Як обчислити площу трикутника формула. Як знайти площу трикутника. Формули трикутника. Загальні формули для ситуації, коли відомі радіуси вписаних чи описаних кіл

Часом у житті зустрічаються такі ситуації, коли доводиться копатися у пам'яті у пошуках давно забутих шкільних знань. Наприклад, потрібно визначити площу земельної ділянки трикутної форми або прийшла черга чергового ремонту в квартирі або приватному будинку, і потрібно порахувати, скільки піде матеріалу для поверхні з трикутною формою. Був час, коли ви могли вирішити таке завдання за пару хвилин, а тепер намагаєтеся пригадати, як же визначити площу трикутника?

Не варто через це переживати! Адже це цілком нормально, коли мозок людини вирішує перекласти знання, що давно не використовуються, кудись у віддалений куточок, з якого часом їх не так і легко витягти. Щоб вам не довелося мучитися з пошуком забутих шкільних знань для вирішення такого завдання, у цій статті зібрані різні методи, які дозволяють легко знайти потрібну площу трикутника.

Загальновідомо, що трикутником називають такий вид багатокутника, який обмежений мінімально можливою кількістю сторін. В принципі, будь-який багатокутник можна розділити на кілька трикутників, з'єднавши його вершини відрізками, які не перетинають його сторони. Тому, знаючи трикутника, можна порахувати площу практично будь-якої фігури.

Серед усіх можливих трикутників, які зустрічаються в житті, можна виділити такі окремі види: і прямокутний.

Найпростіше площа трикутника розраховується, коли один з його кутів прямий, тобто у випадку прямокутного трикутника. Неважко помітити, що він є половиною прямокутника. Тому його площа дорівнює половині добутку сторін, які утворюють між собою прямий кут.

Якщо нам відомі висота трикутника, опущена з однієї з його вершин на протилежний бік, і довжина цієї сторони, яку називають основою, площа розраховується як половина твору висоти на основу. Записується це за допомогою такої формули:

S = 1/2*b*h, у якій

S - потрібна площа трикутника;

b, h - відповідно, висота та основа трикутника.

Так легко розрахувати площу рівнобедреного трикутника, оскільки висота ділитиме протилежну сторону навпіл, і її легко можна буде виміряти. Якщо визначається площа то як висота зручно брати довжину однієї зі сторін, що утворюють прямий кут.

Все це звичайно добре, але як визначити, чи є один із кутів трикутника прямим чи ні? Якщо розмір нашої фігури невеликий, можна скористатися будівельним кутом, креслярським трикутником, листівкою або іншим предметом з прямокутною формою.

Але що робити, якщо маємо трикутну земельну ділянку? У цьому випадку надходять таким чином: відраховують від вершини передбачуваного прямого кута по одній зі сторін відстань кратну 3 (30 см, 90 см, 3 м), а по іншій стороні відміряють у тій же пропорції відстань кратна 4 (40 см, 160 см, 4 м). Тепер потрібно виміряти відстань між кінцевими точками цих двох відрізків. Якщо вийшло значення кратне 5 (50 см, 250 см, 5 м), можна стверджувати, що кут прямий.

Якщо відомо значення довжини кожної із трьох сторін нашої фігури, то площу трикутника можна визначити, використовуючи формулу Герона. Для того, щоб вона мала більш простий вигляд, застосовують нову величину, яка називається напівпериметром. Це сума всіх сторін нашого трикутника, розділена навпіл. Після того, як напівпериметр порахований, можна приступати до визначення площі за формулою:

S = sqrt(p(p-a)(p-b)(p-c)), де

sqrt – квадратний корінь;

p - значення напівпериметра (p = (a + b + c) / 2);

а,b,с - ребра (сторони) трикутника.

Але що робити, якщо трикутник має неправильну форму? Тут можливі два способи. Перший полягає в тому, щоб спробувати розділити таку фігуру на два прямокутні трикутники, суму площ яких порахувати окремо, а потім скласти. Або ж, якщо відомий кут між двома сторонами та розмір цих сторін, то застосувати формулу:

S = 0.5 * ab * sinC, де

a, b - Сторони трикутника;

с – величина кута між цими сторонами.

Останній випадок на практиці зустрічається рідко, проте в житті все можливо, тому наведена вище формула не буде зайвою. Успіхів у розрахунках!

Трикутник – добре знайома всім постать. І це, незважаючи на багате розмаїття його форм. Прямокутний, рівносторонній, гострокутний, рівнобедрений, тупокутний. Кожен із них чимось відрізняється. Але для кожного потрібно дізнаватися площу трикутника.

Загальні для всіх трикутників формули, в яких використовуються довжини сторін або висот

Позначення, прийняті в них: сторони - а, в, с; висоти на відповідні сторони н а, н в, н с.

1. Площа трикутника обчислюється, як добуток, сторони і висоти, опущеної на неї. S = ½ * а * н а. Аналогічно слід записати формули для двох інших сторін.

2. Формула Герона, у якій фігурує напівпериметр (його прийнято позначати маленькою літерою р, на відміну повного периметра). Напівпериметр необхідно порахувати так: скласти всі сторони і розділити їх на 2. Формула напівпериметра: р = (а + в + с) / 2. Тоді рівність для площі фігури виглядає так: S = √ (р * (р - а) * ( р - в) * (р - с)).

3. Якщо не хочеться використовувати напівпериметр, то стане в нагоді така формула, в якій присутні тільки довжини сторін: S = ¼ * √ ((а + в + с) * (в + с - а) * (а + с - в) * (а + в – с)). Вона трохи довша за попередню, але виручить, якщо забулося, як знаходити напівпериметр.

Загальні формули, у яких фігурують кути трикутника

Позначення, які потрібні для прочитання формул: α, β, γ – кути. Вони лежать навпроти сторони, в, з, відповідно.

1. По ній половина добутку двох сторін та синуса кута між ними дорівнює площі трикутника. Тобто: S = ½ а * в * sin γ. Так само слід записати формули для двох інших випадків.

2. Площа трикутника можна обчислити по одній стороні та трьох відомих кутах. S = (а 2 * sin β * sin γ) / (2 sin α).

3. Існує ще формула з однією відомою стороною та двома прилеглими до неї кутами. Вона виглядає таким чином: S = з 2/(2 (ctg α + ctg β)).

Дві останні формули є не найпростішими. Запам'ятати їх досить складно.

Загальні формули для ситуації, коли відомі радіуси вписаних чи описаних кіл

Додаткові позначення: r, R – радіуси. Перший використовується для радіусу вписаного кола. Другий – для описаної.

1. Перша формула, за якою обчислюється площа трикутника, пов'язана із напівпериметром. S = р*r. Інакше її можна записати так: S = ½ r * (а + + с).

2. У другому випадку потрібно перемножити всі сторони трикутника і розділити їх на чотиризначний радіус описаного кола. У буквеному виразі це виглядає так: S = (а * в * с) / (4R).

3. Третя ситуація дозволяє обійтися без знання сторін, але знадобляться значення всіх трьох кутів. S = 2 R 2 * sin α * sin β * sin γ.

Частковий випадок: прямокутний трикутник

Це найпростіша ситуація, оскільки потрібне знання лише довжини обох катетів. Вони позначаються латинськими літерами а і в. Площа прямокутного трикутника дорівнює половині площі добудованого щодо нього прямокутника.

Математично це має такий вигляд: S = ½ а * в. Вона запам'ятовується найпростіше. Тому що виглядає як формула для площі прямокутника, тільки з'являється ще дріб, що означає половину.

Частковий випадок: рівнобедрений трикутник

Оскільки в нього дві сторони рівні, деякі формули для його площі виглядають дещо спрощеними. Наприклад, формула Герона, за якою обчислюється площа рівнобедреного трикутника, набуває такого вигляду:

S = ½ в √((a + ½ в)*(a - ½ в)).

Якщо її перетворити, то вона стане коротшою. У такому разі формула Герона для рівнобедреного трикутника записується так:

S = ¼ в √ (4 * a 2 - b 2).

Дещо простіше, ніж для довільного трикутника, виглядає формула площі, якщо відомі бічні сторони та кут між ними. S = ½ a 2 * sin β.

Окремий випадок: рівносторонній трикутник

Зазвичай у завданнях про нього відома сторона або її можна дізнатися. Тоді формула, за якою знаходиться площа такого трикутника, виглядає так:

S = (а 2 √3)/4.

Завдання на знаходження площі, якщо трикутник зображений на папері.

Найпростішою є ситуація, коли прямокутний трикутник накреслено так, що його катети збігаються з лініями паперу. Тоді потрібно просто порахувати кількість клітин, що укладаються в катети. Потім перемножити їх і поділити на два.

Коли трикутник є гострокутним або тупокутним, його потрібно домалювати до прямокутника. Тоді в фігурі, що вийшла, буде 3 трикутники. Один - той, що дано в задачі. А два інші — допоміжні та прямокутні. Визначити площі двох останніх потрібно за описаним вище способом. Потім порахувати площу прямокутника і відняти від нього ті, що обчислені для допоміжних. Площу трикутника визначено.

Набагато складнішою є ситуація, в якій жодна зі сторін трикутника не збігається з лініями паперу. Тоді його потрібно вписати у прямокутник так, щоб вершини вихідної фігури лежали на його сторонах. В цьому випадку допоміжних прямокутних трикутників буде три.

Приклад завдання на формулу Герона

Умови. У деякого трикутника відомі сторони. Вони дорівнюють 3, 5 і 6 см. Необхідно дізнатися про його площу.

Тепер можна обчислювати площу трикутника за зазначеною вище формулою. Під квадратним коренем виявляється добуток чотирьох чисел: 7, 4, 2 і 1. Тобто площа дорівнює √(4 * 14) = 2 √(14).

Якщо не потрібна велика точність, то можна витягти квадратний корінь із 14. Він дорівнює 3,74. Тоді площа дорівнюватиме 7,48.

Відповідь. S = 2√14 см 2 або 7,48 см 2 .

Приклад задачі із прямокутним трикутником

Умови. Один катет прямокутного трикутника більший, ніж другий на 31 см. Потрібно дізнатися про їх довжину, якщо площа трикутника дорівнює 180 см 2 .
Рішення. Прийде вирішити систему з двох рівнянь. Перше пов'язане із площею. Друге — із ставленням катетів, яке дано у завданні.
180 = ½ а * в;

а = + 31.
Спочатку значення «а» слід підставити на перше рівняння. Вийде: 180 = ½ (в + 31) * ст. У ньому лише одна невідома величина, тому його легко вирішити. Після розкриття дужок виходить квадратне рівняння: 2 + 31 - 360 = 0. Воно дає два значення для «в»: 9 і - 40. друге число не підходить як відповідь, так як довжина сторони трикутника не може бути негативною величиною.

Залишилося обчислити другий катет: додати до отриманого числа 31. Виходить 40. Це шукані завдання величини.

Відповідь. Катети трикутника дорівнюють 9 і 40 см.

Завдання на знаходження сторони через площу, бік та кут трикутника

Умови. Площа деякого трикутника 60 см2. Необхідно обчислити одну з сторін, якщо друга сторона дорівнює 15 см, а кут між ними дорівнює 30º.

Рішення. З прийнятих позначень, шукана сторона «а», відома «в», заданий кут “γ”. Тоді формулу площі можна переписати так:

60 = ½ а * 15 * sin 30 º. Тут синус 30 градусів дорівнює 0,5.

Після перетворень «а» виявляється рівним 60/(0,5*0,5*15). Тобто, 16.

Відповідь. Потрібна сторона дорівнює 16 см.

Завдання про квадрат, вписаний у прямокутний трикутник

Умови. Вершина квадрата зі стороною 24 см збігається із прямим кутом трикутника. Дві інші лежать на катетах. Третя належить гіпотенузі. Довжина одного з катетів дорівнює 42 см. Чому дорівнює площа прямокутного трикутника?

Рішення. Розглянемо два прямокутні трикутники. Перший - заданий у завданні. Другий – спирається на відомий катет вихідного трикутника. Вони подібні, тому що мають загальний кут та утворені паралельними прямими.

Тоді відносини їхніх катетів рівні. Катети меншого трикутника дорівнюють 24 см (сторона квадрата) і 18 см (заданий катет 42 см відняти сторону квадрата 24 см). Відповідні катети великого трикутника — 42 см та х см. Саме цей «х» потрібен для того, щоб обчислити площу трикутника.

18/42 = 24/х, тобто х = 24*42/18 = 56 (см).

Тоді площа дорівнює творам 56 і 42, поділеному на два, тобто 1176 см 2 .

Відповідь. Шукана площа дорівнює 1176 см 2 .

Концепція площі

Поняття площі будь-якої геометричної фігури, зокрема трикутника, пов'язуватимемо з такою фігурою, як квадрат. За одиницю площі будь-якої геометричної фігури прийматимемо площу квадрата, сторона якого дорівнює одиниці. Для повноти згадаємо дві основні властивості для поняття площ геометричних фігур.

Властивість 1:Якщо геометричні постаті рівні, то значення їх площ також дорівнюють.

Властивість 2:Будь-яка фігура може бути розбита на кілька фігур. Причому площа первісної фігури дорівнює сумі значень площ усіх складових її постатей.

Розглянемо приклад.

Приклад 1

Очевидно, що одна із сторін трикутника є діагоналлю прямокутника , у якого одна сторона має довжину $5$ (бо $5$ клітин), а друга $6$ (оскільки $6$ клітин). Отже, площа цього трикутника дорівнюватиме половині такого прямокутника. Площа прямокутника дорівнює

Тоді площа трикутника дорівнює

Відповідь: $15$.

Далі розглянемо кілька методів для знаходження площ трикутників, а саме за допомогою висоти та основи, за допомогою формули Герона та площа рівностороннього трикутника.

Як знайти площу трикутника через висоту та основу

Теорема 1

Площу трикутника можна знайти як половину добутку довжини сторони, на висоту, проведену до цієї сторони.

Математично це виглядає так

$S=\frac(1)(2)αh$

де $a$ – довжина сторони, $h$ – висота, проведена до неї.

Доведення.

Розглянемо трикутник $ABC$, де $AC=α$. До цієї сторони проведена висота $BH$, яка дорівнює $h$. Добудуємо його до квадрата $AXYC$ як малюнку 2.

Площа прямокутника $AXBH$ дорівнює $h\cdot AH$, а прямокутника $HBYC$ дорівнює $h\cdot HC$. Тоді

$S_ABH=\frac(1)(2)h\cdot AH$, $S_CBH=\frac(1)(2)h\cdot HC$

Отже, потрібна площа трикутника, за якістю 2, дорівнює

$S=S_ABH+S_CBH=\frac(1)(2)h\cdot AH+\frac(1)(2)h\cdot HC=\frac(1)(2)h\cdot (AH+HC)=\ frac(1)(2)αh$

Теорему доведено.

Приклад 2

Знайти площу трикутника на малюнку нижче, якщо клітина має площу, рівну одиниці

Основа цього трикутника дорівнює $9$ (бо $9$ становить $9$ клітин). Висота також дорівнює $9$. Тоді, за теоремою 1, отримаємо

$S=\frac(1)(2)\cdot 9\cdot 9=40,5$

Відповідь: $ 40,5 $.

Формула Герону

Теорема 2

Якщо нам дано три сторони трикутника $α$, $β$ і $γ$, то його площу можна знайти таким чином

$S=\sqrt(ρ(ρ-α)(ρ-β)(ρ-γ))$

тут $ρ$ означає півпериметр цього трикутника.

Доведення.

Розглянемо наступний малюнок:

За теоремою Піфагора з трикутника $ABH$ отримаємо

З трикутника $CBH$, за теоремою Піфагора, маємо

$h^2=α^2-(β-x)^2$

$h^2=α^2-β^2+2βx-x^2$

З цих двох співвідношень отримуємо рівність

$γ^2-x^2=α^2-β^2+2βx-x^2$

$x=\frac(γ^2-α^2+β^2)(2β)$

$h^2=γ^2-(\frac(γ^2-α^2+β^2)(2β))^2$

$h^2=\frac((α^2-(γ-β)^2)((γ+β)^2-α^2))(4β^2)$

$h^2=\frac((α-γ+β)(α+γ-β)(γ+β-α)(γ+β+α))(4β^2)$

Оскільки $ρ=\frac(α+β+γ)(2)$, то $α+β+γ=2ρ$, отже

$h^2=\frac(2ρ(2ρ-2γ)(2ρ-2β)(2ρ-2α))(4β^2)$

$h^2=\frac(4ρ(ρ-α)(ρ-β)(ρ-γ))(β^2 )$

$h=\sqrt(\frac(4ρ(ρ-α)(ρ-β)(ρ-γ))(β^2))$

$h=\frac(2)(β)\sqrt(ρ(ρ-α)(ρ-β)(ρ-γ))$

По теоремі 1, отримаємо

$S=\frac(1)(2) βh=\frac(β)(2)\cdot \frac(2)(β) \sqrt(ρ(ρ-α)(ρ-β)(ρ-γ) )=\sqrt(ρ(ρ-α)(ρ-β)(ρ-γ))$

Концепція площі

Поняття площі будь-якої геометричної фігури, зокрема трикутника, пов'язуватимемо з такою фігурою, як квадрат. За одиницю площі будь-якої геометричної фігури прийматимемо площу квадрата, сторона якого дорівнює одиниці. Для повноти згадаємо дві основні властивості для поняття площ геометричних фігур.

Властивість 1:Якщо геометричні постаті рівні, то значення їх площ також дорівнюють.

Властивість 2:Будь-яка фігура може бути розбита на кілька фігур. Причому площа первісної фігури дорівнює сумі значень площ усіх складових її постатей.

Розглянемо приклад.

Приклад 1

Очевидно, що одна із сторін трикутника є діагоналлю прямокутника , у якого одна сторона має довжину $5$ (бо $5$ клітин), а друга $6$ (оскільки $6$ клітин). Отже, площа цього трикутника дорівнюватиме половині такого прямокутника. Площа прямокутника дорівнює

Тоді площа трикутника дорівнює

Відповідь: $15$.

Далі розглянемо кілька методів для знаходження площ трикутників, а саме за допомогою висоти та основи, за допомогою формули Герона та площа рівностороннього трикутника.

Як знайти площу трикутника через висоту та основу

Теорема 1

Площу трикутника можна знайти як половину добутку довжини сторони, на висоту, проведену до цієї сторони.

Математично це виглядає так

$S=\frac(1)(2)αh$

де $a$ – довжина сторони, $h$ – висота, проведена до неї.

Доведення.

Розглянемо трикутник $ABC$, де $AC=α$. До цієї сторони проведена висота $BH$, яка дорівнює $h$. Добудуємо його до квадрата $AXYC$ як малюнку 2.

Площа прямокутника $AXBH$ дорівнює $h\cdot AH$, а прямокутника $HBYC$ дорівнює $h\cdot HC$. Тоді

$S_ABH=\frac(1)(2)h\cdot AH$, $S_CBH=\frac(1)(2)h\cdot HC$

Отже, потрібна площа трикутника, за якістю 2, дорівнює

$S=S_ABH+S_CBH=\frac(1)(2)h\cdot AH+\frac(1)(2)h\cdot HC=\frac(1)(2)h\cdot (AH+HC)=\ frac(1)(2)αh$

Теорему доведено.

Приклад 2

Знайти площу трикутника на малюнку нижче, якщо клітина має площу, рівну одиниці

Основа цього трикутника дорівнює $9$ (бо $9$ становить $9$ клітин). Висота також дорівнює $9$. Тоді, за теоремою 1, отримаємо

$S=\frac(1)(2)\cdot 9\cdot 9=40,5$

Відповідь: $ 40,5 $.

Формула Герону

Теорема 2

Якщо нам дано три сторони трикутника $α$, $β$ і $γ$, то його площу можна знайти таким чином

$S=\sqrt(ρ(ρ-α)(ρ-β)(ρ-γ))$

тут $ρ$ означає півпериметр цього трикутника.

Доведення.

Розглянемо наступний малюнок:

За теоремою Піфагора з трикутника $ABH$ отримаємо

З трикутника $CBH$, за теоремою Піфагора, маємо

$h^2=α^2-(β-x)^2$

$h^2=α^2-β^2+2βx-x^2$

З цих двох співвідношень отримуємо рівність

$γ^2-x^2=α^2-β^2+2βx-x^2$

$x=\frac(γ^2-α^2+β^2)(2β)$

$h^2=γ^2-(\frac(γ^2-α^2+β^2)(2β))^2$

$h^2=\frac((α^2-(γ-β)^2)((γ+β)^2-α^2))(4β^2)$

$h^2=\frac((α-γ+β)(α+γ-β)(γ+β-α)(γ+β+α))(4β^2)$

Оскільки $ρ=\frac(α+β+γ)(2)$, то $α+β+γ=2ρ$, отже

$h^2=\frac(2ρ(2ρ-2γ)(2ρ-2β)(2ρ-2α))(4β^2)$

$h^2=\frac(4ρ(ρ-α)(ρ-β)(ρ-γ))(β^2 )$

$h=\sqrt(\frac(4ρ(ρ-α)(ρ-β)(ρ-γ))(β^2))$

$h=\frac(2)(β)\sqrt(ρ(ρ-α)(ρ-β)(ρ-γ))$

По теоремі 1, отримаємо

$S=\frac(1)(2) βh=\frac(β)(2)\cdot \frac(2)(β) \sqrt(ρ(ρ-α)(ρ-β)(ρ-γ) )=\sqrt(ρ(ρ-α)(ρ-β)(ρ-γ))$

Формула площінеобхідна для визначення площа фігури, яка є речовиннозначною функцією, визначеною на деякому класі фігур евклідової площини і задовольняє 4м умовам:

  1. Позитивність — Площа не може бути меншою за нуль;
  2. Нормування - квадрат зі стороною одиниця має площу 1;
  3. Конгруентність - конгруентні фігури мають рівну площу;
  4. Адитивність - площа об'єднання 2х фігур без загальних внутрішніх точок дорівнює сумі площ цих фігур.
Формули площі геометричних фігур.
Геометрична фігура Формула Креслення

Результат складання відстаней між серединами протилежних сторін опуклого чотирикутника дорівнюватиме його напівпериметру.

Сектор кола.

Площа сектора кола дорівнює добутку його дуги на половину радіусу.

Сегмент кола.

Щоб отримати площу сегмента ASB, достатньо з площі сектора AOB відняти площу трикутника AOB.

S = 1/2 R(s - AС)

Площа еліпса дорівнює добутку довжин великої та малої півосей еліпса на число пі.

Еліпс.

Ще один варіант як обчислити площу еліпса – через два його радіуси.

Трикутник. Через основу та висоту.

Формула площі кола через його радіус та діаметр.

Квадрат. Через його бік.

Площа квадрата дорівнює квадрату довжини його сторони.

Квадрат. Через його діагоналі.

Площа квадрата дорівнює половині квадрата довжини його діагоналі.

Правильний багатокутник.

Для визначення площі правильного багатокутника необхідно розбити його на рівні трикутники, які мали б загальну вершину в центрі вписаного кола.

S= r·p = 1/2 r·n·a

Loading...Loading...