным моментам, термодинамической устойчивости и др.)

  • Термин «хиральность» означает, что два предмета находятся в такомотношении друг к другу, как левая и правая руки (от греч. chair - рука),т.е. представляют собой зеркальные изображения, не совпадающие при попытке совместить их в пространстве.

Содержание статьи

ОПТИЧЕСКАЯ ИЗОМЕРИЯ. «Когда молекула смотрится в зеркало» – такое необычное название было у статьи, опубликованной в июньском номере за 1996 год американского журнала, посвященного химическому образованию (Journal of Chemical Education). А на первой странице обложки этого номера был тоже необычный рисунок. На боку добродушно виляющего хвостом пса была изображена структурная формула пеницилламина. Пес смотрел в зеркало, а оттуда на него глядел страшный зверь с оскаленной клыкастой пастью и вставшей дыбом шерстью. На боку зверя была изображена та же самая структурная формула в виде зеркального отображением первой. Почему же фактически одно и то же вещество имеет столь разные обличья? Объясняется это особым свойством некоторых химических соединений, которое тесно связано с их оптической активностью.

Поляризация света и оптическая активность.

В начале 19 в. английский физик, астроном и врач Томас Юнг показал, что свет можно рассматривать как волну. Французский физик Огюстен Френель установил, что световые волны – поперечные: колебания в них происходят перпендикулярно направлению движения (как у волн на поверхности воды: волна бежит вперед, а поплавок на воде колеблется вверх – вниз). Уже в 20 в. было установлено, что свет – это электромагнитная волна, наподобие радиоволны, только длина волны у света намного меньше. Термин «электромагнитная» означает, что у света имеются электрические и магнитные поля, которые совершают периодические колебания, как волны на поверхности моря. Нас сейчас интересуют колебания только электрического поля. Оказывается, эти колебания происходят не как попало, а только перпендикулярно направлению светового луча. В обычном свете (его излучают, например, солнце, лампы накаливания) колебания происходят случайно, во всех направлениях. Но, пройдя через некоторые кристаллы, например, турмалина или исландского шпата (прозрачная разновидность кальцита СаСО 3), свет приобретает особые свойства: кристалл как бы «срезает» все колебания электрического поля, кроме одного, расположенного в определенной плоскости. Образно говоря, луч такого света подобен шерстяной нитке, которую продернули через узкую щель между двумя острыми лезвиями бритвы.

Французский физик Этьен Луи Малюс полагал, что свет состоит из частиц с двумя полюсами – «северным» и «южным», и в свете, прошедшем через исландский шпат, все полюсы повернуты в одну сторону. Поэтому он назвал такой свет поляризованным. Было обнаружено, что свет частично поляризуется, отражаясь под некоторыми углами от блестящих поверхностей диэлектриков, например, от стекла, или преломляясь в них. Теория Малюса не подтвердилась, однако название осталось. Глаз человека не может отличить обычный свет от поляризованного, однако это легко сделать с помощью простейших оптических приборов – поляриметров; ими пользуются, например, фотографы: поляризационные фильтры помогают избавиться от бликов на фотографии, которые возникают при отражении света от поверхности воды.

Выяснилось, что при прохождении поляризованного света через некоторые вещества происходит интересное явление: плоскость, в которой расположены «стрелки» колеблющегося электрического поля, постепенно поворачивается вокруг оси, вдоль которой идет луч. Впервые это явление обнаружил в 1811 французский физик Франсуа Доминик Араго у кристаллов кварца. Природные кристаллы кварца имеют неправильное, асимметричное строение, причем они бывают двух типов, которые отличаются по своей форме, как предмет от своего зеркального изображения. Эти кристаллы вращают плоскость поляризации света в противоположных направлениях; их назвали право- и левовращающими.

В 1815 другой французский физик Жан Батист Био и немецкий физик Томас Зеебек установили, что некоторые органические вещества (например, сахар или скипидар) также обладают этим свойством, причем не только в кристаллическом, но и в жидком, растворенном и даже газообразном состоянии. Так было доказано, что оптическая активность может быть связана не только с асимметрией кристаллов, но и с каким-то неизвестным свойством самих молекул. Оказалось, что, как и в случае кристаллов, некоторые химические соединения могут существовать в виде как право-, так и левовращающих разновидностей, причем самый тщательный химический анализ не обнаруживает между ними никаких различий! Фактически это был новый тип изомерии, которую назвали оптической изомерией. Оказалось, что кроме право- и левовращающих, есть и третий тип изомеров – оптически неактивные. Это обнаружил в 1830 знаменитый немецкий химик Йёнс Якоб Берцелиус на примере виноградной (дигидроксиянтарной) кислоты НООС–СН(ОН)–СН(ОН)–СООН: эта кислота оптически неактивна, а винная кислота точно такого же состава обладает в растворе правым вращением. Позднее была открыта и не встречающаяся в природе «левая» винная кислота – антипод правовращающей.

Различить оптические изомеры можно с помощью поляриметра – прибора, измеряющего угол поворота плоскости поляризации. Для растворов этот угол линейно зависит от толщины слоя и концентрации оптически активного вещества (закон Био). Для разных веществ оптическая активность может изменяться в очень широких пределах. Так, в случае водных растворов разных аминокислот при 25° С удельная активность (она обозначается как D и измеряется для света с длиной волны 589 нм при концентрации 1 г/мл и толщине слоя 10 см) равна –232° для цистина, –86,2° для пролина, –11,0° для лейцина, +1,8° для аланина, +13,5° для лизина и +33,2° для аспарагина. Современные поляриметры позволяют измерять оптическое вращение с очень высокой точностью (до 0,001°). Подобные измерения позволяют быстро и точно определить концентрацию оптически активных веществ, например, содержание сахара в растворах на всех стадиях его производства – начиная от сырых продуктов и кончая концентрированным раствором и патокой.

Открытие Пастера.

Оптическую активность кристаллов физики связывали с их асимметричностью; полностью симметричные кристаллы, например, кубические кристаллы поваренной соли оптически неактивны. Причина же оптической активности молекул долгое время оставалась совершенно загадочной. Первое открытие, проливавшее свет на это явление, сделал в 1848 никому тогда не известный Луи Пастер. Еще в студенческие годы Пастер интересовался химией и кристаллографией, работая под руководством физика Ж.Б.Био и видного французского химика Жана Батиста Дюма. После окончания Высшей нормальной школы в Париже молодой (ему было всего 26 лет) Пастер работал лаборантом у Антуана Балара. Балар был уже известным химиком, который за 22 года до этого прославился открытием нового элемента – брома. Своему ассистенту он дал тему по кристаллографии, не предполагая, что это приведет к выдающемуся открытию.

В ходе исследования Пастер получил кислую натриевую соль виноградной кислоты C 4 H 5 O 6 Na, насытил раствор аммиаком и медленным выпариванием воды получил красивые призматические кристаллы натриево-аммониевой соли C 4 H 3 O 6 NaNH 4 . Кристаллы эти оказались асимметричными, одни из них были как бы зеркальным отражением других: у половины кристаллов одна характерная грань находилась справа, а у других – слева. Вооружившись увеличительным стеклом и пинцетом, Пастер разделил кристаллы на две кучки. Их растворы, как и следовало ожидать, обладали противоположным оптическим вращением. Пастер на этом не остановился. Из каждого раствора он выделил исходную кислоту (которая была неактивной). Каково же было его удивление, когда оказалось, что один раствор – это известная правовращающая винная кислота, а другой – такая же кислота, но вращающая влево!

Воспоминания очевидцев свидетельствуют о невероятном нервном возбуждении молодого ученого, охватившем его в эту минуту; поняв, что ему удалось сделать, Пастер выбежал из лаборатории и, встретив лаборанта физического кабинета, бросился к нему и, обняв, воскликнул: «Я только что сделал великое открытие!» А заключалось оно в том, что давно известная неактивная виноградная кислота – это просто смесь равных количеств также известной «правой» винной кислоты и ранее не известной «левой». Именно поэтому смесь не обладает оптической активностью. Для такой смеси стали применять название рацемат (от латинского racemus – виноград). А два полученных Пастером антипода винной кислоты получили название энантиомеров (от греч. enantios – противоположный). Пастер ввел для них обозначения L- и D-изомеров (от латинских слов laevus – левый и dexter – правый). Позднее немецкий химик Эмиль Фишер связал эти обозначения со строением двух энантиомеров одного из наиболее простых оптически активных веществ – глицеринового альдегида ОНСН 2 –СН(ОН)–СНО. В 1956 по предложению английских химиков Роберта Кана и Кристофера Ингольда и швейцарского химика Владимира Прелога для оптических изомеров были введены обозначения S (от лат. sinister – левый) и R (лат. rectus – правый); рацемат обозначают символом RS. Однако по традиции широко используются и старые обозначения (например, для углеводов, аминокислот). Следует отметить, что эти буквы указывают лишь на строение молекулы («правое» или «левое» расположение определенных химических групп) и не связаны с направлением оптического вращения; последнее обозначают знаками плюс и минус, например, D(–)-фруктоза, D(+)-глюкоза.

Кроме «ручного способа», Пастер открыл еще два метода разделения рацемата на два антипода. Биохимический метод основан на избирательной способности некоторых микроорганизмов усваивать только один из изомеров. Например, грибковая плесень Penicillum glaucum , растущая на разбавленных растворах виноградной кислоты или ее солей, «поедает» только правый изомер, оставляя левый без изменения.

Третий способ разделения рацематов был чисто химический. Но для него требовалось заранее иметь оптически активное вещество, которое при взаимодействии с рацемической смесью, «выбирало» бы из нее только один энантиомер. Например, оптически активное органическое основание давало с виноградной кислотой оптически активную соль, из которой можно было выделить соответствующий энантиомер винной кислоты.

Теория оптической изомерии.

Работа Пастера, доказывающая возможность «расщепления» оптически неактивного соединения на антиподы – энантиомеры, первоначально вызвала у многих химиков недоверие. Даже сам Био не поверил своему ассистенту, пока собственноручно не повторил его опыт не убедился в правоте Пастера. Эта и последующие работы Пастера приковали к себе пристальное внимание химиков. Вскоре Жозеф Ле Бель с помощью третьего пастеровского метода расщепил несколько спиртов на оптически активные антиподы. Иоганн Вислиценус установил, что существуют две молочные кислоты: оптически неактивная, образующаяся в скисшем молоке (молочная кислота брожения), и правовращающая, которая появляется в работающей мышце (мясомолочная кислота). Подобных примеров становилось все больше, и требовалась теория, объясняющая, чем же отличаются друг от друга молекулы антиподов. Такую теорию создал молодой голландский ученый Вант-Гофф. Согласно этой теории, молекулы, как и кристаллы, могут быть «правыми» и «левыми», являясь зеркальным отражением друг друга. Простейший пример был такой. Атом углерода в органических соединениях четырехвалентен, четыре химические связи направлены от него под равными углами к вершинам тетраэдра. Если все атомы или группы атомов, находящиеся в вершинах тетраэдра и связанные с центральным атомом углерода, будут разными, то возможны две разные структуры, которые не совмещаются друг с другом вращением в пространстве. Если же хотя бы два заместителя из четырех будут одинаковыми, молекулы станут полностью идентичными (это легко проверить с помощью модели из спичек и цветного пластилина). Подобные структуры, которые отличаются друг от друга как правая рука от левой, получили название хиральных (от греч. heir – рука). Таким образом, оптическая активность – следствие пространственной изомерии (стереоизомерии) молекул.

Атом углерода, связанный с четырьмя различными заместителями, называется асимметрическим. Асимметрическими могут быть и атомы других элементов – кремния, азота, фосфора, серы. Однако оптически активными могут быть и соединения без асимметрических атомов углерода, если они могут существовать в виде двух зеркальных изомеров. Молекула будет асимметрической, если в ней нет ни одного элемента симметрии – ни центра, ни осей, ни плоскости симметрии. Примером может служить молекула аллена H 2 C=C=CH 2 , в которой имеются два различных заместителя: R 1 R 2 C=C=CR 1 R 2 . Дело в том, что эти заместители находятся не в одной плоскости (как, например, у алкенов), а в двух взаимно перпендикулярных плоскостях. Поэтому возможно существование двух зеркальных изомеров, которые никакими перемещениями и поворотами невозможно совместить друг с другом.

Более сложные отношения встречаются в случае молекул с несколькими асимметрическими атомами углерода. Например, в винной кислоте две гидроксильные группы у двух соседних атомов углерода могут быть расположены так, что молекула окажется симметричной и зеркальных изомеров у нее не будет. Это приводит к образованию еще одного, оптически неактивного, изомера, которых называется мезовинной (или антивинной) кислотой. Таким образом, дигидроксиянтарная кислота может находиться в виде четырех изомеров: правовращающего (D-винная кислота, которую в медицине называют виннокаменной), левовращающего (L-винная кислота), оптически неактивного (мезовинная кислота), а также в виде смеси L- и R-изомеров, то есть рацемата (i-винная, или виноградная кислота). Оптически активные винные кислоты при длительном нагревании их водных растворов рацемизуются, превращаясь в смесь антиподов.

Еще сложнее обстоит дело, когда асимметрических центров у молекулы множество. Например, в молекуле глюкозы их четыре. Поэтому для нее теоретически возможно существование 16 стереоизомеров, которые образуют 8 пар зеркальных антиподов. Они давно известны химикам; это сама глюкоза, а также аллоза, альтроза, манноза, гулоза, идоза, галактоза и талоза. Многие из них встречаются в природе, например, D-глюкоза (но не L-глюкоза, которая была получена синтетически).

Если в веществе поровну «правых» и «левых» молекул, оно будет оптически неактивным. Именно такие вещества и получаются в колбе в результате обычного химического синтеза. И только в живых организмах, при участии асимметричных агентов (например, ферментов) образуются оптически активные соединения. Конечно, тут же возник вопрос о том, как же появились на Земле такие соединения, например, та же природная правовращающая винная кислота, или «асимметричные» микроорганизмы, питающиеся только одним из энантиомеров. Ведь в отсутствие человека некому было осуществлять направленный синтез оптически активных веществ, некому было разделять кристаллы на правые и левые! Однако подобные вопросы оказались настолько сложными, что ответа на них нет и поныне. Например, никто не знает, почему почти все природные аминокислоты, из которых построены белки, относятся к L-ряду (S-конфигурация), а их антиподы только изредка встречаются у некоторых антибиотиков.

Теория Вант-Гоффа далеко не сразу завоевала признание. Так, выдающийся немецкий химик-экспериментатор Адольф Кольбе, (его именем названо несколько органических реакций), опубликовал в мае 1877 года язвительную статью, в которой резко отрицательно отозвался о новой теории. К счастью, Кольбе оказался в явном меньшинстве, и теория Вант-Гоффа, заложившая основы современной стереохимии, завоевала общее признание, а ее создатель в 1901 стал первым лауреатом Нобелевской премии по химии.

Эта теория позволила объяснить многие химические явления. Например, в реакциях замещения атомов галогенов на гидроксильные группы: в оптически активных алкилгалогенидах R–X + OH – ® R–OH + X – (X – атом галогена) в некоторых случаях оптическая активность исчезает, в других – сохраняется, но меняет знак. Оказалось, что эта реакция может идти разными путями. Первый механизм включает диссоциацию галогенида с образованием промежуточных ионов R + , которые быстро соединяются с анионами ОН – , давая продукт реакции – спирт. Если исходный галогенид R–X имел оптическую активность, она в результате этой реакции теряется, поскольку гидроксил может подойти к промежуточному плоскому катиону с любой стороны, так что образуется смесь энантиомеров. Если же реакция идет по второму механизму, анион OH–, подходит к атому углерода со стороны, противоположной связи C–X, и «вытесняет» атом галогена в виде аниона. Если исходный галогенид R 1 R 2 R 3 C–X имел оптическую активность, она в результате этой реакции сохраняется, но знак оптического вращения меняется на противоположный. Происходит это потому, что три заместителя у асимметрического атома углерода R 1 , R 2 и R 3 , находящиеся, как и атом галогена, в вершинах тетраэдра, при подходе атакующего агента – гидроксила меняют свою конфигурацию относительно четвертого заместителя; такое изменение конфигурации аналогично выворачиванию зонтика на сильном ветру.

Оптическая изомерия и жизнь.

Химики часто относятся к энантиомерам, как к одному соединению, поскольку их химические свойства идентичны. Однако их биологическая активность может быть совершенно различной. Это стало очевидным после трагической истории с талидомидом – лекарственным средством, которое в 60-е годы 20 в. врачи во многих странах прописывали беременными женщинами как эффективное снотворное и успокаивающее. Однако со временем проявилось его ужасное побочное действие: вещество оказалось тератогенным (повреждающим зародыш, от греческого teratos – чудовище, урод), и на свет появилась масса младенцев с врожденными уродствами. Лишь в конце 80-х годов выяснилась, что причиной несчастий был только один из энантиомеров талидомида – его правовращающая форма. К сожалению, такое различие в действии лекарственных форм раньше не было известно, и талидомид был рацемической смесью обоих антиподов.

В настоящее время многие лекарственные средства выпускаются в виде оптически чистых соединений. Так, из 25 наиболее распространенных с США лекарств только шесть являются нехиральными соединениями, три – это рацематы, остальные – чистые энантиомеры. Последние получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений (к ним относятся углеводы, аминокислоты, терпены, молочная и винная кислоты и др.) и прямым синтезом. Например, известная химическая фирма Merck разработала способ производства гипотензивного препарата метилдофа, включающий самопроизвольную кристаллизацию только нужного энантиомера путем введения в раствор небольшой затравки этого изомера. Прямой синтез также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают оба энантиомера в равных пропорциях – рацемат. Это, кстати, одна из причин очень высокой стоимости некоторых лекарств, поскольку направленный синтез только одного из них – очень сложная задача. Поэтому не удивительно, что из более 500 синтетических хиральных препаратов, выпускаемых во всем мире, примерно лишь десятая часть являются оптически чистыми. В то же время из 517 препаратов, полученных из природного сырья, только восемь – это рацематы.

Необходимость в оптически чистых энантиомерах объясняется тем, часто только один из них обладает требуемым терапевтическим эффектом, тогда как второй антипод может вызвать нежелательные побочные эффекты или даже быть токсичным. Бывает и так, что каждый энантиомер обладает своим специфическим действием. Так, S(–)-тироксин («левотроид») – это природный гормон щитовидной железы. А правовращающий R(+)-тироксин («декстроид») понижает содержание холестерина в крови. Некоторые производители придумывают для подобных случаев торговые названия-палиндромы, например, Darvon и Novrad.

Чем же объясняется различное действие энантиомеров? Человек – существо хиральное. Асимметрично и его тело, и молекулы биологически активных веществ, из которых оно состоит. Молекулы хиральных лекарств, взаимодействуя с определенными хиральными центрами организма, например, ферментами, могут действовать по-разному в зависимости от того, каким именно энантиомером является лекарство. «Правильное» лекарство подходит к своему рецептору, как ключ к замку и запускает желаемую биохимическую реакцию. Действие же «неправильного» антипода можно уподобить попытке пожать правой рукой правую же руку своего гостя.

Если лекарство – рацемат, то один из энантиомеров может в лучшем случае оказаться индифферентным, в худшем – вызвать совершенно нежелательный эффект. Вот несколько примеров. Так, антиаритмическое средство S(–)-анаприлин действует в 100 раз сильнее, чем R(+)-форма! В случае верапамила оба энантиомера обладают сходным эффектом, однако его R(+)-форма обладает значительно менее сильным побочным кардиодепрессивным эффектом. Применяющийся для наркоза кетамин может у 50% пациентов вызвать побочные эффекты в виде возбуждения, бреда и т.п., причем это присуще в основном только R(–)-изомеру, а также рацемату.У антигельминтного препарата левамизола активен в основном в S(–)-изомер, тогда как его R(+)-антипод вызывает тошноту, поэтому в свое время рацемический левамизол был заменен одним из энантиомеров. Но, оказывается, экономически не всегда имеет смысл синтезировать чистые изомеры. Например, для широко применяющегося анальгетика ибупрофена под действием ферментов возможна изомеризация терапевтически неактивной R(–)-формы в активный S(+)-изомер, поэтому в данном случае можно использовать значительно более дешевый рацемат.

Разное биологическое действие «правых» и «левых» изомеров проявляется не только среди лекарственных средств, а во всех случаях, когда хиральное соединение взаимодействует с живыми организмами. Яркий пример – аминокислота изолейцин: ее правовращающий изомер сладкий, а левовращающий – горький. Другой пример. Карвон – вещество с очень сильным ароматом (человеческий нос способен почувствовать его при содержании в воздухе всего 17 миллионных долей миллиграмма в литре). Карвон выделяют из тмина, в масле которого его содержится около 60%. Однако точно такое же соединение с тем же строением находится в масле кудрявой мяты – там его содержание достигает 70%. Каждый согласится с тем, что запах мяты и тмина вовсе не одинаковы. Оказалось, что на самом деле карвонов два – «правый» и «левый». Различие в запахе этих соединений показывает, что клетки-рецепторы в носу, ответственные за восприятие запаха, также должны быть хиральными.

Вернемся теперь к формуле, изображенной на собаке и волке. Пеницилламин (3,3-диметилцистеин) – довольно простое производное аминокислоты цистеина. Это вещество применяют при острых и хронических отравлениях медью, ртутью, свинцом, другими тяжелыми металлами, так как оно обладает способностью давать прочные комплексы с ионами этих металлов; образующиеся комплексы удаляются почками. Применяют пеницилламин также при различных формах ревматоидного артрита, при системной склеродермии, в ряде других случаев. При этом применяют только S-форму препарата, так как R-изомер токсичен и может привести к слепоте.

Теория Вант-Гоффа далеко не сразу завоевала признание. Так, выдающийся немецкий химик-экспериментатор Адольф Кольбе, (его именем названо несколько органических реакций), опубликовал в мае 1877 года язвительную статью, в которой резко отрицательно отозвался о новой теории. К счастью, Кольбе оказался в явном меньшинстве, и теория Вант-Гоффа, заложившая основы современной стереохимии, завоевала общее признание, а ее создатель в 1901 стал первым лауреатом Нобелевской премии по химии.

Илья Леенсон

Под оптической активностью вещества понимают его способность отклонять плоскость поляризованного луча света вправо или влево на определенный угол.

Явление оптической активности было открыто в 1815 году физиком Ж.Б. Био (Франция).

В 1848 году Луи Пастер, изучая кристаллы винной кислоты, заметил, что оптически неактивный Na-аммоний тартрат существовал в виде двух типов кристаллов, которые были зеркальными отражениями друг друга. Пастер разделил правоориентированные и левоориентированные кристаллы. Их водные растворы оказались оптически активными. Удельное вращение двух растворов было одинаковым по величине, но разным по знаку. Поскольку различное оптическое вращение наблюдалось для растворов, Пастер сделал вывод, что это свойство характеризует молекулы, а не кристаллы, и предположил, что молекулы этих веществ являются зеркальными отображениями друг друга. Это предположение легло в основу стереохимии, изучающей пространственное строение молекул и его влияние на химические и физические свойства веществ.

Первая стереохимическая теория, объясняющая причины оптической активности веществ, была создана в 1874 году одновременно двумя учеными – голландским химиком Я.Х. Вант-Гоффом и французом Ж. Ле Бель. Основой этой теории явилось представление о тетраэдрической модели атома углерода, т.е. все четыре валентности углеродного атома лежат не в одной плоскости, а направлены к углам тетраедра.

Как было установлено, чаще всего оптическая активность обусловлена наличием в молекуле асимметрического углеродного атома , т.е. С-атома, все валентности которого, направленные к углам тетраэдра, заполнены различными атомами или группами атомов (радикалами или заместителями). Асимметрические С-атомы в химии обозначают *. Например:

глицериновый альдегид яблочная кислота

Явление оптической активности связано с наличием оптических изомеров – веществ, имеющих одинаковый порядок связей атомов в молекуле, но различное их пространственное расположение. Оптические изомеры по пространственному строению представляют собой как зеркальные отображения друг друга, т.е. зеркальные антиподы или энантиомеры. Энантиомеры относятся друг к другу как правая и левая рука. Все константы энантиомеров, кроме удельного вращения (α) одинаковы.



Две формы вещества, имеющие зеркально-противоположные конформации, вращают поляризованный луч света в противоположные стороны: (+) – вправо, (-) – влево на один и тот же угол, называют оптическими антиподами или энантиомерами.

Общепринятый в настоящее время условный способ обозначения был впервые предложен Э. Фишером (1891г.), затем несколько видоизменен М.А. Розановым (1906г.) и подробно обсужден Хадсоном (1949г.). В качестве стандарта используется глицериновый альдегид:

D(+) - глицериновый L(-) - глицериновый

альдегид альдегид

Однако оказалось, что принадлежность к D(d) –или L(l) – типу конфигурации не всегда означает, что направление вращения идет (+) вправо или (-) влево. Возможны ситуации, что Д – конформация, а вращает плоскость поляризованного луча влево (-), или L – конформация, а вращает вправо (+). Поэтому буквенные обозначения D(d) или L(l) определяют пространственную ориентацию атомов или атомных групп вокруг асимметричного С-атома, а знаки (+)- правое вращение, (-) – левое вращение.

Смесь (+) и (-) форм (а в большинстве случаев это смесь Д- и L – форм) в соотношении 1:1 называют рацемат или рацемическая смесь. Она оптически неактивна (±). Если в органическом соединении несколько асимметричных С-атомов, количество оптических изомеров определяют по формуле:

где N – количество оптических изомеров;

n – количество асимметрических С-атомов.

Изомерия молочной кислоты

D(-) – молочная кислота L(+) –молочная кислота

(Образуется в мышцах при интенсивной работе)(Образуется при скисании молока)

Изомерия винной кислоты

Мезовинная кислота L(-) - винная D(+) – винная кислота

У мезо-форм одна половина молекулы имеет (+) конфигурацию, другая (-) конфигурацию (например, у мезовинной кислоты). В результате «внутренней компенсации» знака вращения мезо-формы оптически неактивны и в отличие от рацематов их нельзя разделить на энантиомеры.

Значение оптической изомерии

Каждое оптически активное вещество при исследовании в определенных условиях вращает плоскость поляризации на определенный угол, величина которого является постоянной и характерной для данного вещества, т.е. такой же константой, как температура плавления, температура кипения вещества, плотность и т.д. Константа, характеризующая оптическую активность вещества, называется удельным вращением . Таким образом, определяя удельное вращение можно определить подлинность вещества.

Оптическая изомерия имеет очень большое биологическое значение. Ферменты, катализирующие биохимические реакции в живых организмах, обладают оптической специфичностью, т.е. они действуют только на определенные оптические изомеры (например на Д-моносахариды, на L-аминокислоты и т.д.). На оптические антиподы этих веществ ферменты не действуют, т.е. не вовлекают их в метаболизм. Накапливаясь в тканях, такие изомеры могут вызывать патологические процессы.

Проявляется в тех случаях, когда изомеры одного и того же соединения, в свзи с различным расположением заместителей у определенного центра , не совместимы в пространстве . Для производных алифатического ряда изомерия связана со стереохимическими особенностями sp 3 гибридного атома углерода.

Еще Ле-Бель в конце 18 века предположил тетраэдрическую структуру атома углерода. В том случае, если атом углерода соединен с четырьмя различными заместителями, появляется возможность существования 2-х изомеров, являющихся зеркальным отражением друг друга.

Атом углерода, имеющий все различные заместители называют асимметрическим или хиральным центром («хирос» - рука).

Рассмотрим на примере перспективных формул:

Стереоизомеры I и II не совместимы в пространстве, являются антиподами или оптическими изомерами (энантиомерами , стереомерами).

Проекционные формулы Фишера

Рассмотрим перспективные формулы в другой плоскости.

Расположим асимметрический центр (атом углерода) в плоскости листа; заместители a и b за плоскостью листа (от наблюдателя); заместители f и d над плоскостью листа (ближе к наблюдателю) – в соответствии со стрелками, указывающими направление взгляда наблюдателя. Получим взаимно перпендикулярное направление связей с хиральным центром. Такое построение изомеров называют проекционными формулами Фишера.

Таким образом, в проекционных формулах Фишера заместители, расположенные по горизонтали, направлены к наблюдателю, по вертикали - за плоскость листа.

При построении проекционных формул наиболее объемные заместители располагают по вертикали. Если заместителями являются атомы или малые группы, не имеющие отношения к главной цепи, то их располагают по горизонтали. Для 2-бромбутана

существуют два антипода:

Энантиомеры, антиподы, стереомеры практически неразличимы по свойствам (t кипения, t плавления и т.д.), а также имеют сходные термодинамические константы. В то же время у них есть различия:

4) - твердые антиподы кристаллизуются с образованием зеркально похожих друг на друга кристаллов, но не совместимых в пространстве.

5) - антиподы вращают плоскость поляризованного света на одинаковый угол, но в различные стороны. Если угол вращения света положителен (по часовой стрелке), то антипод называют правовращающим, если отрицателен (против часовой стрелки), то - левовращающим.

Угол оптического вращения плоскополяризованного света обозначают [α D ]. Если [α D ]= -31.2°, то исследовался левовращающий антипод.

Устройство поляриметра

Вещества, способные вращать плоскость поляризованного света, называются оптически активными или оптически деятельными.



Смесь двух энантиомеров в соотношении 1:1 не вращает плоскость поляризованного света и называется рацемической смесью, рацематом.

Если один антипод преобладает в смеси над другим, то говорят об его оптической чистоте (ee). Она вычисляется по разности содержания энантиомеров в смеси.

II - 30 %, ee=70 – 30 = 40 (%)

Вторичные и третичные амины также могут обладать оптической активностью. Четвертым заместителем является неподеленная пара электронов на атоме азота.

5.4.1 Диастереомеры

Диастереометрия - явление более существенно сказывающееся на свойствах веществ и наблюдается в тех случаях, когда в соединении имеется два или более асимметрических центра. Например:

4-хлорпентанол-2

Изобразим все возможные для соединения антиподы (I-IV):

Оптические изомеры (стереоизомеры) одного и того же соединения, не являющиеся антиподами, называются диастереомерами. То есть пары изомеров I и III, I и IV, II и III, II и IV являются диастереомерными парами. Количество изомеров рассчитывают по формуле: q = 2 n , где

q - общее количество стереоизомеров,

n - количество асимметрических центров (C*).

Например, глюкоза имеет 4 хиральных центра, тогда q = 2 4 = 16 (D-глюкоза – 8 изомеров, L- глюкоза – 8 изомеров).

D-глюкоза

В природе встречаются случаи, когда асимметрические атомы в соединении имеют одинаковое окружение. Это приводит к тому, что половина антиподов не является оптически деятельными.

винная кислота

åα =0 åα =0 åα =2α åα =-2α

мезоформа

Мезоформа оптически неактивная форма, возникающая вследствие внутренней симметрии в оптически деятельном веществе.

В отличие от антиподов, диастереомеры различаются по температуре кипения, плотности (d 4 20), показателю преломления (n 4 20) и т.д.

В ввел термин ИЗОМЕРИЯ и высказал предположение, что различия возникают из-за «различного распределения простых атомов в сложном атоме» (т. е. молекуле). Подлинное объяснение изомерия получила лишь во 2-й половине XIX в. на основе теории химического строения А. М. Бутлерова (структурная изомерия) и стереохимического учения Я. Г. Вант-Гоффа (пространственная изомерия).

Структурная изомерия

Структурная изомерия - результат различий в химическом строении. К этому типу относят:

Изомерия углеводородной цепи (углеродного скелета)

Изомерия углеродного скелета, обусловленная различным порядком связи атомов углерода. Простейший пример - бутан СН 3 -СН 2 -СН 2 -СН 3 и изобутан (СН 3) 3 СН. Др. примеры: антрацен и фенантрен (формулы I и II соответственно), циклобутан и метилциклопропан (III и IV).

Валентная изомерия

Валентная изомерия (особый вид структурной изомерии), при которой изомеры можно перевести друг в друга лишь за счет перераспределения связей. Например, валентными изомерами бензола (V) являются бициклогекса-2,5-диен(VI, «бензол Дьюара»), призман (VII, «бензол Ладенбурга»), бензвален (VIII).

Изомерия функциональной группы

Различается характером функциональной группы. Пример: Этанол (CH 3 -CH 2 -OH) и Диметиловый эфир (CH 3 -O-CH 3)

Изомерия положения

Тип структурной изомерии, характеризующийся различием положения одинаковых функциональных групп или двойных связей при одинаковом углеродном скелете. Пример: 2-хлорбутановая кислота и 4-хлорбутановая кислота.

Пространственная изомерия (стереоизомерия)

Энантиомерия (оптическая изомерия)

Пространственная изомерия (стереоизомерия) возникает в результате различий в пространственной конфигурации молекул, имеющих одинаковое химическое строение. Этот тип изомеров подразделяют на энантиомерию (оптическую изомерию) и диастереомерию .

Энантиомерами (оптическими изомерами, зеркальными изомерами) являются пары оптических антиподов веществ, характеризующихся противоположными по знаку и одинаковыми по величине вращениями плоскости поляризации света при идентичности всех других физических и химических свойств (за исключением реакций с др. оптически активными веществами и физических свойств в хиральной среде). Необходимая и достаточная причина возникновения оптических антиподов - отнесение молекулы и одной из следующих точечных групп симметрии C n , D n , T, O, I (Хиральность). Чаще всего речь идет об асимметрическом атоме углерода, то есть об атоме, связанном с четырьмя разными заместителями, например:

Асимметрическими могут быть и др. атомы, например атомы кремния, азота , фосфора , серы . Наличие асимметрического атома не единственная причина энантиомерии. Так, имеют оптические антиподы производные адамантана (IX), ферроцена (X), 1,3-дифенилаллен (XI), 6,6"-динитро-2,2"-дифеновая кислота (XII). Причина оптическое активности последнего соединения - атропоизомерия, то есть пространственная изомерия, вызванная отсутствием вращения вокруг простой связи. Энантиомерия также проявляется в спиральных конформациях белков , нуклеиновых кислот , гексагелицене (XIII).


(R)-, (S)- номенклатура оптических изомеров (правило наименования)

Четырём группам, присоединенным к ассиметрическому атому углерода C abcd , приписывается различное старшинство, отвечающее последовательности: a>b>c>d. В простейшем случае старшинство устанавливается по порядковому номеру атома, присоединенного к ассиметрическому атому углерода: Br(35), Cl(17), S(16), O(8), N(7), C(6), H(1).

Например, в бромхлоруксусной кислоте:

Старшинство заместителей при ассиметрическом атоме углерода следующее: Br(a), Cl(b), C группы COOH (c), H(d).

У бутанола-2 кислород является старшим заместителем (а), водород - младшим (d):

Требуется решить вопрос о заместителях CH 3 и CH 2 CH 3 . В этом случае старшинство определяется порядковым номером или номерами других атомов в группе. Первенство остается за этильной группой, так как в ней первый атом С связан с другим атомом С(6) и с другими атомами Н(1), тогда как в метильной группе углерод соединен с тремя атомами Н с порядковым номером 1. В более сложных случаях продлжают сравнивать все атомы, пока не доходят до атомов с различными порядковыми номерами. Если имеются двойная или тройная связи, то находящиеся при них атомы считаются соответственно за два и за три атома. Так, группу -COH рассматривают как С (O, O, H), а группу -COOH - как С(О, О, ОН); карбоксильная группа старше альдегидной, поскольку содержит три атома с порядковым номером 8.

В D-глицериновом альдегиде старшей является группа ОН(а), затем следует CHO(b), CH 2 OH(c) и Н(d):

Следующий этап заключается в определении, является ли расположение групп правым, R (лат. rectus), или левым, S (лат. sinister). Переходя к соответствующей модели, её ориентируют так, чтобы младшая группа (d) в перспективной формуле оказалась внизу, и затем рассматривают сверху вдоль оси, проходящей через заштрихованную грань тетраэдра и группу (d). В D-глицириновом альдегиде группы

расположены в направлении правого вращения, и следовательно, он имеет R-конфигурацию:

(R)-глицериновый альдегид

В отличие от D,L номенклатуры обозначения (R)- и (S)- изомеров заключают в скобки.

Диастереомерия

σ-диастереомерия

Диастереомерными считают любые комбинации пространственных изомеров, не составляющие пару оптических антиподов. Различают σ и π-диастереомеры. σ-диастериомеры отличаются друг от друга конфигурацией части имеющихся в них элементов хиральности. Так, диастериомеры являются (+)-винная кислота и мезо-винная кислота, D-глюкоза и D-манноза, например:


Для некоторых типов диастереомерия введены специальные обозначения, например трео- и эритро-изомеры - это диастереомерия с двумя асимметрическим атомами углерода и пространств, расположением заместителей у этих атомов, напоминающим соотвующую треозу (родственные заместители находятся по разные стороны в проекционных формулах Фишера) и эритрозу (заместители - по одну сторону):

Эритро-изомеры, которых асимметрические атомы связаны с одинаковыми заместителями, называются мезо-формами. Они, в отличие от остальных σ-диастереомеров, оптически неактивны из-за внутримолекулярной компенсации вкладов во вращение плоскости поляризации света двух одинаковых асимметрических центров противоположной конфигурации. Пары диастереомеров, различающиеся конфигурацией одного из нескольких асимметрических атомов, называются эпимерами, например:


Термин «аномеры» обозначает пару диастереомерных моносахаридов, различающихся конфигурацией гликозидного атома в циклической форме, например аномерны α-D- и β-D-глюкозы.

π-диастереомерия (геометрическая изомерия)

π-диастериомерами, называемые также геометрическими изомерами, отличаются друг от друга различным пространственным расположением заместителей относительно плоскости двойной связи (чаще всего С=С и С=N) или цикла. К ним относятся, например, малеиновая и фумаровая кислоты (формулы XIV и XV соответственно), (Е)- и (Z)-бензальдоксимы (XVI и XVII), цис- и транс-1,2-диметилциклопентаны (XVIII и XIX).


Конформеры. Таутомеры

Явление неразрывно связано с температурными условиями его наблюдения. Так, например, хлорциклогексан при комнатной температуре существует в виде равновесной смеси двух конформеров - с экваториальной и аксиальной ориентацией атома хлора:


Однако при минус 150 °С можно выделить индивидуальную а-форму, которая ведет себя в этих условиях как устойчивый изомер.

С др. стороны, соединения, в обычных условиях являющиеся изомерами, при повышении температуры могут оказаться находящимися в равновесии таутомерами. Например, 1-бромпропан и 2-бромпропан - структурные изомеры, однако при повышении температуры до 250 °С между ними устанавливается равновесие, характерное для таутомеров.

Изомеры, превращающиеся друг в друга при температуре ниже комнатной, можно рассматривать как нежесткие молекулы.

Существование конформеров иногда обозначают термином «поворотная изомерия». Среди диенов различают s-цис- и s-транс - изомеры, которые, по существу, являются конформерами, возникающими в результате вращения вокруг простой (s-single) связи:


Изомерия также характерна для координационных соединений. Так, изомерны соединения, различающиеся по способу координации лигандов (ионизационная изомерия), например, изомерны:

SO 4 - и + Br -

Здесь, по существу, имеется аналогия со структурной изомерии органических соединений.

Химические превращения, в результате которых структурные изомеры превращаются друг в друга, называется изомеризацией. Такие процессы имеют важное значение в промышленности. Так, например, проводят изомеризацию нормальных алканов в изоалканы для повышения октанового числа моторных топлив; изомеризуют пентан в изопентан для последующего дегидрирования в изопрен. Изомеризацией являются и внутримолекулярной перегруппировки, из которых большое значение имеет, например, превращение оксима циклогексанона в капролактам - сырье для производства капрона.

Процесс взаимопревращения энантиомеров называется рацемизацией: она приводит к исчезновению оптической активности в результате образования эквимолярной смеси (-)- и (+)-форм, то есть рацемата. Взаимопревращение диастереомеров приводит к образованию смеси, в которой преобладает термодинамически более устойчивая форма. В случае π-диастереомеров - обычно транс-форма. Взаимопревращение конформационных изомеров называется конформационным равновесием.

Явление изомерии в огромной степени способствует росту числа известных (и ещё в большей степени числа потенциально возможных) соединений. Так, возможное число структурно-изомерных дециловых спиртов более 500 (известно из них около 70), пространств, изомеров здесь более 1500.

При теоретическом рассмотрении проблем изомерии все большее распространение получают топологические методы; для подсчёта числа изомеров выведены математические формулы. Для обозначения пространств, изомеров разных типов разработана номенклатура стереохимическая, собранная в разделе Е Номенклатурных правил ИЮПАК по химии.

Литература

  1. Физер Л., Физер М., Органическая химия. Углубленный курс. т.1. пер с англ., Под ред. д.х.н. Н.С. Вульфсона. Изд. «Химия». М., 1969.
  2. Пальм В. А., Введение в теоретическую органическую химию, М., 1974;
  3. Соколов В И., Введение в теоретическую стереохимию, М., 1979;
  4. Сланина 3., Теоретические аспекты явления изомерии в химии, пер. с чеш., М., 1984;
  5. Потапов В М., Стереохимия М., 1988.
Loading...Loading...