Обчислити площу криволінійної фігури обмеженою лініями онлайн. Знаходження площі криволінійної трапеції

Фігура, обмежена графіком безперервної неотрицательной на відрізку $$ функції $f(x)$ і прямими $y=0, \x=a$ і $x=b$, називається криволінійною трапецією.

Площа відповідної криволінійної трапеції обчислюється за такою формулою:

$S=\int\limits_(a)^(b)(f(x)dx).$ (*)

Завдання на перебування площі криволінійної трапеції ми умовно ділитимемо на $4$ типу. Розглянемо кожен тип докладніше.

І тип: криволінійна трапеція задана явно.Тоді одразу застосовуємо формулу (*).

Наприклад, знайти площу криволінійної трапеції, обмеженої графіком функції $y=4-(x-2)^(2)$, і прямими $y=0, \x=1$ і $x=3$.

Намалюємо цю криволінійну трапецію.

Застосовуючи формулу (*), знайдемо площу цієї криволінійної трапеції.

$S=\int\limits_(1)^(3)(\left(4-(x-2)^(2)\right)dx)=\int\limits_(1)^(3)(4dx)- \int\limits_(1)^(3)((x-2)^(2)dx)=4x|_(1)^(3) – \left.\frac((x-2)^(3) )(3)\right|_(1)^(3)=$

$=4(3-1)-\frac(1)(3)\left((3-2)^(3)-(1-2)^(3)\right)=4 \cdot 2 – \frac (1)(3)\left((1)^(3)-(-1)^(3)\right) = 8 – \frac(1)(3)(1+1) =$

$=8-\frac(2)(3)=7\frac(1)(3)$ (од.$^(2)$).

ІІ тип: криволінійна трапеція задана неявно.У цьому випадку зазвичай не задаються або частково задаються прямі $x=a, \ x=b$. У цьому випадку потрібно знайти точки перетину функцій $y=f(x)$ та $y=0$. Ці точки будуть точками $a$ і $b$.

Наприклад, знайти площу фігури, обмеженої графіками функцій $y=1-x^(2)$ і $y=0$.

Знайдемо точки перетину. Для цього прирівняємо праві частини функцій.

Отже, $a=-1$, а $b=1$. Намалюємо цю криволінійну трапецію.

Знайдемо площу цієї криволінійної трапеції.

$S=\int\limits_(-1)^(1)(\left(1-x^(2)\right)dx)=\int\limits_(-1)^(1)(1dx)-\int \limits_(-1)^(1)(x^(2)dx)=x|_(-1)^(1) – \left.\frac(x^(3))(3)\right|_ (-1) ^ (1) = $

$=(1-(-1))-\frac(1)(3)\left(1^(3)-(-1)^(3)\right)=2 – \frac(1)(3) \left(1+1\right) = 2 - \frac(2)(3) = 1\frac(1)(3)$ (од.$^(2)$).

III тип: площа фігури, обмеженої перетином двох безперервних невід'ємних функцій.Ця фігура не буде криволінійною трапецією, а значить за допомогою формули (*) її площу не обчислиш. Як же бути?Виявляється, площу цієї фігури можна знайти як різницю площ криволінійних трапецій, обмежених верхньою функцією і $y=0$ ($S_(uf)$), і нижньою функцієюі $y=0$ ($S_(lf)$), де у ролі $x=a, \ x=b$ виступають координати по $x$ точок перетину даних функцій, тобто.

$S=S_(uf)-S_(lf)$. (**)

Найголовніше при обчисленні таких площ – не промахнутися з вибором верхньої і нижньої функції.

Наприклад, знайти площу фігури, обмеженої функціями $y=x^(2)$ та $y=x+6$.

Знайдемо точки перетину цих графіків:

За теоремою Вієта,

$x_(1)=-2, \ x_(2)=3.$

Тобто, $a=-2, \b=3$. Зобразимо фігуру:

Отже, верхня функція – $y=x+6$, а нижня – $y=x^(2)$. Далі, знайдемо $S_(uf)$ і $S_(lf)$ за формулою (*).

$S_(uf)=\int\limits_(-2)^(3)((x+6)dx)=\int\limits_(-2)^(3)(xdx)+\int\limits_(-2 )^(3)(6dx)=\left.\frac(x^(2))(2)\right|_(-2)^(3) + 6x|_(-2)^(3)= 32 ,5 $ (од. $ ^ (2) $).

$S_(lf)=\int\limits_(-2)^(3)(x^(2)dx)=\left.\frac(x^(3))(3)\right|_(-2) ^(3) = \frac(35)(3)$ (од.$^(2)$).

Підставимо знайдене в (**) та отримаємо:

$S=32,5-\frac(35)(3)= \frac(125)(6)$ (од.$^(2)$).

IV тип: площа фігури, обмеженою функцією (-ями), що не задовольняє (-ими) умові невід'ємності.Для того, щоб знайти площу такої фігури, потрібно симетрично щодо осі $Ox$ ( іншими словами,поставити "мінуси" перед функціями) відобразити область і за допомогою способів, викладених у типах I - III, знайти площу відображеної області. Ця площа і буде площею. Попередньо, можливо, вам доведеться знайти точки перетину графіків функцій.

Наприклад, знайти площу фігури, обмеженої графіками функцій $y=x^(2)-1$ та $y=0$.

Знайдемо точки перетину графіків функцій:

тобто. $a=-1$, а $b=1$. Накреслимо область.

Симетрично відобразимо область:

$y=0 \ \Rightarrow \ y=-0=0$

$y=x^(2)-1 \ \Rightarrow \ y= -(x^(2)-1) = 1-x^(2)$.

Вийде криволінійна трапеція, обмежена графіком функції $y=1-x^(2)$ і $y=0$. Це завдання знаходження криволінійної трапеції другого типу. Ми її вирішували. Відповідь була така: $S= 1\frac(1)(3)$ (од.$^(2)$). Отже, площа шуканої криволінійної трапеції дорівнює:

$S=1\frac(1)(3)$ (од.$^(2)$).

Площа криволінійної трапеції чисельно дорівнює певному інтегралу

Будь-який певний інтеграл (який існує) має дуже хороший геометричний зміст. На уроці я говорив, що певний інтеграл це число. А зараз настав час констатувати ще один корисний факт. З погляду геометрії певний інтеграл – це ПЛОЩА.

Тобто, певному інтегралу (якщо він існує) геометрично відповідає площа деякої фігури. Наприклад, розглянемо певний інтеграл. Підінтегральна функція задає на площині деяку криву (її можна завжди за бажанням накреслити), а сам певний інтеграл чисельно дорівнює площівідповідної криволінійної трапеції.

Приклад 1

Це типове формулювання завдання. Перший і найважливіший моментрішення – побудова креслення. Причому креслення необхідно побудувати ПРАВИЛЬНО.

При побудові креслення я рекомендую наступний порядок: спочаткукраще побудувати всі прямі (якщо вони є) і тільки потім– параболи, гіперболи, графіки інших функцій. Графіки функцій вигідніше будувати крапково, з технікою поточкового побудови можна ознайомитись у довідковому матеріалі.

Там же можна знайти дуже корисний стосовно нашого уроку матеріал – як швидко побудувати параболу.

У цій задачі рішення може виглядати так.
Виконаємо креслення (зверніть увагу, що рівняння задає вісь):


Штрихувати криволінійну трапецію я не буду, тут очевидно, про яку площу йдеться. Рішення продовжується так:

На відрізку графік функції розташований над віссютому:

Відповідь:

У кого виникли труднощі з обчисленням певного інтегралу та застосуванням формули Ньютона-Лейбніца , зверніться до лекції Визначений інтеграл. Приклади рішень.

Після того, як завдання виконане, завжди корисно поглянути на креслення і прикинути, чи реальна вийшла відповідь. У даному випадку«На вічко» підраховуємо кількість клітин у кресленні – ну, приблизно 9 набереться, схоже на правду. Цілком зрозуміло, що якби в нас вийшов, скажімо, відповідь: 20 квадратних одиниць, то, очевидно, що десь припущена помилка - у розглянуту фігуру 20 клітинок явно не вміщається, від сили десяток. Якщо відповідь вийшла негативною, то завдання теж вирішено некоректно.

Приклад 2

Обчислити площу фігури, обмеженою лініями , , та віссю

Це приклад для самостійного рішення. Повне рішення та відповідь наприкінці уроку.

Що робити, якщо криволінійна трапеція розташована під віссю?

Приклад 3

Обчислити площу фігури, обмеженою лініями і координатними осями.

Рішення: Виконаємо креслення:

Якщо криволінійна трапеція повністю розташована під віссю, то її площу можна знайти за формулою:
В даному випадку:

Увага! Не слід плутати два типи завдань:

1) Якщо Вам запропоновано вирішити просто певний інтеграл без жодного геометричного сенсу, він може бути негативним.

2) Якщо Вам запропоновано знайти площу фігури за допомогою певного інтеграла, то площа завжди позитивна! Саме тому у щойно розглянутій формулі фігурує мінус.

На практиці найчастіше фігура розташована і у верхній і нижній півплощині, а тому, від найпростіших шкільних завдань переходимо до більш змістовних прикладів.

Приклад 4

Знайти площу плоскої фігури, обмеженою лініями , .

Рішення: Спочатку потрібно виконати креслення. Загалом кажучи, при побудові креслення у завданнях на площу нас найбільше цікавлять точки перетину ліній. Знайдемо точки перетину параболи та прямий. Це можна зробити двома способами. Перший спосіб – аналітичний. Вирішуємо рівняння:

Значить, нижня межа інтегрування, верхня межа інтегрування.
Цим способом краще, наскільки можна, не користуватися.

Набагато вигідніше і швидше побудувати лінії поточечно, у своїй межі інтегрування з'ясовуються хіба що «самі собою». Техніка поточкової побудови для різних графіків детально розглянута у довідці Графіки та властивості елементарних функцій . Тим не менш, аналітичний спосіб знаходження меж все-таки доводиться іноді застосовувати, якщо, наприклад, графік досить великий, або поточена побудова не виявила меж інтегрування (вони можуть бути дрібними або ірраціональними). І такий приклад ми теж розглянемо.

Повертаємося до нашого завдання: раціональніше спочатку побудувати пряму і лише потім параболу. Виконаємо креслення:

Повторюся, що за поточечному побудові межі інтегрування найчастіше з'ясовуються «автоматом».

А тепер робоча формула:Якщо на відрізку деяка безперервна функція більше або дорівнюєдеякої безперервної функції , то площу відповідної фігури можна знайти за формулою:

Тут уже не треба думати, де розташована постать - над віссю або під віссю, і, грубо кажучи, важливо, який графік Вище(щодо іншого графіка), а який – НИЖЧЕ.

У прикладі очевидно, що на відрізку парабола розташовується вище прямої, а тому необхідно відняти

Завершення рішення може мати такий вигляд:

Потрібна фігура обмежена параболою зверху і прямою знизу.
На відрізку , за відповідною формулою:

Відповідь:

Насправді шкільна формула для площі криволінійної трапеції у нижній напівплощині (див. простенький приклад №3) – окремий випадокформули . Оскільки вісь задається рівнянням, а графік функції розташований нижче за осі, то

А зараз пара прикладів для самостійного вирішення

Приклад 5

Приклад 6

Знайти площу фігури, обмеженою лініями , .

У ході вирішення завдань на обчислення площі за допомогою певного інтегралу іноді трапляється кумедний казус. Креслення виконано правильно, розрахунки – правильно, але через неуважність… знайдено площу не тієї фігури, саме так кілька разів лажався ваш покірний слуга. Ось реальний випадокз життя:

Приклад 7

Обчислити площу фігури, обмеженою лініями , , , .

Спочатку виконаємо креслення:

Фігура, площу якої нам потрібно знайти, заштрихована синім кольором(Уважно дивіться на умову – чим обмежена фігура!). Але на практиці через неуважність нерідко виникає, що потрібно знайти площу фігури, яка заштрихована зеленим кольором!

Цей приклад ще й корисний тим, що в ньому площа фігури вважається двома певними інтегралами. Дійсно:



1) На відрізку над віссю розташований графік прямий;

2) На відрізку над віссю розташований графік гіперболи.

Цілком очевидно, що площі можна (і потрібно) приплюсувати, тому:

Відповідь:

Приклад 8

Обчислити площу фігури, обмеженою лініями ,
Представимо рівняння в «шкільному» вигляді і виконаємо поточковий креслення:

З креслення видно, що верхню межу ми «хороший»: .
Але чому дорівнює нижня межа?! Зрозуміло, що це ціле число, але яке? Може бути ? Але де гарантія, що креслення виконано з ідеальною точністю, цілком може виявитися . Або корінь. А якщо ми взагалі неправильно збудували графік?

У таких випадках доводиться витрачати додатковий час та уточнювати межі інтегрування аналітично.

Знайдемо точки перетину прямої та параболи.
Для цього розв'язуємо рівняння:

Отже, .

Подальше рішення тривіально, головне, не заплутатися у підстановках та знаках, обчислення тут не найпростіші.

На відрізку , за відповідною формулою:

Відповідь:

Ну, і на закінчення уроку, розглянемо два завдання складніше.

Приклад 9

Обчислити площу фігури, обмеженою лініями , ,

Рішення: Зобразимо цю фігуру на кресленні.

Для поточкового побудови креслення необхідно знати зовнішній виглядсинусоїди (і взагалі корисно знати графіки всіх елементарних функцій), а також деякі значення синуса, їх можна знайти в тригонометричної таблиці. У ряді випадків (як у цьому) допускається побудова схематичного креслення, на якому принципово правильно повинні бути відображені графіки та межі інтегрування.

З межами інтегрування тут проблем немає, вони випливають з умови: – «ікс» змінюється від нуля до «пі». Оформлюємо подальше рішення:

На відрізку графік функції розташований над віссю, тому:

(1) Як інтегруються синуси та косинуси у непарних ступенях можна подивитися на уроці Інтеграли від тригонометричних функцій . Це типовий прийом, відщипуємо один синус.

(2) Використовуємо основне тригонометрична тотожністьу вигляді

(3) Проведемо заміну змінної , тоді:

Нові переді інтегрування:

У кого зовсім погані справи із замінами, прошу пройти на урок Метод заміни у невизначеному інтегралі . Кому не дуже зрозумілий алгоритм заміни у певному інтегралі, відвідайте сторінку Визначений інтеграл. Приклади рішень.

З цієї статті ви дізнаєтеся, як знайти площу фігури, обмеженою лініями, використовуючи обчислення за допомогою інтегралів. Вперше з постановкою такого завдання ми стикаємося у старших класах, коли тільки-но пройдено вивчення певних інтегралів і настав час приступити до геометричної інтерпретації отриманих знань на практиці.

Отже, що буде потрібно для успішного вирішення задачі з пошуку площі фігури за допомогою інтегралів:

  • Вміння грамотно будувати креслення;
  • Вміння вирішувати певний інтеграл за допомогою відомої формулиНьютона-Лейбніца;
  • Вміння «побачити» вигідніший варіант рішення - тобто. зрозуміти, як у тому чи іншому випадку буде зручніше проводити інтегрування? Вздовж осі ікс (OX) чи осі ігорок (OY)?
  • Ну і куди без коректних обчислень? Сюди входить розуміння як вирішувати той інший тип інтегралів і правильні чисельні обчислення.

Алгоритм розв'язання задачі з обчислення площі фігури, обмеженої лініями:

1. Будуємо креслення. Бажано це робити на листку в клітку з великим масштабом. Підписуємо олівцем над кожним графіком назву цієї функції. Підпис графіків робиться виключно задля зручності подальших обчислень. Отримавши графік шуканої постаті, найчастіше буде видно відразу, які межі інтегрування буде використано. Таким чином, ми вирішуємо завдання графічним методом. Однак буває так, що значення меж дробові чи ірраціональні. Тому, можна зробити додаткові розрахунки, переходимо за крок два.

2. Якщо явно не задані межі інтегрування, то знаходимо точки перетину графіків один з одним і дивимося, чи збігається наше графічне рішенняз аналітичним.

3. Далі необхідно проаналізувати креслення. Залежно від цього, як розташовуються графіки функцій, існують різні підходи до знаходження площі фігури. Розглянемо різні прикладина перебування площі фігури з допомогою інтегралів.

3.1. Найкласичніший і найпростіший варіант завдання, це коли потрібно знайти площу криволінійної трапеції. Що таке криволінійна трапеція? Це плоска фігура, обмежена віссю ікс (у = 0), Прямими х = а, х = bі будь-який кривий, безперервний на проміжку від aдо b. При цьому дана фігура невід'ємна і розташовується не нижче осі абсцис. У цьому випадку площа криволінійної трапеції чисельно дорівнює певному інтегралу, що обчислюється за формулою Ньютона-Лейбніца:

Приклад 1 y = x2 - 3x + 3, x = 1, x = 3, y = 0.

Якими лініями обмежена фігура? Маємо параболу y = x2 - 3x + 3, яка розташовується над віссю ОХ, Вона невід'ємна, т.к. всі точки цієї параболи мають позитивні значення. Далі задані прямі х = 1і х = 3, які пролягають паралельно до осі ОУ, є обмежувальними лініями фігури зліва та справа. Ну і у = 0, вона ж вісь ікс, яка обмежує фігуру знизу. Отримана фігура заштрихована, як видно із малюнка зліва. В даному випадку можна відразу приступати до вирішення задачі. Перед нами простий приклад криволінійної трапеції, яку вирішуємо за допомогою формули Ньютона-Лейбніца.

3.2. У попередньому пункті 3.1 розібрано випадок, коли криволінійна трапеція розташована над віссю ікс. Тепер розглянемо випадок, коли умови завдання такі самі, крім того, що функція пролягає під віссю ікс. До стандартної формули Ньютона-Лейбніца додається мінус. Як розв'язувати цю задачу розглянемо далі.

Приклад 2 . Обчислити площу фігури, обмеженою лініями y = x2 + 6x + 2, x = -4, x = -1, y = 0.

У цьому прикладі маємо параболу y = x2 + 6x + 2, яка бере свій початок з-під осі ОХпрямі х = -4, х = -1, у = 0. Тут у = 0обмежує шукану фігуру зверху. Прямі х = -4і х = -1це межі, у межах яких обчислюватиметься певний інтеграл. Принцип вирішення задачі на пошук площі фігури практично повністю збігається з прикладом номер 1. Єдина відмінність у тому, що задана функція не позитивна, і все також безперервна на проміжку [-4; -1] . Що означає не позитивна? Як видно з малюнка, фігура, яка полягає в рамках заданих іксів, має виключно «негативні» координати, що нам і потрібно побачити і пам'ятати при вирішенні задачі. Площу фігури шукаємо за формулою Ньютона-Лейбніца, тільки зі знаком мінус на початку.

Статтю не завершено.

Приклад1 . Обчислити площу фігури, обмеженої лініями: х + 2у - 4 = 0, у = 0, х = -3, і х = 2


Виконаємо побудову фігури (див. рис.) Будуємо пряму х + 2у – 4 = 0 за двома точками А(4;0) та В(0;2). Виразивши у через х отримаємо у = -0,5х + 2. За формулою (1), де f(x) = -0,5х + 2, а = -3, в = 2, знаходимо

S = = [-0,25 = 11,25 кв. од

приклад 2. Обчислити площу фігури, обмеженою лініями: х – 2у + 4 = 0, х + у – 5 = 0 та у = 0.

Рішення. Виконаємо побудову фігури.

Побудуємо пряму х - 2у + 4 = 0: у = 0, х = - 4, А (-4; 0); х = 0, у = 2, (0; 2).

Побудуємо пряму х + у - 5 = 0: у = 0, х = 5, С (5; 0), х = 0, у = 5, D (0; 5).

Знайдемо точку перетину прямих, розв'язавши систему рівнянь:

х = 2, у = 3; М(2; 3).

Для обчислення шуканої площі розіб'ємо трикутник АМС на два трикутники АМN і NМС, тому що при зміні х від А до N площа обмежена прямою, а при зміні х від N до С - прямий


Для трикутника АМN маємо: ; у = 0,5 х + 2, тобто f(x) = 0,5 х + 2, a = - 4, b = 2.

Для трикутника NМС маємо: y = – x + 5, тобто f(x) = – x + 5, a = 2, b = 5.

Обчисливши площу кожного з трикутників та склавши результати, знаходимо:

кв. од.

кв. од.

9+4,5 = 13,5 кв. од. Перевірка: = 0,5 АС = 0,5 кв. од.

приклад 3. Обчислити площу фігури, обмеженою лініями: y = x 2 , y = 0, x = 2, x = 3

В даному випадку потрібно обчислити площу криволінійної трапеції, обмеженої параболою y = x 2 , Прямими x = 2 і x = 3і віссю Ох(див. рис.) За формулою (1) знаходимо площу криволінійної трапеції


= = 6кв. од.

приклад 4. Обчислити площу фігури, обмеженою лініями: у = - x 2 + 4 та у = 0

Виконаємо побудову фігури. Шукана площа укладена між параболою у = - x 2 + 4 та віссю Ох.


Знайдемо точки перетину параболи із віссю Ох. Вважаючи у = 0, знайдемо х = Так як ця фігура симетрична щодо осі Оу, то обчислимо площу фігури, розташованої праворуч від осі Оу, і отриманий результат вдвох: = +4x] кв. од. 2 = 2 кв. од.

Приклад 5. Обчислити площу фігури, обмеженою лініями: y 2 = x, yx = 1, x = 4

Тут потрібно обчислити площу криволінійної трапеції, обмеженою верхньою гілкою параболиy 2 = x, віссю Ох і прямими x = 1x = 4 (див. рис.)


За формулою (1), де f(x) = a = 1 та b = 4 маємо = (= кв. од.

Приклад 6 . Обчислити площу фігури, обмеженої лініями: y = sinx, y = 0, x = 0, x = .

Шукана площа обмежена напівхвильової синусоїди та віссю Ох (див. рис.).


Маємо – cosx = – cos = 1 + 1 = 2 кв. од.

Приклад 7. Обчислити площу фігури, обмеженої лініями: y = - 6х, у = 0 та х = 4.

Фігура розташована під віссю Ох (див. мал.).

Отже, її площу знаходимо за формулою (3)


= =

Приклад 8. Обчислити площу фігури, обмеженої лініями: y = і х = 2. Криву y = збудуємо за точками (див. рис.). Таким чином, площу фігури знаходимо за формулою (4)

Приклад 9 .

х 2 + у 2 = r 2 .

Тут потрібно обчислити площу, обмежену колом х 2 + у 2 = r 2 , тобто площа кола радіуса r з центром на початку координат. Знайдемо четверту частину цієї площі, взявши межі інтегрування від 0

доr; маємо: 1 = = [

Отже, 1 =

приклад 10. Обчислити площу фігури, обмеженою лініями: у = х 2 і у = 2х

Дана фігура обмежена параболою у = х 2 і прямий у = 2х (див. рис.) Для визначення точок перетину заданих ліній розв'яжемо систему рівнянь:х 2 - 2х = 0 х = 0 і х = 2


Використовуючи для знаходження площі формулу (5), отримаємо

= }

Loading...Loading...