Чому дорівнює синус кута у прямокутному трикутнику. Правила знаходження тригонометричних функцій: синуса, косинуса, тангенсу та котангенсу


У цій статті ми покажемо, як даються визначення синуса, косинуса, тангенсу та котангенсу кута та числа в тригонометрії. Тут ми поговоримо про позначення, наведемо приклади записів, дамо графічні ілюстрації. На закінчення проведемо паралель між визначеннями синуса, косинуса, тангенсу та котангенсу в тригонометрії та геометрії.

Навігація на сторінці.

Визначення синуса, косинуса, тангенсу та котангенсу

Простежимо за тим, як формуються уявлення про синус, косинус, тангенс і котангенс в шкільному курсі математики. На уроках геометрії дається визначення синуса, косинуса, тангенсу та котангенсу гострого кута у прямокутному трикутнику. А пізніше вивчається тригонометрія, де йдеться про синус, косинус, тангенс і котангенс кута повороту і числа. Наведемо всі ці визначення, наведемо приклади та дамо необхідні коментарі.

гострого кута в прямокутному трикутнику

З курсу геометрії відомі визначення синуса, косинуса, тангенсу та котангенсу гострого кута у прямокутному трикутнику. Вони даються як відношення сторін прямокутного трикутника. Наведемо їх формулювання.

Визначення.

Синус гострого кута у прямокутному трикутнику- Це ставлення протилежного катета до гіпотенузи.

Визначення.

Косинус гострого кута у прямокутному трикутнику- Це ставлення прилеглого катета до гіпотенузи.

Визначення.

Тангенс гострого кута у прямокутному трикутнику- Це ставлення протилежного катета до прилеглого.

Визначення.

Котангенс гострого кута у прямокутному трикутнику- Це ставлення прилеглого катета до протилежного.

Там же вводяться позначення синуса, косинуса, тангенсу та котангенсу – sin, cos, tg і ctg відповідно.

Наприклад, якщо АВС – прямокутний трикутник із прямим кутом З , то синус гострого кута A дорівнює відношенню протилежного катета BC до гіпотенузи AB , тобто, sin∠A=BC/AB .

Ці визначення дозволяють обчислювати значення синуса, косинуса, тангенсу та котангенсу гострого кута за відомими довжинами сторін прямокутного трикутника, а також по відомим значеннямсинуса, косинуса, тангенсу, котангенсу та довжині однієї зі сторін знаходити довжини інших сторін. Наприклад, якби знали, що у прямокутному трикутнику катет AC дорівнює 3 , а гіпотенуза AB дорівнює 7 , ми могли б обчислити значення косинуса гострого кута A за визначенням: cos∠A=AC/AB=3/7 .

Кута повороту

У тригонометрії на кут починають дивитися ширше - вводять поняття кута повороту. Величина кута повороту, на відміну від гострого кута, не обмежена рамками від 0 до 90 градусів, кут повороту в градусах (і в радіанах) може виражатися будь-яким дійсним числом від −∞ до +∞ .

У цьому вся світлі дають визначення синуса, косинуса, тангенса і котангенса не гострого кута, а кута довільної величини - кута повороту. Вони даються через координати x і y точки A 1 , яку переходить так звана початкова точка A(1, 0) після її повороту на кут α навколо точки O - початку прямокутної декартової системи координат і центру одиничного кола .

Визначення.

Синус кута поворотуα - це ордината точки A 1 тобто sinα = y .

Визначення.

Косинусом кута поворотуα називають абсцис точки A 1 , тобто, cosα = x .

Визначення.

Тангенс кута поворотуα - це відношення ординати точки A 1 до її абсциси, тобто tgα=y/x.

Визначення.

Котангенсом кута поворотуα називають відношення абсциси точки A 1 до її ординати, тобто ctgα=x/y .

Синус і косинус визначені для будь-якого кута α, тому що ми завжди можемо визначити абсцису та ординату точки, яка виходить в результаті повороту початкової точки на кут α. А тангенс та котангенс визначені не для будь-якого кута. Тангенс не визначений для таких кутів α , при яких початкова точка перетворюється на точку з нульовою абсцисою (0, 1) або (0, −1) , а це має місце при кутах 90°+180°·k , k∈Z (π /2+π·k радий). Справді, за таких кутах повороту вираз tgα=y/x немає сенсу, оскільки у ньому присутній розподіл на нуль. Що ж до котангенсу, то він не визначений для таких кутів α , при яких початкова точка переходить до точки з нульовою ординатою (1, 0) або (-1, 0) , а це має місце для кутів 180°k, k ∈Z (π·k радий).

Отже, синус і косинус визначені для будь-яких кутів повороту, тангенс визначений для всіх кутів, крім 90°+180°k, k∈Z (π/2+πk радий), а котангенс – для всіх кутів, крім 180° ·k, k∈Z (π·k радий).

У визначеннях фігурують вже відомі нам позначення sin, cos, tg і ctg, вони використовуються і для позначення синуса, косинуса, тангенсу та котангенсу кута повороту (іноді можна зустріти позначення tan і cot, що відповідають тангенсу та котангенсу). Так синус кута повороту 30 градусів можна записати як sin30° записам tg(−24°17′) і ctgα відповідають тангенс кута повороту −24 градуси 17 хвилин і котангенс кута повороту α . Нагадаємо, що при записі радіанної міри кута позначення "рад" часто опускають. Наприклад, косинус кута повороту в три піради зазвичай позначають cos3·π.

На закінчення цього пункту варто зауважити, що в розмові про синус, косинус, тангенс і котангенс кута повороту часто опускають словосполучення кут повороту або слово повороту. Тобто замість фрази "синус кута повороту альфа" зазвичай використовують фразу "синус кута альфа" або ще коротше - "синус альфа". Це саме стосується і косинуса, і тангенсу, і котангенсу.

Також скажемо, що визначення синуса, косинуса, тангенса і котангенса гострого кута в прямокутному трикутнику узгоджуються з щойно даними визначеннями синуса, косинуса, тангенса і котангенса кута повороту величиною від 0 до 90 градусів. Це ми обґрунтуємо.

Числа

Визначення.

Синусом, косинусом, тангенсом і котангенсом числа t називають число, що дорівнює синусу, косинусу, тангенсу і котангенсу кута повороту в t радіанів відповідно.

Наприклад, косинус числа 8 π за визначенням є число, рівне косінусукута в 8 π рад. А косинус кута в 8 π рад дорівнює одиниці, тому, косинус числа 8 π дорівнює 1 .

Існує й інший підхід до визначення синуса, косинуса, тангенсу та котангенсу числа. Він полягає в тому, що кожному дійсному числу t ставиться у відповідність точка одиничного кола з центром на початку прямокутної системи координат, синус, косинус, тангенс і котангенс визначаються через координати цієї точки. Зупинимося на цьому детальніше.

Покажемо, як встановлюється відповідність між дійсними числами та точками кола:

  • числу 0 ставиться у відповідність початкова точка A(1, 0);
  • позитивному числу t ставиться у відповідність точка одиничного кола, в яке ми потрапимо, якщо рухатимемося по колу з початкової точки в напрямку проти годинникової стрілки і пройдемо шлях довжиною t;
  • негативному числу t ставиться у відповідність точка одиничного кола, в яку ми потрапимо, якщо рухатимемося по колу з початкової точки в напрямку за годинниковою стрілкою і пройдемо шлях завдовжки |t| .

Тепер переходимо до визначення синусу, косинуса, тангенсу і котангенсу числа t . Припустимо, що t відповідає точка кола A 1 (x, y) (наприклад, числу &pi/2; відповідає точка A 1 (0, 1) ).

Визначення.

Синусом числа t називають ординату точки одиничного кола, що відповідає числу t, тобто, sint = y.

Визначення.

Косинусом числа t називають абсцису точки одиничного кола, що відповідає числу t, тобто, cost = x.

Визначення.

Тангенсом числа t називають відношення ординати до абсцисі точки одиничного кола, що відповідає числу t, тобто, tgt=y/x. В іншому рівносильному формулюванні тангенс числа t - це відношення синуса цього числа до косинусу, тобто tgt = sint / cost.

Визначення.

Котангенсом числа t називають відношення абсциси до ординати точки одиничного кола, що відповідає числу t, тобто ctgt=x/y . Інше формулювання така: тангенс числа t - це відношення косинуса числа t до синуса числа t: ctgt = cost / sint.

Тут зазначимо, що дані визначення узгоджуються з визначенням, даним на початку цього пункту. Дійсно, точка одиничного кола, відповідна числу t збігається з точкою, отриманої в результаті повороту початкової точки на кут в t радіанів.

Ще варто з'ясувати такий момент. Допустимо, перед нами запис sin3 . Як зрозуміти, про синус числа 3 або про синус кута повороту 3 радіана йдеться? Зазвичай це з контексту, інакше це швидше за все не має принципового значення.

Тригонометричні функції кутового та числового аргументу

Згідно з даними в попередньому пункті визначенням, кожному куту повороту відповідають цілком певне значення sinα, як і значення cosα. Крім того, всім кутам повороту, відмінним від 90°+180°·k , k∈Z (π/2+π·k рад) відповідають значення tgα , а відмінним від 180°·k , k∈Z (π·k рад ) – значення ctgα. Тому sinα, cosα, tgα та ctgα - це функції кута α. Інакше кажучи – це функції кутового аргумента.

Аналогічно можна говорити про функції синус, косинус, тангенс і котангенс числового аргументу. Дійсно, кожному дійсному числу t відповідає цілком певне значення sint, як і cost. Крім того, всім числам, відмінним від π/2+π·k , k∈Z відповідають значення tgt , а числам π·k , k∈Z - значення ctgt .

Функції синус, косинус, тангенс та котангенс називають основними тригонометричними функціями.

З контексту зазвичай зрозуміло, з тригонометричними функціями кутового аргументу чи числового аргументу ми маємо справу. В іншому випадку ми можемо вважати незалежну змінну як мірою кута (кутовим аргументом), так і числовим аргументом.

Проте, у школі переважно вивчаються числові функції, тобто, функції, аргументи яких, як і відповідні їм значення функції, є числами. Тому, якщо йдеться саме про функції, доцільно вважати тригонометричні функції функціями числових аргументів.

Зв'язок визначень з геометрії та тригонометрії

Якщо розглядати кут повороту величиною від 0 до 90 градусів, то дані в контексті тригонометрії визначення синуса, косинуса, тангенса і котангенса кута повороту повністю узгоджуються з визначеннями синуса, косинуса, тангенса і котангенса гострого кута в прямокутному трикутнику, які даються в курсі геометрії. Обґрунтуємо це.

Зобразимо у прямокутній декартовій системі координат Oxy одиничне коло. Зазначимо початкову точку A(1, 0). Повернемо її на кут величиною від 0 до 90 градусів, отримаємо точку A 1 (x, y) . Опустимо з точки А1 на вісь Ox перпендикуляр A1H.

Легко бачити, що у прямокутному трикутнику кут A 1 OH дорівнює кутуповороту α довжина прилеглого до цього кута катета OH дорівнює абсцисі точки A 1 тобто | а довжина гіпотенузи OA 1 дорівнює одиниці, оскільки вона є радіусом одиничного кола. Тоді за визначенням з геометрії синус гострого кута у прямокутному трикутнику A 1 OH дорівнює відношенню протилежного катета до гіпотенузи, тобто, sinα=|A 1 H|/|OA 1 |=y/1=y . А за визначенням з тригонометрії синус кута повороту дорівнює ординаті точки A 1 , тобто, sinα = y . Звідси видно, що визначення синуса гострого кута в прямокутному трикутнику еквівалентне визначенню синуса кута повороту при α від 0 до 90 градусів.

Аналогічно можна показати, що і визначення косинуса, тангенсу та котангенсу гострого кута узгоджуються з визначеннями косинуса, тангенсу та котангенсу кута повороту α .

Список літератури.

  1. Геометрія. 7-9 класи: навч. для загальноосвіт. установ/[Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев та ін]. - 20-те вид. М.: Просвітництво, 2010. – 384 с.: іл. - ISBN 978-5-09-023915-8.
  2. Погорєлов А. В.Геометрія: Навч. для 7-9 кл. загальноосвіт. установ/А. В. Погорелов. - 2-ге вид - М.: Просвітництво, 2001. - 224 с.: іл. - ISBN 5-09-010803-X.
  3. Алгебра та елементарні функції : Навчальний посібникдля учнів 9 класу середньої школи/ Є. С. Кочетков, Є. С. Кочеткова; За редакцією доктора фізико-математичних наук О. Н. Головіна. - 4-те вид. М: Просвітництво, 1969.
  4. Алгебра:Навч. для 9 кл. середовищ. шк./Ю. Н. Макарічев, Н. Г. Міндюк, К. І. Нешков, С. Б. Суворова; За ред. С. А. Теляковського.- М.: Просвітництво, 1990.- 272 с.: Іл.- ISBN 5-09-002727-7
  5. Алгебрата початку аналізу: Навч. для 10-11 кл. загальноосвіт. установ / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудніцин та ін; За ред. А. Н. Колмогорова. - 14-те вид. - М.: Просвітництво, 2004. - 384 с.: Іл. - ISBN 5-09-013651-3.
  6. Мордковіч А. Г.Алгебра та початку аналізу. 10 клас. О 2 год. Ч. 1: підручник для загальноосвітніх установ(Профільний рівень) / А. Г. Мордкович, П. В. Семенов. - 4-те вид., Дод. – М.: Мнемозіна, 2007. – 424 с.: іл. ISBN 978-5-346-00792-0.
  7. Алгебрата початку математичного аналізу. 10 клас: навч. для загальноосвіт. установ: базовий та профіл. рівні/[Ю. М. Колягін, М. В. Ткачова, Н. Є. Федорова, М. І. Шабунін]; за ред. А. Б. Жижченко. - 3-тє вид. – І.: Просвітництво, 2010. – 368 с.: Іл. – ISBN 978-5-09-022771-1.
  8. Башмаков М. І.Алгебра та початку аналізу: Навч. для 10-11 кл. середовищ. шк. - 3-тє вид. - М: Просвітництво, 1993. - 351 с.: іл. - ISBN 5-09-004617-4.
  9. Гусєв В. А., Мордкович А. Г.Математика (посібник для вступників до технікумів): Навч. посібник.- М.; Вищ. шк., 1984.-351 с., іл.

У цій статті ми всебічно розглянемо. Основні тригонометричні тотожності являють собою рівності, що встановлюють зв'язок між синусом, косинус, тангенсом і котангенсом одного кута, і дозволяють знаходити будь-яку з цих тригонометричних функцій через відому іншу.

Відразу перерахуємо основні тригонометричні тотожності, які розберемо у цій статті. Запишемо їх у таблицю, а нижче дамо висновок цих формул і наведемо необхідні пояснення.

Навігація на сторінці.

Зв'язок між синусом і косинусом одного кута

Іноді говорять не про основні тригонометричні тотожності, перераховані в таблиці вище, а про одне єдине основному тригонометричному тотожностівиду . Пояснення цьому факту досить просте: рівності виходять з основного тригонометричного тотожності після розподілу обох його частин на і відповідно, а рівності і випливають з визначень синуса, косинуса, тангенсу та котангенсу. Докладніше про це поговоримо у наступних пунктах.

Тобто особливий інтерес представляє саме рівність , якій і дали назву основної тригонометричної тотожності.

Перш ніж довести основне тригонометричне тотожність, дамо його формулювання: сума квадратів синуса і косинуса одного кута тотожно дорівнює одиниці. Тепер доведемо його.

Основне тригонометричне тотожність дуже часто використовується при перетворення тригонометричних виразів. Воно дозволяє суму квадратів синуса та косинуса одного кута замінювати одиницею. Не менш часто основне тригонометричне тотожність використовується і в зворотному порядку: одиниця замінюється сумою квадратів синуса та косинуса будь-якого кута.

Тангенс та котангенс через синус та косинус

Тотожності, що зв'язують тангенс і котангенс з синусом і косінусом одного кута виду і відразу випливають з визначень синуса, косинуса, тангенсу та котангенсу. Справді, за визначенням синус є ордината y, косинус є абсциса x, тангенс є відношення ординати до абсциси, тобто, , а котангенс є ставлення абсциси до ординати, тобто, .

Завдяки такій очевидності тотожностей і часто визначення тангенсу та котангенсу дають не через відношення абсциси та ординати, а через відношення синуса та косинуса. Так тангенсом кута називають ставлення синуса до косинус цього кута, а котангенсом - відношення косинуса до синуса.

На закінчення цього пункту слід зазначити, що тотожність і мають місце всім таких кутів , у яких входять до них тригонометричні функції мають сенс. Так формула справедлива для будь-яких, відмінних від (інакше в знаменнику буде нуль, а розподіл на нуль ми не визначали), а формула - для всіх, відмінних від, де z-будь-яке.

Зв'язок між тангенсом та котангенсом

Ще більш очевидним тригонометричним тотожністю, ніж два попередні, є тотожність, що зв'язує тангенс і котангенс одного кута виду . Зрозуміло, що воно має місце для будь-яких кутів , відмінних від , інакше або тангенс, або котангенс не визначено.

Доказ формули дуже просто. За визначенням та , звідки . Можна було доказ провести і трохи інакше. Так як і , то .

Отже, тангенс та котангенс одного кута, при якому вони мають сенс, є .

Спочатку синус і косинус виникли через необхідність розраховувати величини прямокутних трикутниках. Було помічено, що й значення градусної міри кутів у прямокутному трикутнику не змінювати, то співвідношення сторін, хоч би ці сторони змінювалися у довжині, залишається завжди однаковим.

Саме так і було введено поняття синуса та косинуса. Синус гострого кута у прямокутному трикутнику – це відношення протилежного катета до гіпотенузи, а косинус – прилеглого до гіпотенузи.

Теореми косінусів та синусів

Але косинуси та синуси можуть застосовуватися не тільки у прямокутних трикутниках. Щоб знайти значення тупого чи гострого кута, сторони будь-якого трикутника, достатньо застосувати теорему косінусів та синусів.

Теорема косінусів досить проста: «Квадрат сторони трикутника дорівнює сумі квадратів двох інших сторін за вирахуванням подвоєного твору цих сторін на косинус кута між ними».

Існує два трактування теореми синусів: мала та розширена. Відповідно до малої: «У трикутнику кути пропорційні протилежним сторонам». Цю теорему часто розширюють за рахунок властивості описаного у трикутника кола: «У трикутнику кути пропорційні протилежним сторонам, а їх відношення дорівнює діаметру описаного кола».

Похідні

Похідна – математичний інструмент, що показує, як швидко змінюється функція щодо зміни її аргументу. Похідні використовуються , геометрії, і ряд технічних дисциплін.

При вирішенні завдань потрібно знати табличні значення похідних тригонометричних функцій: синуса та косинуса. Похідною синуса є косинус, а косинуса – синус, але зі знаком «мінус».

Застосування в математиці

Особливо часто синуси та косинуси використовуються при вирішенні прямокутних трикутників та завдань, пов'язаних з ними.

Зручність синусів і косінусів знайшло своє відображення і в техніці. Кути та сторони було просто оцінювати за теоремами косинусів та синусів, розбиваючи складні фігури та об'єкти на «прості» трикутники. Інженери і , що часто мають справу з розрахунками співвідношення сторін і градусних заходів, витрачали чимало часу та зусиль для обчислення косінусів та синусів не табличних кутів.

Тоді «на допомогу» прийшли таблиці Брадіса, що містять тисячі значень синусів, косінусів, тангенсів та котангенсів різних кутів. У радянський часдеякі викладачі змушували своїх підопічних сторінки таблиць Брадіса напам'ять.

Радіан - кутова величина дуги, по довжині рівної радіусу або 57,295779513 градусів.

Градус (в геометрії) - 1/360 частина кола або 1/90 частина прямого кута.

π = 3.141592653589793238462… (приблизне значення числа Пі).

Таблиця косинусів для кутів: 0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330 °, 360 °.

Кут х (у градусах)30°45°60°90°120°135°150 °180 °210°225°240°270°300 °315°330°360°
Кут х (у радіанах)0 π/6π/4π/3π/22 x π/33 x π/45 x π/6π 7 x π/65 x π/44 x π/33 x π/25 x π/37 x π/411 x π/62 x π
cos x1 √3/2 (0,8660) √2/2 (0,7071) 1/2 (0,5) 0 -1/2 (-0,5) -√2/2 (-0,7071) -√3/2 (-0,8660) -1 -√3/2 (-0,8660) -√2/2 (-0,7071) -1/2 (-0,5) 0 1/2 (0,5) √2/2 (0,7071) √3/2 (0,8660) 1

Для початку розглянемо коло з радіусом 1 і з центром (0; 0). Для будь-якого αЄR можна провести радіус 0A так, що радіанна міра кута між 0A та віссю 0x дорівнює α. Напрямок проти годинникової стрілки вважається позитивним. Нехай кінець радіусу А має координати (a, b).

Визначення синусу

Визначення: Число b, що дорівнює ординаті одиничного радіусу, побудованого описаним способом, позначається sinα і називається синусом кута α.

Приклад: sin 3π cos3π/2 = 0 0 = 0

Визначення косинуса

Визначення: Число a, що дорівнює абсцисі кінця одиничного радіусу, побудованого описаним способом, позначається cosα і називається косинусом кута α.

Приклад: cos0 cos3π + cos3,5π = 1 (-1) + 0 = 2

Ці приклади використовують визначення синуса та косинуса кута через координати кінця одиничного радіусу та одиничного кола. Для більш наочного уявлення необхідно намалювати одиничне коло і відкласти у ньому відповідні точки, та був порахувати їх абсциси для обчислення косинуса і ординати для обчислення синуса.

Визначення тангенсу

Визначення: Функція tgx=sinx/cosx при x≠π/2+πk, kЄZ називається котангенсом кута x. Область визначення функції tgx – це всі дійсні числа, крім x=π/2+πn, nЄZ.

Приклад: tg0 tgπ = 0 0 = 0

Цей приклад аналогічний попередньому. Для обчислення тангенса кута необхідно розділити ординату точки її абсцису.

Визначення котангенсу

Визначення: Функція ctgx=cosx/sinx при x≠πk, kЄZ називається котангенсом кута x. Область визначення функції ctgx = -всі дійсні числа крім точок x=πk, kЄZ.

Розглянемо приклад на звичайному прямокутному трикутнику

Щоб було зрозуміліше, що таке косинус, синус, тангенс і котангенс. Розглянемо приклад на звичайному прямокутному трикутнику з кутом y і сторонами a, b, c. Гіпотенуза, катети відповідно a і b. Кут між гіпотенузою c та катетом b y.

Визначення:Синус кута y - це відношення протилежного катета до гіпотенузи: siny = а/с

Визначення:Косинус кута y це відношення прилеглого катета до гіпотенузи: сosy = в/с

Визначення:Тангенс кута у - це відношення протилежного катета до прилеглого: tgy = а/в

Визначення:Котангенс кута y - це відношення прилеглого катета до протилежного: ctgy = в/а

Cінус, косинус, тангенс і котангенс називають ще тригонометричними функціями. Кожен кут має свій синус і косинус. І практично кожен має свій тангенс і котангенс.

Вважається, що якщо нам дано кут, то його синус, косинус, тангенс та котангенс нам відомі! І навпаки. Цей синус, або будь-яка інша тригонометрична функція відповідно, ми знаємо кут. Створено навіть спеціальні таблиці, де розписані тригонометричні функції кожного кута.

Тригонометрія - розділ математичної науки, в якому вивчаються тригонометричні функції та їх використання у геометрії. Розвиток тригонометрії почався ще за часів античної Греції. За часів середньовіччя важливий внесок у розвиток цієї науки зробили вчені Близького Сходу та Індії.

Ця стаття присвячена базовим поняттям та визначенням тригонометрії. У ній розглянуто визначення основних тригонометричних функцій: синуса, косинуса, тангенсу та котангенсу. Роз'яснено та проілюстровано їх зміст у контексті геометрії.

Yandex.RTB R-A-339285-1

Спочатку визначення тригонометричних функцій, аргументом яких є кут, виражалися через співвідношення сторін прямокутного трикутника.

Визначення тригонометричних функцій

Синус кута (sin α) - відношення катета, що протилежить цьому куту, до гіпотенузи.

Косинус кута (cos α) – відношення прилеглого катета до гіпотенузи.

Тангенс кута (t g α) - відношення протилежного катета до прилеглого.

Котангенс кута (c t g α) - відношення прилеглого катета до протилежного.

Дані визначення дано для гострого кута прямокутного трикутника!

Наведемо ілюстрацію.

У трикутнику ABC з прямим кутом С синус кута дорівнює відношенню катета BC до гіпотенузи AB.

Визначення синуса, косинуса, тангенсу та котангенсу дозволяють обчислювати значення цих функцій за відомими довжинами сторін трикутника.

Важливо пам'ятати!

Область значень синуса і косинуса: від -1 до 1. Іншими словами синус і косинус набувають значення від -1 до 1. Область значень тангенсу та котангенсу - вся числова пряма, тобто ці функції можуть набувати будь-яких значень.

Визначення, дані вище, відносяться до гострих кутів. У тригонометрії вводиться поняття кута повороту, величина якого, на відміну від гострого кута, не обмежена рамками від 0 до 90 градусів.

У цьому контексті можна дати визначення синуса, косинуса, тангенсу та котангенсу кута довільної величини. Уявімо одиничне коло з центром на початку декартової системи координат.

Початкова точка A з координатами (1 , 0) повертається навколо центру одиничного кола на деякий кут і переходить в точку A 1 . Визначення дається через координати точки A 1 (x, y).

Синус (sin) кута повороту

Синус кута повороту - це ордината точки A 1 (x, y). sin α = y

Косинус (cos) кута повороту

Косинус кута повороту α - це абсцис точки A 1 (x, y). cos α = х

Тангенс (tg) кута повороту

Тангенс кута повороту - це відношення ординати точки A 1 (x, y) до її абсцисі. t g α = y x

Котангенс (ctg) кута повороту

Котангенс кута повороту - це відношення абсциси точки A 1 (x, y) до її ординаті. c t g α = x y

Синус та косинус визначені для будь-якого кута повороту. Це логічно, адже абсцису та ординату точки після повороту можна визначити за будь-якого вугілля. Інакше справа з тангенсом і котангенсом. Тангенс не визначено, коли точка після повороту перетворюється на точку з нульовою абсцисою (0 , 1) і (0 , - 1). У таких випадках вираз для тангенсу t g α = y x просто не має сенсу, оскільки в ньому є поділ на нуль. Аналогічно ситуація із котангенсом. Відмінністю у тому, що котангенс не визначено у випадках, як у нуль звертається ордината точки.

Важливо пам'ятати!

Синус та косинус визначені для будь-яких кутів α.

Тангенс визначений для всіх кутів, крім α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z)

Котангенс визначений для всіх кутів, крім α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z)

При вирішенні практичних прикладів не говорять "синус кута повороту". Слова "кут повороту" просто опускають, маючи на увазі, що з контексту і так зрозуміло, про що йдеться.

Числа

Як бути з визначенням синуса, косинуса, тангенсу та котангенсу числа, а не кута повороту?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом і котангенсом числа tназивається число, яке відповідно дорівнює синусу, косинусу, тангенсу та котангенсу в tрадіан.

Наприклад, синус числа 10 π дорівнює синусу кута повороту величиною 10 π рад.

Існує й інший підхід до визначення синуса, косинуса, тангенсу та котангенсу числа. Розглянемо його докладніше.

Будь-якому дійсному числу tставиться у відповідність точка на одиничному колі з центром на початку прямокутної декартової системи координат. Синус, косинус, тангенс та котангенс визначаються через координати цієї точки.

Початкова точка на колі - точка A з координатами (1, 0).

Позитивного числа t

Негативному числу tвідповідає точка, в яку перейде початкова точка, якщо рухатиметься по колу проти годинникової стрілки та пройде шлях t .

Тепер, коли зв'язок числа та точки на колі встановлено, переходимо до визначення синуса, косинуса, тангенсу та котангенсу.

Синус (sin) числа t

Синус числа t- ордината точки одиничного кола, що відповідає числу t. sin t = y

Косинус (cos) числа t

Косинус числа t- абсцису точки одиничного кола, що відповідає числу t. cos t = x

Тангенс (tg) числа t

Тангенс числа t- відношення ординати до абсцису точки одиничного кола, що відповідає числу t. t g t = y x = sin t cos t

Останні визначення знаходяться у відповідності та не суперечать визначенню, даному на початку цього пункту. Крапка на колі, що відповідає числу tзбігається з точкою, в яку переходить початкова точка після повороту на кут tрадіан.

Тригонометричні функції кутового та числового аргументу

Кожному значенню кута відповідає певне значення синуса і косинуса цього кута. Також, як усім кутам α, відмінним від α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) відповідає певне значення тангенсу. Котангенс, як сказано вище, визначений для всіх α, крім α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z).

Можна сказати, що sin α, cos α, t g α, c t g α - це функції кута альфа, або функції кутового аргументу.

Аналогічно можна говорити про синус, косинус, тангенс і котангенс, як про функції числового аргументу. Кожному дійсному числу tвідповідає певне значення синуса чи косинуса числа t. Усім числам, відмінним від π 2 + π · k, k ∈ Z відповідає значення тангенсу. Котангенс, аналогічно, визначено всім чисел, крім π · k , k ∈ Z.

Основні функції тригонометрії

Синус, косинус, тангенс та котангенс - основні тригонометричні функції.

З контексту зазвичай зрозуміло, з яким аргументом тригонометричної функції (кутовий аргумент чи числовий аргумент) ми маємо справу.

Повернемося до даних на самому початку визначенням та кутку альфа, що лежить у межах від 0 до 90 градусів. Тригонометричні визначення синуса, косинуса, тангенсу та котангенсу повністю узгоджуються з геометричними визначеннями, даними за допомогою співвідношень сторін прямокутного трикутника. Покажемо це.

Візьмемо одиничне коло з центром у прямокутній декартовій системі координат. Повернемо початкову точку A(1,0) на кут величиною до 90 градусів і проведемо з отриманої точки A1(x, y) перпендикуляр до осі абсцис. В отриманому прямокутному трикутнику кут A 1 O H дорівнює куту повороту α довжина катета O H дорівнює абсцисі точки A 1 (x , y) . Довжина катета, що протилежить куту, дорівнює ординаті точки A 1 (x , y), а довжина гіпотенузи дорівнює одиниці, оскільки вона є радіусом одиничного кола.

Відповідно до визначення з геометрії, синус кута α дорівнює відношенню протилежного катета до гіпотенузи.

sin α = A 1 H O A 1 = y 1 = y

Значить, визначення синуса гострого кута в прямокутному трикутнику через співвідношення сторін еквівалентно визначенню синуса кута повороту α при альфа лежить в межах від 0 до 90 градусів.

Аналогічно відповідність визначень можна показати для косинуса, тангенсу та котангенсу.

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

Loading...Loading...