Заснування логарифмічної тотожності. Основне логарифмічне тотожність

(від грецької λόγος - «слово», «ставлення» та ἀριθμός - «число») числа bна підставі a(log α b) називається таке число c, і b= a cтобто записи log α b=cі b=acеквівалентні. Логарифм має сенс, якщо a>0, а ≠1, b>0.

Говорячи іншими словами логарифмчисла bна підставі аформулюється як показник ступеня, в який треба звести число a, щоб отримати число b(Логарифм існує тільки у позитивних чисел).

З цього формулювання випливає, що обчислення x= log α b, рівнозначно рішенню рівняння a x = b.

Наприклад:

log 2 8 = 3 тому, що 8 = 2 3 .

Виділимо, що зазначене формулювання логарифму дає можливість відразу визначити значення логарифмуколи число під знаком логарифму виступає деяким ступенем основи. І справді, формулювання логарифму дає можливість довести, що якщо b=a з, то логарифм числа bна підставі aдорівнює з. Також ясно, що тема логарифмування тісно пов'язана з темою ступеня числа.

Обчислення логарифму називають логарифмуванням. Логарифмування – це математична операція взяття логарифму. При логарифмуванні, твори співмножників трансформується у суми членів.

Потенціювання- це математична операція зворотна до логарифмування. При потенціювання задана основа зводиться у ступінь виразу, над яким виконується потенціювання. При цьому суми членів трансформуються у твір співмножників.

Досить часто використовуються речові логарифми з основами 2 (двійковий), е число Ейлера e ≈ 2,718 (натуральний логарифм) та 10 (десятковий).

На цьому етапі доцільно розглянути зразки логарифмів log 7 2 , ln 5, lg0.0001.

А записи lg(-3), log -3 3.2, log -1 -4.3 немає сенсу, оскільки у першій їх під знаком логарифму вміщено негативне число , у другій - від'ємне числов основі, а в третій - і від'ємне число під знаком логарифму та одиниця в основі.

Умови визначення логарифму.

Варто окремо розглянути умови a > 0, a ≠ 1, b > 0. за яких дається визначення логарифму.Розглянемо, чому взято ці обмеження. У цьому нам допоможе рівність виду x = log α b, зване основним логарифмічним тотожністю , яке безпосередньо випливає з цього визначення логарифму.

Візьмемо умову a≠1. Оскільки одиниця будь-якою мірою дорівнює одиниці, то рівність x=log α bможе існувати лише за b=1але при цьому log 1 1 буде будь-яким дійсним числом. Для виключення цієї неоднозначності і береться a≠1.

Доведемо необхідність умови a>0. При a=0за формулюванням логарифму може існувати тільки при b=0. І відповідно тоді log 0 0може бути будь-яким відмінним від нуля дійсним числом, тому що нуль у будь-якій відмінній від нуля мірі є нуль. Виключити цю неоднозначність дає умову a≠0. А при a<0 нам би довелося відкинути розбір раціональних та ірраціональних значень логарифму, оскільки ступінь з раціональним та ірраціональним показником визначено лише для невід'ємних підстав. Саме з цієї причини і обумовлено умову a>0.

І остання умова b>0випливає з нерівності a>0оскільки x=log α b, а значення ступеня з позитивною основою aзавжди позитивно.

Особливості логарифмів.

Логарифмихарактеризуються відмінними особливостями, які зумовили їхнє повсюдне вживання для значного полегшення копітких розрахунків. При переході «в світ логарифмів» множення трансформується на значно легше додавання, розподіл — на віднімання, а зведення в ступінь і витяг кореня трансформуються відповідно до множення і розподіл на показник ступеня.

Формулювання логарифмів та таблицю їх значень (для тригонометричних функцій) вперше видав у 1614 році шотландський математик Джон Непер. Логарифмічні таблиці, збільшені та деталізовані іншими вченими, широко використовувалися при виконанні наукових та інженерних обчислень, і залишалися актуальними доки не стали застосовуватись електронні калькулятори та комп'ютери.


Продовжуємо вивчати логарифми. У цій статті ми поговоримо про обчислення логарифмів, цей процес називають логарифмуванням. Спочатку ми розберемося з обчисленням логарифмів за визначенням. Далі розглянемо, як знаходять значення логарифмів з їх властивостей. Після цього зупинимося на обчисленні логарифмів через задані значення інших логарифмів. Нарешті, навчимося використовувати таблиці логарифмів. Вся теорія має приклади з докладними рішеннями.

Навігація на сторінці.

Обчислення логарифмів за визначенням

У найпростіших випадках можна досить швидко і легко виконати знаходження логарифму за визначенням. Давайте докладно розглянемо, як відбувається цей процес.

Його суть полягає в поданні числа b у вигляді a c , звідки визначення логарифму число c є значенням логарифму. Тобто, знаходження логарифму за визначенням відповідає наступний ланцюжок рівностей: log a b = log a a c = c.

Отже, обчислення логарифму за визначенням зводиться до знаходження такого числа c , що a c = b , а саме c є значення логарифму.

Враховуючи інформацію попередніх абзаців, коли число під знаком логарифму задано деяким ступенем заснування логарифму, то можна відразу вказати, чому дорівнює логарифм – він дорівнює показнику ступеня. Покажемо рішення прикладів.

приклад.

Знайдіть log 2 2 −3, а також обчисліть натуральний логарифм числа e 5,3.

Рішення.

Визначення логарифму дозволяє нам відразу сказати, що log 2 2 −3 =−3 . Дійсно, число під знаком логарифму дорівнює підставі 2 -3 ступеня.

Аналогічно знаходимо другий логарифм: lne 5,3 = 5,3.

Відповідь:

log 2 2 −3 =−3 та lne 5,3 =5,3 .

Якщо ж число b під знаком логарифму не задано як ступінь основи логарифму, потрібно уважно подивитися, чи можна дійти уявлення числа b як a c . Часто таке уявлення буває досить очевидним, особливо коли число під знаком логарифму дорівнює підставі в ступені 1, або 2, або 3, ...

приклад.

Обчисліть логарифми log 5 25 і .

Рішення.

Нескладно помітити, що 25 = 5 2 це дозволяє обчислювати перший логарифм: log 5 25 = log 5 5 2 = 2 .

Переходимо до обчислення другого логарифму. Число можна представити у вигляді ступеня числа 7: (за потреби дивіться ). Отже, .

Перепишемо третій логарифм у наступному вигляді. Тепер можна побачити, що , звідки укладаємо, що . Отже, за визначенням логарифму .

Коротко рішення можна було записати так: .

Відповідь:

log 5 25 = 2, і .

Коли під знаком логарифму знаходиться досить велике натуральне числото його не завадить розкласти на прості множники. Це часто допомагає уявити таке число у вигляді певної міри підстави логарифму, отже, обчислити цей логарифм за визначенням.

приклад.

Знайдіть значення логарифму.

Рішення.

Деякі властивості логарифмів дозволяють одразу вказати значення логарифмів. До таких властивостей відносяться властивість логарифму одиниці та властивість логарифму числа, що дорівнює основі: log 1 1 = log a a 0 = 0 і log a a = log a a 1 = 1 . Тобто коли під знаком логарифму знаходиться число 1 або число a , рівне підставі логарифму, то в цих випадках логарифми рівні 0 і 1 відповідно.

приклад.

Чому рівні логарифми та lg10?

Рішення.

Оскільки , то з визначення логарифму випливає .

У другому прикладі число 10 під знаком логарифму збігається з його основою, тому десятковий логарифм десяти дорівнює одиниці, тобто lg10=lg10 1 =1 .

Відповідь:

І lg10=1.

Зазначимо, що обчислення логарифмів за визначенням (яке ми розібрали в попередньому пункті) має на увазі використання рівності log a a p =p, яка є однією з властивостей логарифмів.

На практиці, коли число під знаком логарифму та основа логарифму легко видаються у вигляді ступеня деякого числа, дуже зручно використовувати формулу , Що відповідає одному з властивостей логарифмів. Розглянемо приклад знаходження логарифму, що ілюструє використання цієї формули.

приклад.

Обчисліть логарифм.

Рішення.

Відповідь:

.

Не згадані вище властивості логарифмів також використовуються для обчислення, але про це поговоримо в наступних пунктах.

Знаходження логарифмів через інші відомі логарифми

Інформація цього пункту продовжує тему використання властивостей логарифмів під час їх обчислення. Але тут основна відмінність полягає в тому, що властивості логарифмів використовуються для того, щоб виразити вихідний логарифм через інший логарифм, значення якого відомо. Наведемо приклад пояснення. Припустимо, ми знаємо, що log 2 3≈1,584963 тоді ми можемо знайти, наприклад, log 2 6 , виконавши невелике перетворення за допомогою властивостей логарифму: log 2 6=log 2 (2·3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

У наведеному прикладі нам було достатньо використати властивість логарифму твору. Однак набагато частіше доводиться застосовувати ширший арсенал властивостей логарифмів, щоб обчислити вихідний логарифм через задані.

приклад.

Обчисліть логарифм 27 на підставі 60 якщо відомо, що log 60 2=a і log 60 5=b .

Рішення.

Отже, нам потрібно знайти log 60 27 . Нескладно помітити, що 27=3 3 і вихідний логарифм в силу властивості логарифму ступеня можна переписати як 3 log 60 3 .

Тепер подивимося, як log 60 3 виразити через відомі логарифми. Властивість логарифму числа, що дорівнює основі, дозволяє записати рівність log 60 60 = 1 . З іншого боку log 60 60 = log60 (2 2 · 3 · 5) = log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Таким чином, 2·log 60 2+log 60 3+log 60 5=1. Отже, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Нарешті, обчислюємо вихідний логарифм: log 60 27 = 3 · log 60 3 = 3·(1−2·a−b)=3−6·a−3·b.

Відповідь:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Окремо варто сказати про значення формули переходу до нової основи логарифму виду . Вона дозволяє від логарифмів з будь-якими основами переходити до логарифмів з конкретною основою, значення яких відомі або є можливість їх відшукати. Зазвичай від вихідного логарифму за формулою переходу переходять до логарифм по одній з підстав 2 , e або 10 , так як з цих підстав існують таблиці логарифмів, що дозволяють з певним ступенем точності обчислювати їх значення. У цьому пункті ми покажемо, як це робиться.

Таблиці логарифмів, їх використання

Для наближеного обчислення значень логарифмів можна використовувати таблиці логарифмів. Найчастіше використовується таблиця логарифмів на підставі 2 , таблиця натуральних логарифмівта таблиця десяткових логарифмів. При роботі в десятковій системі числення зручно користуватися таблицею логарифмів на підставі десять. З її допомогою і вчитимемося знаходити значення логарифмів.










Подана таблиця дозволяє з точністю до однієї десятитисячної знаходити значення десяткових логарифмів чисел від 1000 до 9999 (з трьома знаками після коми). Принцип знаходження значення логарифму за допомогою таблиці десяткових логарифмів розберемо на конкретному прикладі- так зрозуміліше. Знайдемо lg1,256.

У лівому стовпці таблиці десяткових логарифмів знаходимо дві перші цифри числа 1,256, тобто, знаходимо 1,2 (це для наочності обведено синьою лінією). Третю цифру числа 1,256 (цифру 5) знаходимо в першому або останньому рядку зліва від подвійної лінії (це число обведене червоною лінією). Четверту цифру вихідного числа 1,256 (цифру 6) знаходимо в першому або останньому рядку праворуч від подвійної лінії (це число обведене зеленою лінією). Тепер знаходимо числа у осередках таблиці логарифмів на перетині зазначеного рядка та зазначених стовпців (ці числа виділені помаранчевим кольором). Сума зазначених чисел дає значення десяткового логарифму з точністю до четвертого знака після коми, тобто, lg1,236≈0,0969+0,0021=0,0990.

А чи можна, використовуючи наведену таблицю, знаходити значення десяткових логарифмів чисел, що мають більше трьох цифр після коми, а також за межі від 1 до 9,999? Так можна. Покажемо, як це робиться на прикладі.

Обчислимо lg102,76332. Спочатку потрібно записати число у стандартному вигляді: 102,76332 = 1,0276332 · 10 2 . Після цього мантису слід округлити до третього знака після коми, маємо 1,0276332·10 2 ≈1,028·10 2, при цьому вихідний десятковий логарифм приблизно дорівнює логарифму отриманого числа, тобто, приймаємо lg102,76332≈lg1,028·10 2 . Тепер застосовуємо властивості логарифму: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2. Нарешті, знаходимо значення логарифму lg1,028 по таблиці десяткових логарифмів lg1,028 0,0086 +0,0034 = 0,012 . У результаті весь процес обчислення логарифму виглядає так: lg102,76332=lg1,0276332·10 2 ≈lg1,028·10 2 = lg1,028+lg10 2 =lg1,028+2≈0,012+2=2,012.

Насамкінець варто відзначити, що використовуючи таблицю десяткових логарифмів можна обчислити наближене значення будь-якого логарифму. Для цього достатньо за допомогою формули переходу перейти до десяткових логарифмів, знайти їх значення по таблиці, і виконати обчислення, що залишилися.

Наприклад обчислимо log 2 3 . За формулою переходу до нової основи логарифму маємо. З таблиці десяткових логарифмів знаходимо lg3 ≈ 0,4771 та lg2 ≈ 0,3010 . Таким чином, .

Список літератури.

  • Колмогоров А.М., Абрамов А.М., Дудніцин Ю.П. та ін Алгебра та початку аналізу: Підручник для 10 - 11 класів загальноосвітніх установ.
  • Гусєв В.А., Мордкович А.Г. Математика (посібник для вступників до технікумів).

Логарифм числа b (b > 0) на підставі a (a > 0, a ≠ 1)- Показник ступеня, в який потрібно звести число a, щоб отримати b.

Логарифм числа b на підставі 10 можна записати як lg(b), а логарифм на основі e (натуральний логарифм) – ln(b).

Часто використовується при вирішенні задач з логарифмами:

Властивості логарифмів

Існує чотири основні властивості логарифмів.

Нехай a > 0, a ≠ 1, x > 0 та y > 0.

Властивість 1. Логарифм твору

Логарифм творудорівнює сумі логарифмів:

log a (x ⋅ y) = log a x + log a y

Властивість 2. Логарифм приватного

Логарифм приватногодорівнює різниці логарифмів:

log a (x / y) = log a x - log a y

Властивість 3. Логарифм ступеня

Логарифм ступенядорівнює добутку ступеня на логарифм:

Якщо ступеня знаходиться основа логарифму, то діє інша формула:

Властивість 4. Логарифм кореня

Даною властивість можна отримати з властивості логарифм ступеня, так як корінь n-го ступеня дорівнює ступеню 1/n:

Формула переходу від логарифму в одній підставі до логарифму при іншій основі

Ця формула також часто застосовується при вирішенні різних завдань на логарифми:

Окремий випадок:

Порівняння логарифмів (нерівності)

Нехай у нас є 2 функції f(x) та g(x) під логарифмами з однаковими основами і між ними стоїть знак нерівності:

Щоб їх порівняти, потрібно спочатку подивитися на основу логарифмів a:

  • Якщо a > 0, то f(x) > g(x) > 0
  • Якщо 0< a < 1, то 0 < f(x) < g(x)

Як вирішувати задачі з логарифмами: приклади

Завдання з логарифмамивключені до складу ЄДІ з математики для 11 класу у завданні 5 та завданні 7, ви можете знайти завдання з рішеннями на нашому сайті у відповідних розділах. Також завдання з логарифмами зустрічаються у банку завдань з математики. Всі приклади можна знайти через пошук по сайту.

Що таке логарифм

Логарифми завжди вважалися складною темоюу шкільному курсі математики. існує багато різних визначеньлогарифма, але більшість підручників чомусь використовують найскладніші та найневдаліші з них.

Ми ж визначимо логарифм просто та наочно. Для цього складемо таблицю:

Отже, маємо ступеня двійки.

Логарифми – властивості, формули, як вирішувати

Якщо взяти число з нижнього рядка, можна легко знайти ступінь, у якому доведеться звести двійку, щоб вийшло це число. Наприклад, щоб отримати 16, треба два звести до четвертого ступеня. А щоб отримати 64, треба два звести на шостий ступінь. Це видно з таблиці.

А тепер – власне, визначення логарифму:

на підставі a від аргументу x - це ступінь, у якому треба звести число a, щоб отримати число x.

Позначення: log a x = b, де a - основа, x - аргумент, b - власне, чому дорівнює логарифм.

Наприклад, 2 3 = 8 ⇒log 2 8 = 3 (логарифм на підставі 2 від числа 8 дорівнює трьом, оскільки 2 3 = 8). З тим самим успіхом log 2 64 = 6, оскільки 2 6 = 64.

Операцію знаходження логарифму числа за заданою основою називають. Отже, доповнимо нашу таблицю новим рядком:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

На жаль, не всі логарифми вважаються так легко. Наприклад, спробуйте знайти log 2 5. Числа 5 немає в таблиці, але логіка підказує, що логарифм лежатиме десь на відрізку . Тому що 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такі числа називаються ірраціональними: цифри після коми можна писати нескінченно, і вони ніколи не повторюються. Якщо логарифм виходить ірраціональним, його краще і залишити: log 2 5, log 3 8, log 5 100.

Важливо розуміти, що логарифм - це вираз із двома змінними (підстава та аргумент). Багато хто спочатку плутає, де знаходиться підстава, а де - аргумент. Щоб уникнути прикрих непорозумінь, просто погляньте на картинку:

Перед нами - не що інше як визначення логарифму. Згадайте: логарифм – це ступінь, В яку треба звести підставу, щоб отримати аргумент. Саме основа зводиться у ступінь - на картинці воно виділено червоним. Виходить, що основа завжди знаходиться внизу! Це чудове правило я розповідаю своїм учням на першому ж занятті – і жодної плутанини не виникає.

Як рахувати логарифми

З визначенням розібралися - залишилося навчитися рахувати логарифми, тобто. позбавлятися знаку «log». Для початку зазначимо, що з визначення випливає два важливі факти:

  1. Аргумент і основа завжди повинні бути більшими за нуль. Це випливає з визначення рівня раціональним показником, до якого зводиться визначення логарифму.
  2. Підстава повинна бути відмінною від одиниці, оскільки одиниця в будь-якій мірі все одно залишається одиницею. Через це питання «у яку міру треба звести одиницю, щоб отримати двійку» позбавлене сенсу. Немає такої міри!

Такі обмеження називаються областю допустимих значень (ОДЗ). Виходить, що ОДЗ логарифму має такий вигляд: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Зауважте, що жодних обмежень на число b (значення логарифму) не накладається. Наприклад, логарифм може бути негативним: log 2 0,5 = −1, т.к. 0,5 = 2 −1.

Втім, зараз ми розглядаємо лише числові вирази, де знати ОДЗ логарифму не потрібно. Усі обмеження вже враховані упорядниками завдань. Але коли підуть логарифмічні рівняння та нерівності, вимоги ОДЗ стануть обов'язковими. Адже в основі та аргументі можуть стояти вельми неслабкі конструкції, які зовсім необов'язково відповідають наведеним вище обмеженням.

Тепер розглянемо загальну схемуобчислення логарифмів. Вона складається із трьох кроків:

  1. Уявити основу a і аргумент x у вигляді ступеня з мінімально можливою основою, більшою за одиницю. Принагідно краще позбутися десяткових дробів;
  2. Вирішити щодо змінної рівняння: x = a b ;
  3. Отримане число b буде відповіддю.

От і все! Якщо логарифм виявиться ірраціональним, це буде видно вже на першому етапі. Вимога, щоб основа була більше одиниці, дуже актуальна: це знижує ймовірність помилки та значно спрощує викладки. Аналогічно з десятковими дробами: якщо відразу перевести їх у звичайні, помилок буде в рази менше

Подивимося, як працює ця схема на конкретних прикладах:

Завдання. Обчисліть логарифм: log 5 25

  1. Представимо основу та аргумент як ступінь п'ятірки: 5 = 5 1 ; 25 = 5 2;
  2. Складемо і розв'яжемо рівняння:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Отримали відповідь: 2.

Завдання. Обчисліть логарифм:

Завдання. Обчисліть логарифм: log 4 64

  1. Представимо основу та аргумент як ступінь двійки: 4 = 2 2 ; 64 = 2 6;
  2. Складемо і розв'яжемо рівняння:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Отримали відповідь: 3.

Завдання. Обчисліть логарифм: log 16 1

  1. Представимо основу та аргумент як ступінь двійки: 16 = 2 4 ; 1 = 2 0;
  2. Складемо і розв'яжемо рівняння:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Отримали відповідь: 0.

Завдання. Обчисліть логарифм: log 7 14

  1. Представимо основу та аргумент як ступінь сімки: 7 = 7 1 ; 14 у вигляді ступеня сімки не представляється, оскільки 7 1< 14 < 7 2 ;
  2. З попереднього пункту випливає, що логарифм не рахується;
  3. Відповідь – без змін: log 7 14.

Невелике зауваження до останнього прикладу. Як переконатися, що число не є точним ступенем іншого числа? Дуже просто – достатньо розкласти його на прості множники. Якщо в розкладанні є хоча б два різні множники, число не є точним ступенем.

Завдання. З'ясуйте, чи є точними ступенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - точний ступінь, т.к. множник лише один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - не є точним ступенем, оскільки є два множники: 3 і 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - точний ступінь;
35 = 7 · 5 - знову не є точним ступенем;
14 = 7 · 2 - знову не точний ступінь;

Зауважимо також, що найпростіші числа завжди є точними ступенями самих себе.

Десятковий логарифм

Деякі логарифми зустрічаються настільки часто, що мають спеціальну назву та позначення.

від аргументу x - це логарифм на підставі 10, тобто. ступінь, у який треба звести число 10, щоб одержати число x. Позначення lg x.

Наприклад, lg 10 = 1; lg 100 = 2; lg 1000 = 3 - і т.д.

Відтепер, коли у підручнику зустрічається фраза типу «Знайдіть lg 0,01», знайте: це не друкарська помилка. Це десятковий логарифм. Втім, якщо вам незвично таке позначення, його можна переписати:
lg x = log 10 x

Все, що правильне для простих логарифмів, вірно і для десяткових.

Натуральний логарифм

Існує ще один логарифм, який має власну позначку. У певному сенсі він навіть більш важливий, ніж десятковий. Йдеться про натуральний логарифм.

від аргументу x - це логарифм на основі e, тобто. ступінь, у якому треба звести число e, щоб одержати число x. Позначення: ln x.

Багато хто спитає: що ще за число e? Це ірраціональне число, його точне значеннязнайти та записати неможливо. Наведу лише перші його цифри:
e = 2,718281828459 ...

Не заглиблюватимемося, що це за число і навіщо потрібно. Просто пам'ятайте, що e - основа натурального логарифму:
ln x = log e x

Отже, ln e = 1; ln e 2 = 2; ln e 16 = 16 - і т.д. З іншого боку, ln 2 – ірраціональне число. Взагалі, натуральний логарифм будь-якого раціонального числа є ірраціональним. Крім, зрозуміло, одиниці: ln1 = 0.

Для натуральних логарифмів справедливі всі правила, які правильні для звичайних логарифмів.

Дивіться також:

Логарифм. Властивості логарифму (ступінь логарифму).

Як уявити число у вигляді логарифму?

Використовуємо визначення логарифму.

Логарифм - це показник ступеня, в який треба звести основу, щоб отримати число, що стоїть під знаком логарифму.

Таким чином, щоб представити деяке число c у вигляді логарифму на підставі a, треба під знак логарифму поставити ступінь з тією самою основою, що й основа логарифму, а в показник ступеня записати це число c:

У вигляді логарифму можна представити абсолютно будь-яке число - позитивне, негативне, ціле, дробове, раціональне, ірраціональне:

Щоб у стресових умовах контрольної або іспиту не переплутати a та c, можна скористатися таким правилом для запам'ятовування:

те, що внизу йде вниз, те, що вгорі, йде вгору.

Наприклад, потрібно подати число 2 у вигляді логарифму на підставі 3.

У нас є два числа – 2 і 3. Ці числа – основа та показник ступеня, який ми запишемо під знак логарифму. Залишається визначити, яке з цих чисел потрібно записати вниз, в основу ступеня, а яке вгору, в показник.

Основа 3 в записі логарифму стоїть внизу, значить, коли ми представлятимемо двійку у вигляді логарифму на підставі 3, 3 також запишемо вниз, в основу.

2 стоїть вище за трійку. І в записі ступеня двійку запишемо вище за трійку, тобто, в показник ступеня:

Логарифми. Початковий рівень.

Логарифми

Логарифмомпозитивного числа bна підставі a, де a > 0, a ≠ 1, називається показник ступеня, в який треба звести число a, Щоб отримати b.

Визначення логарифмуможна коротко записати так:

Ця рівність справедлива за b > 0, a > 0, a ≠ 1.Його зазвичай називають логарифмічним тотожністю.
Дія знаходження логарифму числа називають логарифмування.

Властивості логарифмів:

Логарифм твору:

Логарифм приватного від поділу:

Заміна основи логарифму:

Логарифм ступеня:

Логарифм кореня:

Логарифм зі статечним підґрунтям:





Десяткові та натуральні логарифми.

Десятичним логарифмомчисла називають логарифм цього числа на підставі 10 і пишуть   lg b
Натуральним логарифмомчисла називають логарифм цього числа на підставі e, де e- Ірраціональне число, приблизно дорівнює 2,7. При цьому пишуть ln b.

Інші нотатки з алгебри та геометрії

Основні властивості логарифмів

Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими основами: log a x та log a y. Тоді їх можна складати і віднімати, причому:

  1. log a x + log a y = log a (x · y);
  2. log a x − log a y = log a (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Log 6 4 + Log 6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Завдання. Знайдіть значення виразу: log 2 48 − log 2 3.

Підстави однакові, використовуємо формулу різниці:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Завдання. Знайдіть значення виразу: log 3 135 − log 3 5.

Знову підстави однакові, тому маємо:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті побудовано багато контрольні роботи. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму.

Як вирішувати логарифми

Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log 7 49 6 .

Позбавимося ступеня в аргументі за першою формулою:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 2 4 ; 49 = 7 2 . Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log 2 7. Оскільки log 2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай дано логарифм log a x. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log 5 16 · log 2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log 9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу.

У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log 25 64 = log 5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. log a a = 1 - це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. log a 1 = 0 - це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a 0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

    Почнемо зі властивості логарифму одиниці. Його формулювання таке: логарифм одиниці дорівнює нулю, тобто, log a 1=0для будь-якого a>0, a≠1. Доказ не викликає складнощів: оскільки a 0 =1 для будь-якого a , що задовольняє зазначеним вище умовам a>0 і a≠1 , то рівність log a 1=0 відразу випливає з визначення логарифму.

    Наведемо приклади застосування розглянутої якості: log 3 1=0 , lg1=0 і .

    Переходимо до наступної властивості: логарифм числа, рівного підставі, дорівнює одиниці, тобто, log a a=1при a>0, a≠1. Справді, оскільки a 1 =a для будь-якого a , то визначення логарифму log a a=1 .

    Прикладами використання цієї властивості логарифмів є рівності log 5 5 = 1, log 5,6 5,6 і lne = 1 .

    Наприклад, log 2 2 7 =7 , lg10 -4 =-4 і .

    Логарифм твору двох позитивних чисел x і y дорівнює добутку логарифмів цих чисел: log a (x · y) = log a x + log a y, a>0, a≠1. Доведемо властивість логарифму твору. В силу властивостей ступеня a log a x + log a y = log a x · log a y, а так як за основною логарифмічною тотожністю a log a x = x і a log a y = y, то a log a x a log a y = x y. Таким чином, a log a x + log a y = x · y, звідки за визначенням логарифму випливає рівність, що доводиться.

    Покажемо приклади використання властивості логарифму добутку: log 5 (2·3)=log 5 2+log 5 3 .

    Властивість логарифму твору можна узагальнити добуток кінцевого числа n позитивних чисел x 1 , x 2 , …, x n як log a (x 1 · x 2 · ... · x n) = log a x 1 +log a x 2 +…+log a x n . Ця рівність без проблем доводиться.

    Наприклад, натуральний логарифм твору можна замінити сумою трьох натуральних логарифмів чисел 4 , e , і .

    Логарифм приватного двох позитивних чисел x і y дорівнює різниці логарифмів цих чисел. Властивості приватного логарифму відповідає формула виду , де a>0 , a≠1 , x і y – деякі позитивні числа. Справедливість цієї формули доводиться як і формула логарифму твору: оскільки , то щодо визначення логарифму .

    Наведемо приклад використання цієї властивості логарифму: .

    Переходимо до властивості логарифму ступеня. Логарифм ступеня дорівнює добутку показника ступеня на логарифм модуля основи цього ступеня. Запишемо цю властивість логарифму ступеня у вигляді формули: log a b p = log a | b |, де a>0 , a≠1 , b та p такі числа, що ступінь b p має сенс і b p >0 .

    Спочатку доведемо цю властивість для позитивних b. Основне логарифмічне тотожність дозволяє нам уявити число b як a log a b тоді b p = (a log a b) p , а отримане вираз в силу властивість ступеня дорівнює a p · log a b . Так ми приходимо до рівності b p = a p · log a b , з якого за визначенням логарифму укладаємо, що log a b p = p · log a b .

    Залишилося довести цю властивість для негативних b. Тут зауважуємо, що вираз log a b p при негативних b має сенс лише при парних показниках ступеня p (оскільки значення ступеня b p має бути більшим за нуль, в іншому випадку логарифм не матиме сенсу), а в цьому випадку b p =|b| p. Тоді b p = | b | p = (a log a | b |) p = a p · log a | b |, Звідки log a b p = p log a | b | .

    Наприклад, і ln(-3) 4 =4·ln|-3|=4·ln3 .

    Із попередньої властивості випливає властивість логарифму з кореня: логарифм кореня n-ого ступеня дорівнює добутку дробу 1/n на логарифм підкореного виразу, тобто, , де a>0, a≠1,n - натуральне число, більше одиниці, b>0.

    Доказ базується на рівності (дивіться ), яка справедлива для будь-яких позитивних b і властивості логарифму ступеня: .

    Ось приклад використання цієї властивості: .

    Тепер доведемо формулу переходу до нової основи логарифмувиду . Для цього достатньо довести справедливість рівності log c b = log a b log c a . Основне логарифмічне тотожність дозволяє нам число b уявити як a log a b тоді log c b = log c a log a b . Залишилося скористатися властивістю логарифму ступеня: log ca log ab = log a b log c a. Так доведено рівність log c b = log a b log ca , а значить, доведено і формулу переходу до нової основи логарифму.

    Покажемо кілька прикладів застосування цієї властивості логарифмів: і .

    Формула переходу до нової основи дозволяє переходити до роботи з логарифмами, що мають «зручну» основу. Наприклад, з її допомогою можна перейти до натуральних або десяткових логарифмів, щоб можна було обчислити значення логарифму таблиці логарифмів. Формула переходу до нової основи логарифму також дозволяє в деяких випадках знаходити значення логарифму, коли відомі значення деяких логарифмів з іншими основами.

    Часто використовується окремий випадокформули початку нової основи логарифма при c=b виду . Звідси видно, що log ab і log ba – . Наприклад, .

    Також часто використовується формула яка зручна при знаходженні значень логарифмів. Для підтвердження своїх слів покажемо, як з її допомогою обчислюється значення логарифму . Маємо . Для доказу формули достатньо скористатися формулою переходу до нової основи логарифму a: .

    Залишилося довести властивості порівняння логарифмів.

    Доведемо, що для будь-яких позитивних чисел b1 і b2, b1 log a b 2 , а за a>1 – нерівність log a b 1

    Нарешті, залишилося довести останню з перерахованих властивостей логарифмів. Обмежимося доказом його першої частини, тобто доведемо, що якщо a 1 >1 , a 2 >1 і a 1 1 справедливо log a 1 b> log a 2 b . Інші твердження цієї властивості логарифмів доводяться за аналогічним принципом.

    Скористаємося методом від неприємного. Припустимо, що за a 1 >1 , a 2 >1 і a 1 1 справедливо log a 1 b≤log a 2 b . За властивостями логарифмів ці нерівності можна переписати як і відповідно, а з них випливає, що log b a 1 ≤ log b a 2 і log b a 1 ≥ log b a 2 відповідно. Тоді за властивостями ступенів з однаковими основами повинні виконуватися рівності b log b a 1 b log b a 2 і b log b a 1 b log b a 2 , тобто, a 1 a 2 . Так ми дійшли суперечності умові a 1

Список літератури.

  • Колмогоров А.М., Абрамов А.М., Дудніцин Ю.П. та ін Алгебра та початку аналізу: Підручник для 10 - 11 класів загальноосвітніх установ.
  • Гусєв В.А., Мордкович А.Г. Математика (посібник для вступників до технікумів).

Інструкція

Запишіть заданий логарифмічний вираз. Якщо у виразі використовується логарифм 10, його запис укорочується і виглядає так: lg b - це десятковий логарифм. Якщо ж логарифм має у вигляді основи число е, записують вираз: ln b – натуральний логарифм. Мається на увазі, що результатом будь-якого є ступінь, в який треба звести число основи, щоб вийшло число b.

При знаходженні від суми двох функцій необхідно просто їх по черзі продиференціювати, а результати скласти: (u+v)" = u"+v";

При знаходженні похідної від добутку двох функцій необхідно похідну від першої функції помножити на другу і додати похідну другої функції, помножену на першу функцію: (u*v)" = u"*v+v"*u;

Для того, щоб знайти похідну від частки двох функцій необхідно, з твору похідної ділимого, помноженої на функцію дільника, відняти твір похідної дільника, помноженої на функцію ділимого, і все це розділити на функцію дільника зведену в квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Якщо дана складна функція, необхідно перемножити похідну від внутрішньої функції і похідну від зовнішньої. Нехай y=u(v(x)), тоді y"(x)=y"(u)*v"(x).

Використовуючи отримані вище, можна продиференціювати практично будь-яку функцію. Отже, розглянемо кілька прикладів:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *x));
Також зустрічаються завдання на обчислення похідної у точці. Нехай задана функція y=e^(x^2+6x+5), необхідно визначити значення функції у точці х=1.
1) Знайдіть похідну функції: y"=e^(x^2-6x+5)*(2*x +6).

2) Обчисліть значення функції у заданій точці y"(1)=8*e^0=8

Відео на тему

Корисна порада

Вивчіть таблицю елементарних похідних. Це помітно заощадить час.

Джерела:

  • похідна константи

Отже, чим відрізняється ірраціональне рівняння від раціонального? Якщо невідома змінна перебуває під знаком квадратного кореня, рівняння вважається ірраціональним.

Інструкція

Основний метод розв'язання таких рівнянь – метод зведення обох частин рівнянняу квадрат. Втім. це природно, насамперед необхідно позбутися знака. Технічно цей метод не складний, але іноді це може спричинити неприємності. Наприклад, рівняння v(2х-5) = v(4х-7). Звівши обидві його сторони квадрат, ви отримаєте 2х-5=4х-7. Таке рівняння вирішити не складе труднощів; х = 1. Але число 1 не буде цього рівняння. Чому? Підставте одиницю в рівняння замість значення х. Таке значення не припустимо квадратного кореня. Тому 1 - сторонній корінь, отже дане рівняння немає коренів.

Отже, ірраціональне рівняння вирішується за допомогою методу зведення у квадрат обох його частин. І вирішивши рівняння, необхідно обов'язково відсікти стороннє коріння. Для цього підставте знайдене коріння в оригінальне рівняння.

Розгляньте ще один.
2х+vх-3=0
Звичайно ж, це рівняння можна вирішити за тим самим, що й попереднє. Перенести складові рівняння, що не мають квадратного кореня, в праву частину і далі використовувати метод зведення в квадрат. вирішити отримане раціональне рівняння та коріння. Але й інший, більш витончений. Введіть нову змінну; vх = y. Відповідно, ви отримаєте рівняння виду 2y2+y-3=0. Тобто звичайне квадратне рівняння. Знайдіть його коріння; y1=1 та y2=-3/2. Далі вирішіть два рівняння vх = 1; vх = -3/2. Друге рівняння коренів немає, з першого знаходимо, що х=1. Не забудьте про необхідність перевірки коренів.

Вирішувати тотожності досить просто. Для цього потрібно здійснювати тотожні перетворення, доки поставленої мети не буде досягнуто. Таким чином, за допомогою найпростіших арифметичних дій поставлене завдання буде вирішено.

Вам знадобиться

  • - папір;
  • - Ручка.

Інструкція

Найпростіший таких перетворень – алгебраїчні скороченого множення (такі як квадрат суми (різниці), різниця квадратів, сума (різниця), куб суми (різниці)). Крім того існує безліч і тригонометричних формул, які за своєю суттю тими самими тотожностями.

Справді, квадрат суми двох доданків дорівнює квадрату першого плюс подвоєний добуток першого на друге і плюс квадрат другого, тобто (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Спростіть обох

Загальні засади рішення

Повторіть підручник з математичного аналізу або вищої математики, що являє собою певний інтеграл. Як відомо, рішення певного інтеграла є функція, похідна якої дасть підінтегральний вираз. Ця функція називається первісною. За цим принципом і будується основних інтегралів.
Визначте на увазі підінтегральної функції, який з табличних інтегралів підходить в даному випадку. Не завжди вдається це визначити одразу ж. Часто, табличний вигляд стає помітним лише після кількох перетворень зі спрощення підінтегральної функції.

Метод заміни змінних

Якщо підінтегральною функцією є тригонометрична функція, в аргументі якої певний багаточлен, спробуйте використовувати метод заміни змінних. Для того, щоб це зробити, замініть багаточлен, що стоїть в аргументі підінтегральної функції, на деяку нову змінну. За співвідношенням між новою та старою змінною визначте нові межі інтегрування. Диференціюванням даного виразу знайдіть новий диференціал у . Таким чином, ви отримаєте новий вид колишнього інтеграла, близький або навіть відповідний будь-якому табличному.

Рішення інтегралів другого роду

Якщо інтеграл є інтегралом другого роду, векторний вид підінтегральної функції, то вам буде потрібно скористатися правилами переходу від даних інтегралів до скалярних. Одним із таких правил є співвідношення Остроградського-Гаусса. Цей закон дозволяє перейти від потоку ротора деякої векторної функції до потрійного інтеграла дивергенції даного векторного поля.

Підстановка меж інтегрування

Після знаходження первинної необхідно підставити межі інтегрування. Спочатку підставте значення верхньої межі у вираз для первісної. Ви отримаєте кілька. Далі відніміть з отриманого числа інше число, отримане нижньої межі первісну. Якщо один із меж інтегрування є нескінченністю, то при підстановці її в першорядну функцію необхідно перейти до межі і знайти, чого прагне вираз.
Якщо інтеграл є двовимірним або тривимірним, то вам доведеться зображувати геометричні межі інтегрування, щоб розуміти, як розраховувати інтеграл. Адже у випадку, скажімо, тривимірного інтеграла межами інтегрування можуть бути цілі площини, що обмежують обсяг, що інтегрується.
Loading...Loading...