როგორ შევცვალოთ ლოგარითმის საფუძველი. ლოგარითმების თვისებები და მათი ამონახსნების მაგალითები. ყოვლისმომცველი გზამკვლევი (2019)

გამომდინარეობს მისი განმარტებიდან. ასე რომ, რიცხვის ლოგარითმი დაფუძნებული განისაზღვრება, როგორც მაჩვენებელი, რომელზეც რიცხვი უნდა გაიზარდოს ნომრის მისაღებად (ლოგარითმი არსებობს მხოლოდ დადებითი რიცხვებისთვის).

ამ ფორმულირებიდან გამომდინარეობს, რომ გაანგარიშება x=log a b, უდრის განტოლების ამოხსნას a x =b.Მაგალითად, ჟურნალი 2 8 = 3რადგან 8 = 2 3 . ლოგარითმის ფორმულირება იძლევა იმის დასაბუთებას, რომ თუ b=a გ, შემდეგ რიცხვის ლოგარითმი დაფუძნებული უდრის თან. ასევე ნათელია, რომ ლოგარითმების თემა მჭიდრო კავშირშია რიცხვის ხარისხების თემასთან.

ლოგარითმებით, როგორც ნებისმიერი რიცხვით, შეგიძლიათ ამის გაკეთება შეკრების, გამოკლების ოპერაციებიდა გარდაიქმნება ყველა შესაძლო გზით. მაგრამ იმის გამო, რომ ლოგარითმები არ არის სრულიად ჩვეულებრივი რიცხვები, აქ მოქმედებს მათი სპეციალური წესები, რომლებიც ე.წ. ძირითადი თვისებები.

ლოგარითმების შეკრება და გამოკლება.

ავიღოთ ორი ლოგარითმი ერთი და იგივე ფუძეებით: შესვლა xდა შესვლა y. შემდეგ შესაძლებელია შეკრებისა და გამოკლების ოპერაციების შესრულება:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

ჟურნალი ა(x 1 . x 2 . x 3 ... x k) = შესვლა x 1 + შესვლა x 2 + შესვლა x 3 + ... + log a x k.

დან ლოგარითმის კოეფიციენტის თეორემაშეიძლება მივიღოთ ლოგარითმის კიდევ ერთი თვისება. საყოველთაოდ ცნობილია, რომ ჟურნალი 1 = 0, შესაბამისად

ჟურნალი 1 /= ჟურნალი 1 - ჟურნალი = - ჟურნალი .

ეს ნიშნავს, რომ არსებობს თანასწორობა:

log a 1 / b = - log a b.

ორი საპასუხო რიცხვის ლოგარითმებიამავე მიზეზით განსხვავდებიან ერთმანეთისაგან მხოლოდ ნიშნით. Ისე:

ჟურნალი 3 9= - ჟურნალი 3 1 / 9 ; log 5 1 / 125 = -log 5 125.

მოცემულია ბუნებრივი ლოგარითმის ძირითადი თვისებები, გრაფიკი, განსაზღვრების სფერო, მნიშვნელობათა სიმრავლე, ძირითადი ფორმულები, წარმოებული, ინტეგრალი, სიმძლავრის სერიის გაფართოება და ln x ფუნქციის წარმოდგენა რთული რიცხვების გამოყენებით.

განმარტება

ბუნებრივი ლოგარითმიარის ფუნქცია y = n x, ექსპონენციალურის შებრუნებული, x = e y, და არის ლოგარითმი e რიცხვის ფუძის მიმართ: ln x = ჟურნალი e x.

ბუნებრივი ლოგარითმი ფართოდ გამოიყენება მათემატიკაში, რადგან მის წარმოებულს აქვს უმარტივესი ფორმა: (ln x)′ = 1/ x.

დაფუძნებული განმარტებები, ბუნებრივი ლოგარითმის საფუძველია რიცხვი :
e ≅ 2.718281828459045...;
.

y = ფუნქციის გრაფიკი n x.

ბუნებრივი ლოგარითმის გრაფიკი (ფუნქციები y = n x) მიიღება ექსპონენციალური გრაფიკიდან სარკისებური ასახვით y = x სწორი ხაზის მიმართ.

ბუნებრივი ლოგარითმი განისაზღვრება x ცვლადის დადებითი მნიშვნელობებისთვის. იგი მონოტონურად იზრდება მისი განმარტების დომენში.

x-ზე → 0 ბუნებრივი ლოგარითმის ზღვარი არის მინუს უსასრულობა (-∞).

როგორც x → + ∞, ბუნებრივი ლოგარითმის ზღვარი არის პლუს უსასრულობა (+ ∞). დიდი x-ისთვის ლოგარითმი საკმაოდ ნელა იზრდება. ნებისმიერი სიმძლავრის ფუნქცია x a დადებითი მაჩვენებლით a იზრდება უფრო სწრაფად ვიდრე ლოგარითმი.

ბუნებრივი ლოგარითმის თვისებები

განსაზღვრების დომენი, მნიშვნელობების ნაკრები, ექსტრემა, ზრდა, შემცირება

ბუნებრივი ლოგარითმი არის მონოტონურად მზარდი ფუნქცია, ამიტომ მას არ აქვს ექსტრემები. ბუნებრივი ლოგარითმის ძირითადი თვისებები წარმოდგენილია ცხრილში.

ln x მნიშვნელობები

ln 1 = 0

ძირითადი ფორმულები ბუნებრივი ლოგარითმებისთვის

შებრუნებული ფუნქციის განმარტებიდან გამომდინარე ფორმულები:

ლოგარითმების ძირითადი თვისება და მისი შედეგები

ბაზის შეცვლის ფორმულა

ნებისმიერი ლოგარითმი შეიძლება გამოიხატოს ბუნებრივი ლოგარითმებით ბაზის ჩანაცვლების ფორმულის გამოყენებით:

ამ ფორმულების მტკიცებულებები წარმოდგენილია განყოფილებაში "ლოგარითმი".

ინვერსიული ფუნქცია

ბუნებრივი ლოგარითმის ინვერსია არის მაჩვენებელი.

თუ, მაშინ

თუ, მაშინ.

წარმოებული ln x

ბუნებრივი ლოგარითმის წარმოებული:
.
x მოდულის ბუნებრივი ლოგარითმის წარმოებული:
.
n-ე რიგის წარმოებული:
.
ფორმულების გამოყვანა >>>

ინტეგრალური

ინტეგრალი გამოითვლება ნაწილების ინტეგრირებით:
.
Ისე,

გამოთქმები რთული რიცხვების გამოყენებით

განვიხილოთ z რთული ცვლადის ფუნქცია:
.
გამოვხატოთ რთული ცვლადი მოდულის საშუალებით და არგუმენტი φ :
.
ლოგარითმის თვისებების გამოყენებით, ჩვენ გვაქვს:
.
ან
.
არგუმენტი φ არ არის ცალსახად განსაზღვრული. თუ დააყენებთ
, სადაც n არის მთელი რიცხვი,
ეს იქნება იგივე რიცხვი სხვადასხვა n-სთვის.

ამრიგად, ბუნებრივი ლოგარითმი, როგორც რთული ცვლადის ფუნქცია, არ არის ერთმნიშვნელოვანი ფუნქცია.

დენის სერიის გაფართოება

როდესაც გაფართოება ხდება:

ცნობები:
ი.ნ. ბრონშტეინი, კ.ა. სემენდიაევი, მათემატიკის სახელმძღვანელო ინჟინრებისა და კოლეჯის სტუდენტებისთვის, „ლან“, 2009 წ.


ჩვენ ვაგრძელებთ ლოგარითმების შესწავლას. ამ სტატიაში ვისაუბრებთ ლოგარითმების გამოთვლა, ამ პროცესს ე.წ ლოგარითმი. ჯერ გავიგებთ ლოგარითმების გამოთვლას განმარტებით. შემდეგი, მოდით შევხედოთ, თუ როგორ არის ნაპოვნი ლოგარითმების მნიშვნელობები მათი თვისებების გამოყენებით. ამის შემდეგ, ჩვენ ყურადღებას გავამახვილებთ ლოგარითმების გამოთვლაზე სხვა ლოგარითმების თავდაპირველად მითითებული მნიშვნელობებით. და ბოლოს, მოდით ვისწავლოთ ლოგარითმის ცხრილების გამოყენება. მთელი თეორია მოცემულია მაგალითებით დეტალური გადაწყვეტილებებით.

გვერდის ნავიგაცია.

ლოგარითმების გამოთვლა განმარტებით

უმარტივეს შემთხვევებში შესაძლებელია საკმაოდ სწრაფად და მარტივად შესრულება ლოგარითმის პოვნა განსაზღვრებით. მოდით, უფრო დეტალურად განვიხილოთ, თუ როგორ ხდება ეს პროცესი.

მისი არსი არის b რიცხვის წარმოდგენა a c სახით, საიდანაც, ლოგარითმის განმარტებით, რიცხვი c არის ლოგარითმის მნიშვნელობა. ანუ, განმარტებით, ტოლობების შემდეგი ჯაჭვი შეესაბამება ლოგარითმის პოვნას: log a b=log a a c =c.

ამრიგად, ლოგარითმის განსაზღვრებით გამოთვლა მთავრდება c რიცხვის პოვნამდე, რომ c = b და თავად რიცხვი c არის ლოგარითმის სასურველი მნიშვნელობა.

წინა აბზაცებში მოცემული ინფორმაციის გათვალისწინებით, როდესაც ლოგარითმის ნიშნის ქვეშ რიცხვი მოცემულია ლოგარითმის ბაზის გარკვეული სიმძლავრით, შეგიძლიათ დაუყოვნებლივ მიუთითოთ რის ტოლია ლოგარითმი - ის უდრის მაჩვენებელს. მოდით ვაჩვენოთ მაგალითების გადაწყვეტილებები.

მაგალითი.

იპოვეთ log 2 2 −3 და ასევე გამოთვალეთ რიცხვის e 5,3 ბუნებრივი ლოგარითმი.

გამოსავალი.

ლოგარითმის განმარტება საშუალებას გვაძლევს დაუყოვნებლივ ვთქვათ, რომ log 2 2 −3 =−3. მართლაც, რიცხვი ლოგარითმის ნიშნის ქვეშ უდრის 2-ს −3 ხარისხს.

ანალოგიურად, ჩვენ ვპოულობთ მეორე ლოგარითმს: lne 5.3 =5.3.

პასუხი:

log 2 2 −3 =−3 და lne 5,3 =5,3.

თუ რიცხვი b ლოგარითმის ნიშნის ქვეშ არ არის მითითებული, როგორც ლოგარითმის ფუძის სიმძლავრე, მაშინ საჭიროა ყურადღებით დაათვალიეროთ, რომ ნახოთ შესაძლებელია თუ არა რიცხვის b გამოსახვა a c სახით. ხშირად ეს წარმოდგენა საკმაოდ აშკარაა, განსაკუთრებით მაშინ, როდესაც რიცხვი ლოგარითმის ნიშნის ქვეშ უდრის ბაზის ხარისხს 1, ან 2, ან 3, ...

მაგალითი.

გამოთვალეთ ლოგარითმები log 5 25 და .

გამოსავალი.

ადვილი მისახვედრია, რომ 25=5 2, ეს საშუალებას გაძლევთ გამოთვალოთ პირველი ლოგარითმი: log 5 25=log 5 5 2 =2.

გადავიდეთ მეორე ლოგარითმის გამოთვლაზე. რიცხვი შეიძლება წარმოდგენილი იყოს 7-ის ხარისხად: (იხილეთ საჭიროების შემთხვევაში). აქედან გამომდინარე, .

მოდით გადავიწეროთ მესამე ლოგარითმი შემდეგი ფორმა. ახლა თქვენ ხედავთ ამას , საიდანაც ვასკვნით, რომ . მაშასადამე, ლოგარითმის განმარტებით .

მოკლედ, გამოსავალი შეიძლება დაიწეროს შემდეგნაირად: .

პასუხი:

ჟურნალი 5 25=2, და .

როდესაც ლოგარითმის ნიშნის ქვეშ არის საკმარისად დიდი ბუნებრივი რიცხვი, მაშინ არ იქნება ზიანის მომტანი მისი ძირითადი ფაქტორებად გადაქცევა. ხშირად გვეხმარება ისეთი რიცხვის წარმოდგენაში, როგორიც არის ლოგარითმის ფუძის გარკვეული სიმძლავრე და, შესაბამისად, ამ ლოგარითმის განსაზღვრებით გამოთვლა.

მაგალითი.

იპოვეთ ლოგარითმის მნიშვნელობა.

გამოსავალი.

ლოგარითმების ზოგიერთი თვისება საშუალებას გაძლევთ დაუყოვნებლივ მიუთითოთ ლოგარითმების მნიშვნელობა. ეს თვისებები მოიცავს ერთის ლოგარითმის თვისებას და ფუძის ტოლი რიცხვის ლოგარითმის თვისებას: log 1 1=log a a 0 =0 და log a=log a 1 =1. ანუ, როდესაც ლოგარითმის ნიშნის ქვეშ არის რიცხვი 1 ან რიცხვი ტოლი ლოგარითმის ფუძისა, მაშინ ამ შემთხვევებში ლოგარითმები უდრის 0-ს და 1-ს.

მაგალითი.

რის ტოლია ლოგარითმები და log10?

გამოსავალი.

ვინაიდან , მაშინ ლოგარითმის განმარტებიდან გამომდინარეობს .

მეორე მაგალითში რიცხვი 10 ლოგარითმის ნიშნის ქვეშ ემთხვევა მის ფუძეს, ამიტომ ათეულის ათწილადი ლოგარითმი უდრის ერთს, ანუ lg10=lg10 1 =1.

პასუხი:

და lg10=1.

გაითვალისწინეთ, რომ ლოგარითმების გამოთვლა განმარტებით (რაზეც წინა აბზაცში ვისაუბრეთ) გულისხმობს ტოლობის log a a p =p გამოყენებას, რაც ლოგარითმების ერთ-ერთი თვისებაა.

პრაქტიკაში, როდესაც რიცხვი ლოგარითმის ნიშნის ქვეშ და ლოგარითმის ფუძის ქვეშ არის ადვილად წარმოდგენილი, როგორც გარკვეული რიცხვის სიმძლავრე, ძალიან მოსახერხებელია ფორმულის გამოყენება. , რომელიც შეესაბამება ლოგარითმების ერთ-ერთ თვისებას. მოდით შევხედოთ ლოგარითმის პოვნის მაგალითს, რომელიც ასახავს ამ ფორმულის გამოყენებას.

მაგალითი.

გამოთვალეთ ლოგარითმი.

გამოსავალი.

პასუხი:

.

ლოგარითმების თვისებები, რომლებიც ზემოთ არ არის ნახსენები, ასევე გამოიყენება გამოთვლებში, მაგრამ ამაზე ვისაუბრებთ შემდეგ აბზაცებში.

ლოგარითმების პოვნა სხვა ცნობილი ლოგარითმების მეშვეობით

ამ პარაგრაფში მოცემული ინფორმაცია აგრძელებს ლოგარითმების თვისებების გამოყენების თემას მათი გამოთვლისას. მაგრამ აქ მთავარი განსხვავება ისაა, რომ ლოგარითმების თვისებები გამოიყენება ორიგინალური ლოგარითმის სხვა ლოგარითმით გამოხატვისთვის, რომლის მნიშვნელობა ცნობილია. გარკვევისთვის მოვიყვანოთ მაგალითი. ვთქვათ, ვიცით, რომ log 2 3≈1.584963, შემდეგ შეგვიძლია ვიპოვოთ, მაგალითად, log 2 6 მცირე ტრანსფორმაციის განხორციელებით ლოგარითმის თვისებების გამოყენებით: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

ზემოთ მოყვანილ მაგალითში საკმარისი იყო პროდუქტის ლოგარითმის თვისების გამოყენება. თუმცა, ბევრად უფრო ხშირად საჭიროა ლოგარითმების თვისებების უფრო ფართო არსენალის გამოყენება, რათა გამოვთვალოთ ორიგინალური ლოგარითმი მოცემულების მეშვეობით.

მაგალითი.

გამოთვალეთ 27-ის ლოგარითმი 60-მდე, თუ იცით, რომ log 60 2=a და log 60 5=b.

გამოსავალი.

ასე რომ, ჩვენ უნდა ვიპოვოთ ჟურნალი 60 27. ადვილი მისახვედრია, რომ 27 = 3 3 და ორიგინალური ლოგარითმი, სიმძლავრის ლოგარითმის თვისების გამო, შეიძლება გადაიწეროს როგორც 3·log 60 3.

ახლა ვნახოთ, როგორ გამოვხატოთ log 60 3 ცნობილი ლოგარითმების მიხედვით. ფუძის ტოლი რიცხვის ლოგარითმის თვისება საშუალებას გვაძლევს დავწეროთ ტოლობის ჟურნალი 60 60=1. მეორეს მხრივ, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . ამრიგად, 2 ლოგი 60 2+ლოგი 60 3+ლოგი 60 5=1. აქედან გამომდინარე, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

დაბოლოს, ჩვენ ვიანგარიშებთ თავდაპირველ ლოგარითმს: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

პასუხი:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

ცალკე, აღსანიშნავია ფორმის ლოგარითმის ახალ ბაზაზე გადასვლის ფორმულის მნიშვნელობა. . ის საშუალებას გაძლევთ გადახვიდეთ ლოგარითმებიდან ნებისმიერი ფუძით ლოგარითმებზე კონკრეტული ფუძის მქონე ლოგარითმებზე, რომელთა მნიშვნელობები ცნობილია ან შესაძლებელია მათი პოვნა. ჩვეულებრივ, ორიგინალური ლოგარითმიდან, გარდამავალი ფორმულის გამოყენებით, ისინი გადადიან ლოგარითმებზე ერთ-ერთ 2, e ან 10 ფუძეზე, რადგან ამ ბაზებისთვის არის ლოგარითმების ცხრილები, რომლებიც საშუალებას აძლევს მათი მნიშვნელობების გამოთვლას გარკვეული ხარისხით. სიზუსტე. შემდეგ აბზაცში ჩვენ გაჩვენებთ, თუ როგორ კეთდება ეს.

ლოგარითმის ცხრილები და მათი გამოყენება

ლოგარითმის მნიშვნელობების სავარაუდო გაანგარიშებისთვის შეიძლება გამოყენებულ იქნას ლოგარითმის ცხრილები. ყველაზე ხშირად გამოყენებული ბაზის 2 ლოგარითმის ცხრილი არის ცხრილი ბუნებრივი ლოგარითმებიდა ათობითი ლოგარითმების ცხრილი. ათობითი რიცხვების სისტემაში მუშაობისას მოსახერხებელია ლოგარითმების ცხრილის გამოყენება, რომელიც დაფუძნებულია ათეულზე. მისი დახმარებით ჩვენ ვისწავლით ლოგარითმების მნიშვნელობების პოვნას.










წარმოდგენილი ცხრილი საშუალებას გაძლევთ იპოვოთ რიცხვების ათობითი ლოგარითმების მნიშვნელობები 1000-დან 9999-მდე (სამი ათობითი ადგილით) ათიათასიანი სიზუსტით. ჩვენ გავაანალიზებთ ლოგარითმის მნიშვნელობის პოვნის პრინციპს ათობითი ლოგარითმების ცხრილის გამოყენებით კონკრეტული მაგალითი- ასე უფრო გასაგებია. მოდი ვიპოვოთ log1.256.

ათობითი ლოგარითმების ცხრილის მარცხენა სვეტში ვპოულობთ 1.256 რიცხვის პირველ ორ ციფრს, ანუ ვპოულობთ 1.2-ს (სიცხადისთვის ეს რიცხვი შემოხაზულია ლურჯად). 1.256 რიცხვის მესამე ციფრი (ციფრი 5) გვხვდება ორმაგი ხაზის მარცხნივ პირველ ან ბოლო სტრიქონში (ეს რიცხვი შემოხაზულია წითლად). ორიგინალური რიცხვის 1.256 მეოთხე ციფრი (ციფრი 6) გვხვდება ორმაგი ხაზის მარჯვნივ პირველ ან ბოლო სტრიქონში (ეს რიცხვი შემოხაზულია მწვანე ხაზით). ახლა ჩვენ ვპოულობთ რიცხვებს ლოგარითმების ცხრილის უჯრედებში მონიშნული მწკრივისა და მონიშნული სვეტების კვეთაზე (ეს რიცხვები მონიშნულია ფორთოხალი). მონიშნული რიცხვების ჯამი იძლევა ათობითი ლოგარითმის სასურველ მნიშვნელობას მეოთხე ათწილადამდე, ანუ log1.236≈0.0969+0.0021=0.0990.

შესაძლებელია თუ არა, ზემოთ მოყვანილი ცხრილის გამოყენებით, იპოვოთ რიცხვების ათობითი ლოგარითმების მნიშვნელობები, რომლებსაც აქვთ სამზე მეტი ციფრი ათწილადის წერტილის შემდეგ, ისევე როგორც ის, ვინც სცილდება 1-დან 9,999-მდე დიაპაზონს? Დიახ, შეგიძლია. მოდით აჩვენოთ, თუ როგორ კეთდება ეს მაგალითით.

გამოვთვალოთ lg102.76332. ჯერ უნდა დაწერო ნომერი სტანდარტული ფორმით: 102.76332=1.0276332·10 2. ამის შემდეგ მანტისა უნდა დამრგვალდეს მესამე ათწილადამდე, გვაქვს 1.0276332 10 2 ≈1.028 10 2, მაშინ როცა თავდაპირველი ათობითი ლოგარითმი დაახლოებით უდრის მიღებული რიცხვის ლოგარითმს, ანუ ვიღებთ log102.76332≈lg1.028·10 2. ახლა ჩვენ ვიყენებთ ლოგარითმის თვისებებს: lg1.028·10 2 =lg1.028+lg10 2 =lg1.028+2. საბოლოოდ, ათწილადი ლოგარითმების ცხრილიდან ვპოულობთ lg1.028 ლოგარითმის მნიშვნელობას lg1.028≈0.0086+0.0034=0.012. შედეგად, ლოგარითმის გამოთვლის მთელი პროცესი ასე გამოიყურება: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1.028+lg10 2 =log1.028+2≈0.012+2=2.012.

დასასრულს, აღსანიშნავია, რომ ათობითი ლოგარითმების ცხრილის გამოყენებით შეგიძლიათ გამოთვალოთ ნებისმიერი ლოგარითმის სავარაუდო მნიშვნელობა. ამისათვის საკმარისია გამოიყენოთ გარდამავალი ფორმულა, რომ გადავიდეთ ათობითი ლოგარითმებზე, იპოვოთ მათი მნიშვნელობები ცხრილში და შეასრულოთ დარჩენილი გამოთვლები.

მაგალითად, გამოვთვალოთ ჟურნალი 2 3 . ლოგარითმის ახალ ბაზაზე გადასვლის ფორმულის მიხედვით გვაქვს . ათობითი ლოგარითმების ცხრილიდან ვხვდებით log3≈0.4771 და log2≈0.3010. ამრიგად, .

ბიბლიოგრაფია.

  • კოლმოგოროვი A.N., Abramov A.M., Dudnitsyn Yu.P. და სხვა ალგებრა და ანალიზის საწყისები: სახელმძღვანელო ზოგადსაგანმანათლებლო დაწესებულებების 10-11 კლასებისთვის.
  • გუსევი V.A., Mordkovich A.G. მათემატიკა (სახელმძღვანელო ტექნიკურ სასწავლებლებში შესვლისთვის).

*მაგისტრატურის სტუდენტი ქვეშ სამეცნიერო სახელმძღვანელოისახოვა ა.ა.,დოქტორი მათემატიკური და კომპიუტერული მოდელირების მიმართულებით

ოდესმე გიფიქრიათ, როგორ ითვლიდნენ ადამიანები ძველ დროში, როცა არ არსებობდა კალკულატორები და კომპიუტერები? გამოთვლები ხდებოდა ხელით, ქაღალდზე ან გონებაში. მიუხედავად იმისა, რომ ამოცანები მათ წინაშე დგას ისეთივე რთული იყო, როგორც თანამედროვე.

არარსებობა კომპიუტერებიუბიძგა ძველ მათემატიკოსებს გამოთვლების გამარტივებისკენ. მათ შექმნეს ცხრილები უკვე გამოთვლილი გამონათქვამებით (მაგალითად, გამრავლების ცხრილი) და ეძებდნენ გზებს რთული ოპერაციების მარტივი ოპერაციებით ჩანაცვლებისთვის. დღეს ჩვენ ვისაუბრებთ ერთ ასეთ „გამარტივებაზე“ ან იმაზე, თუ როგორ ისწავლეს ადამიანებმა გამრავლების შეკრებით, ხოლო გაყოფის გამოკლებით შეცვლა. ამის წყალობით გამოიგონეს ლოგარითმი. იმის გასაგებად, თუ რა არის ეს, თქვენ უნდა გადადგათ მხოლოდ სამი ნაბიჯი.

ნაბიჯი 1: გაამარტივეთ და კვლავ გაამარტივეთ

დავიწყოთ მარტივი მაგალითით.

2 + 2 = 4

გავართულოთ პრობლემა და ვიპოვოთ ხუთი ორის ჯამი.

2 + 2 + 2 + 2 + 2 = 10

და ჩვენ ადვილად გავუმკლავდით ამ ამოცანას. რა მოხდება, თუ თქვენ გჭირდებათ 1,000,000 ორიანი ჯამის პოვნა? მსგავსი გაანგარიშების მეთოდის გამოყენება დიდ ადგილს და დროს მიიღებს. მაგრამ ცბიერი მათემატიკოსები მიხვდნენ, თუ რამდენად ადვილია ამის გაკეთება. მათ გამოვიდნენ გამრავლების ოპერაცია. ვნახოთ, როგორ გამოიყურება:

2 × 2 × 2 × 2 × 2 × 2 × 2 = 128

ამ გამოთქმის გასამარტივებლად მათემატიკოსებმა გამოიგონეს ექსპონენტაციის ოპერაცია. გასაგებია, რომ ლაპარაკია ერთი და იგივე რიცხვის თავისთავად n-ჯერ გამრავლებაზე, რატომ გავაორმაგოთ და ჩავწეროთ ისევ და ისევ? ასე უფრო ადვილი არ არის ამის დაწერა?

Აქ - ხარისხის საფუძველი, - ექსპონენტი. ამრიგად, ჩვენ მნიშვნელოვნად შევამოკლეთ ჩანაწერი. მაჩვენებლის მნიშვნელობის მიუხედავად, გამოხატულება გამოიყურება ძალიან ლაკონური:

მაიკლ შტიფელი(1487–1567) - გერმანელი მათემატიკოსი, რომელმაც მნიშვნელოვანი წვლილი შეიტანა ალგებრის და მისი სფეროების განვითარებაში, როგორიცაა პროგრესიები, გაძლიერება და უარყოფითი რიცხვები. შტიფელმა პირველმა გამოიყენა ცნებები "ექსპონენტი" და "ძირი". იმისდა მიუხედავად, რომ მეცნიერი რეალურად იყენებდა ლოგარითმებს, აღმომჩენის დიდება შოტლანდიელ მათემატიკოსს ჯონ ნაპიერს (1550–1617) ერგო.

ნაბიჯი 2: გაიგე გრადუსების თვისებები

როგორც უკვე ვთქვით, ძველი მათემატიკოსები არ იტვირთებოდნენ გამოთვლებით ყოველ ჯერზე, როცა სჭირდებოდათ რიცხვების გამრავლება ან შეკრება, არამედ იყენებდნენ ცხრილებს წინასწარ გათვლილი შედეგებით. ძალიან კომფორტულად! მსგავსი ცხრილის გამოყენებით გერმანელი მათემატიკოსი მაიკლ შტიფელიშენიშნა საინტერესო ნიმუში არითმეტიკურ და გეომეტრიულ პროგრესიას შორის.

არითმეტიკული პროგრესია 1 2 3 4 5 6 7 8 9 10
გეომეტრიული პროგრესია 2 4 8 16 32 64 128 256 512 1024
დენის აღნიშვნა 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10

ვცადოთ მისი ნახვაც. ყოველივე ამის შემდეგ, ეს ნიმუში საშუალებას გაძლევთ გაამარტივოთ ოპერაციები გამრავლება და გაყოფა. მოდით გამოვთვალოთ ორი რიცხვის ნამრავლი:

16 × 64 =  ?

სანამ გამოთვლებს დაიწყებთ, გადახედეთ ცხრილს და იპოვეთ ეს რიცხვები: ეს არის პირობები გეომეტრიული პროგრესია 2-ის ნამატებით. მათ ზემოთ რიცხვები ზედა მწკრივში: 4 ზემოთ 16; 6 64-ზე არის არითმეტიკული პროგრესიის ტერმინები. დავამატოთ ეს რიცხვები: 4 + 6 = 10. ახლა ვნახოთ, რა რიცხვია მეორე რიგის 10 რიცხვის ქვეშ - 1024. მაგრამ თუ ჩვენ დავასრულებთ საწყის ამოცანას 16x64, შედეგი იქნება 1024. ეს ნიშნავს, რომ, ცხრილის გამოყენებით და მხოლოდ ციფრების დამატების ცოდნით, შეგიძლიათ მარტივად იპოვოთ პროდუქტი.

ახლა განიხილეთ გაყოფის ოპერაცია:

კიდევ ერთხელ შეხედეთ ცხრილს და იპოვნეთ შესაბამისი რიცხვები ზედა სტრიქონიდან. ვიღებთ შესაბამისად 10 და 7. თუ გამრავლებისას ვამატებთ, მაშინ როცა გავყოფთ ვაკლებთ: 10–7 = 3. მეორე მწკრივის 3 რიცხვის ქვეშ ვუყურებთ რიცხვს, არის 8. ამიტომ 1024:128 = 8.

ანალოგიურად, შეგიძლიათ გამოიყენოთ ცხრილი ოპერაციებისთვის ექსპონენტაცია და ფესვის მოპოვება.

მაგალითად, ჩვენ გვჭირდება 32-ის კვადრატი. ჩვენ ვუყურებთ 32-ის ზემოთ რიცხვს ზედა რიგში. მივიღებთ 5. გავამრავლოთ 5 2-ზე. შედეგი არის 10, შემდეგ შეხედეთ რიცხვს 10: 1024. აქედან გამომდინარე 32 2   = 1024.

განვიხილოთ ფესვის მოპოვება. მაგალითად, ვიპოვოთ 512 რიცხვის მესამე ფესვი. ზედა მწკრივის 512 რიცხვის ზემოთ არის 9. გავყოთ 9 3-ზე, მივიღებთ 3. იპოვეთ შესაბამისი რიცხვი მეორე რიგში. ვიღებთ 8. მაშასადამე, 83 = 512.

ოთხივე მაგალითი არის ხარისხითა თვისებების შედეგი, რომელიც შეიძლება დაიწეროს შემდეგნაირად:

ნაბიჯი 3: მოდით ვუწოდოთ მას ლოგარითმი

ხარისხებთან დაკავშრებით, შევეცადოთ ამოხსნათ მცირე განტოლება:

2 x = 4

ეს განტოლება ე.წ საჩვენებელი. იმიტომ რომ X, რომელიც უნდა ვიპოვოთ არის მაჩვენებელისიმძლავრე, რომელზეც უნდა გაიზარდოს 2, რომ მივიღოთ 4. x  = 2 განტოლების ამოხსნა.

ვნახოთ კიდევ ერთი მსგავსი მაგალითი:

2 x = 5

კიდევ ერთხელ ვთქვათ პირობა: ჩვენ ვეძებთ x რიცხვს, რომელზედაც 2 უნდა გაიზარდოს 5-ის მისაღებად. ეს კითხვა გვაბრკოლებს. გამოსავალი ალბათ არსებობს; მაგალითად, თუ ამ ფუნქციების გრაფიკებს დახატავთ, ისინი იკვეთება. მაგრამ მის საპოვნელად, ჩვენ მოგვიწევს მისი ძებნა საცდელი და შეცდომის გზით. და ამას შეიძლება დიდი დრო დასჭირდეს.

სწორედ ამიტომ, ძველმა მეცნიერებმა გამოიგონეს ლოგარითმი; მათ იცოდნენ, რომ განტოლების გამოსავალი არსებობდა, მაგრამ ეს ყოველთვის არ იყო საჭირო დაუყოვნებლივ. მათემატიკურად ასე წერია: x  =  ჟურნალი 2 5. ასე რომ, ჩვენ ვიპოვეთ 2 x = 5 განტოლების ამონახსნი. პასუხი: x = log 2 5. თუ ზუსტ პასუხს გავცემთ, მაშინ x = 2.32192809489..., და ეს წილადი არასოდეს მთავრდება.

გამოთქმა ასე იკითხება: ლოგარითმი 5-დან მე-2-მდე. ადვილი დასამახსოვრებელია: ფუძე ყოველთვის იწერება ბოლოში, როგორც ექსპონენციალური, ასევე ლოგარითმული აღნიშვნით.

ლოგარითმის თვისებები

ლოგარითმები აქვს შეზღუდვები. მათემატიკაში ორი მკაცრი ზღვარი არსებობს.

ა) არ შეიძლება ნულზე გაყოფა

ბ) ამოიღეთ უარყოფითი რიცხვის ლუწი ფესვი(რადგან უარყოფითი რიცხვი კვადრატში ყოველთვის დადებითი იქნება).

წერის ტოლფასი

a x = b

შეზღუდვები ა

a არის ფუძე, რომელიც უნდა გაიზარდოს x სიმძლავრემდე, რომ მიიღოთ b.

თუ a  = 1. ერთი ნებისმიერ ძალას მისცემს ერთს.

და თუ ა ნულზე ნაკლები? უარყოფითი რიცხვები- კაპრიზული. მათი ამაღლება შესაძლებელია ერთ ხარისხში, მაგრამ არა მეორეზე. ამიტომ მათაც გამოვრიცხავთ. შედეგად ვიღებთ: a > 0; a ≠ 1

შეზღუდვები ბ

თუ დადებითი რიცხვი ამაღლებულია რომელიმე ხარისხზე, ჩვენ ასევე ვიღებთ დადებით რიცხვს. მაშასადამე: b > 0. x შეიძლება იყოს ნებისმიერი რიცხვი, რადგან ჩვენ შეგვიძლია გავზარდოთ ნებისმიერ ხარისხზე.

თუ b  = 1, მაშინ ნებისმიერი a-სთვის მნიშვნელობა x = 0.

ოპერაციები ლოგარითმებზე

ძალაუფლების ძირითადი თვისებების გათვალისწინებით, ჩვენ გამოვიყვანთ მსგავსებს ლოგარითმებისთვის:

ჯამი. პროდუქტის ლოგარითმი უდრის ფაქტორების ლოგარითმების ჯამს:

განსხვავება. კოეფიციენტის ლოგარითმი უდრის დივიდენდისა და გამყოფის ლოგარითმებს შორის სხვაობას:

ხარისხი. სიმძლავრის ლოგარითმი ტოლია მაჩვენებლისა და მისი ფუძის ლოგარითმის ნამრავლის.

ძირითადი თვისებები.

  1. ლოგაქსი + ლოგაი = ლოგა (x y);
  2. ლოგაქსი − ლოგაი = ლოგა (x: y).

იდენტური საფუძველი

Log6 4 + log6 9.

ახლა ცოტა გავართულოთ დავალება.

ლოგარითმების ამოხსნის მაგალითები

რა მოხდება, თუ ლოგარითმის საფუძველი ან არგუმენტი არის ძალა? მაშინ ამ ხარისხის მაჩვენებლის ამოღება შესაძლებელია ლოგარითმის ნიშნიდან შემდეგი წესების მიხედვით:

რა თქმა უნდა, ყველა ამ წესს აქვს აზრი, თუ ლოგარითმის ODZ დაფიქსირდა: a > 0, a ≠ 1, x >

დავალება. იპოვნეთ გამოთქმის მნიშვნელობა:

ახალ საძირკველზე გადასვლა

მოდით იყოს მოცემული ლოგარითმის ლოგაქსი. მაშინ ნებისმიერი c რიცხვისთვის ისეთი, რომ c > 0 და c ≠ 1, ტოლობა მართალია:

დავალება. იპოვნეთ გამოთქმის მნიშვნელობა:

Იხილეთ ასევე:


ლოგარითმის ძირითადი თვისებები

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



მაჩვენებელი არის 2.718281828…. მაჩვენებლის დასამახსოვრებლად შეგიძლიათ შეისწავლოთ წესი: მაჩვენებლის ტოლია ლეო ნიკოლაევიჩ ტოლსტოის დაბადების წელი 2,7 და ორჯერ.

ლოგარითმების ძირითადი თვისებები

ამ წესის ცოდნა გეცოდინება და ზუსტი ღირებულებაგამოფენები და ლეო ტოლსტოის დაბადების თარიღი.


ლოგარითმების მაგალითები

ლოგარითმის გამონათქვამები

მაგალითი 1.
ა). x=10ac^2 (a>0,c>0).

3.5 თვისებების გამოყენებით ვიანგარიშებთ

2.

3.

4. სად .



მაგალითი 2. იპოვეთ x თუ


მაგალითი 3. მოცემულია ლოგარითმების მნიშვნელობა

გამოთვალეთ log(x) თუ




ლოგარითმების ძირითადი თვისებები

ლოგარითმები, ისევე როგორც ნებისმიერი რიცხვი, შეიძლება ყველანაირად დაემატოს, გამოკლდეს და გარდაიქმნას. მაგრამ რადგან ლოგარითმები არ არის ზუსტად ჩვეულებრივი რიცხვები, აქ არის წესები, რომლებსაც უწოდებენ ძირითადი თვისებები.

თქვენ აუცილებლად უნდა იცოდეთ ეს წესები - მათ გარეშე არც ერთი სერიოზული ლოგარითმული პრობლემის გადაჭრა შეუძლებელია. გარდა ამისა, ისინი ძალიან ცოტაა - ყველაფრის სწავლა ერთ დღეში შეგიძლიათ. ასე რომ, დავიწყოთ.

ლოგარითმების შეკრება და გამოკლება

განვიხილოთ ორი ლოგარითმი ერთი და იგივე ფუძეებით: ლოგაქსი და ლოგაი. შემდეგ მათი დამატება და გამოკლება შესაძლებელია და:

  1. ლოგაქსი + ლოგაი = ლოგა (x y);
  2. ლოგაქსი − ლოგაი = ლოგა (x: y).

მაშასადამე, ლოგარითმების ჯამი ტოლია ნამრავლის ლოგარითმისა, ხოლო სხვაობა უდრის კოეფიციენტის ლოგარითმს. გთხოვთ გაითვალისწინოთ: მთავარი აქ არის იდენტური საფუძველი. თუ მიზეზები განსხვავებულია, ეს წესები არ მუშაობს!

ეს ფორმულები დაგეხმარებათ გამოთვალოთ ლოგარითმული გამოხატულება მაშინაც კი, როცა მისი ცალკეული ნაწილები არ არის გათვალისწინებული (იხილეთ გაკვეთილი „რა არის ლოგარითმი“). გადახედეთ მაგალითებს და ნახეთ:

ვინაიდან ლოგარითმებს აქვთ იგივე ფუძეები, ვიყენებთ ჯამის ფორმულას:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log2 48 − log2 3.

საფუძვლები იგივეა, ჩვენ ვიყენებთ განსხვავების ფორმულას:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

დავალება. იპოვეთ გამოთქმის მნიშვნელობა: log3 135 − log3 5.

ისევ ბაზები იგივეა, ამიტომ გვაქვს:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

როგორც ხედავთ, ორიგინალური გამონათქვამები შედგება "ცუდი" ლოგარითმებისგან, რომლებიც ცალკე არ არის გამოთვლილი. მაგრამ გარდაქმნების შემდეგ ისინი საკმაოდ გამოდიან ნორმალური ნომრები. ბევრი აგებულია ამ ფაქტზე ტესტის ფურცლები. დიახ, ტესტის მსგავსი გამონათქვამები წარმოდგენილია მთელი სერიოზულობით (ზოგჯერ პრაქტიკულად ცვლილებების გარეშე) ერთიან სახელმწიფო გამოცდაზე.

მაჩვენებლის ამოღება ლოგარითმიდან

ადვილი მისახვედრია, რომ ბოლო წესი პირველ ორს მიჰყვება. მაგრამ უმჯობესია დაიმახსოვროთ ის მაინც - ზოგიერთ შემთხვევაში ეს მნიშვნელოვნად შეამცირებს გამოთვლების რაოდენობას.

რა თქმა უნდა, ყველა ამ წესს აქვს აზრი, თუ ლოგარითმის ODZ დაფიქსირდა: a > 0, a ≠ 1, x > 0. და კიდევ ერთი რამ: ისწავლეთ ყველა ფორმულის გამოყენება არა მხოლოდ მარცხნიდან მარჯვნივ, არამედ პირიქით. , ე.ი. თქვენ შეგიძლიათ შეიყვანოთ რიცხვები ლოგარითმის ნიშანიმდე ლოგარითმში. ეს არის ის, რაც ყველაზე ხშირად საჭიროა.

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log7 496.

მოდით, თავი დავაღწიოთ არგუმენტის ხარისხს პირველი ფორმულის გამოყენებით:
log7 496 = 6 log7 49 = 6 2 = 12

დავალება. იპოვნეთ გამოთქმის მნიშვნელობა:

გაითვალისწინეთ, რომ მნიშვნელი შეიცავს ლოგარითმს, რომლის საფუძველი და არგუმენტი ზუსტი ხარისხებია: 16 = 24; 49 = 72. გვაქვს:

ვფიქრობ, ბოლო მაგალითი მოითხოვს გარკვეულ განმარტებას. სად წავიდა ლოგარითმები? ბოლო მომენტამდე ჩვენ ვმუშაობთ მხოლოდ მნიშვნელით.

ლოგარითმის ფორმულები. ლოგარითმები ამონახსნების მაგალითები.

იქ მდგომი ლოგარითმის საფუძველი და არგუმენტი წარვადგინეთ სიმძლავრეების სახით და ამოვიღეთ მაჩვენებლები - მივიღეთ „სამსართულიანი“ წილადი.

ახლა გადავხედოთ ძირითად წილადს. მრიცხველი და მნიშვნელი შეიცავს ერთსა და იმავე რიცხვს: log2 7. ვინაიდან log2 7 ≠ 0 შეგვიძლია შევამციროთ წილადი - 2/4 დარჩება მნიშვნელში. არითმეტიკის წესების მიხედვით, ოთხი შეიძლება გადავიდეს მრიცხველზე, რაც გაკეთდა. შედეგი იყო პასუხი: 2.

ახალ საძირკველზე გადასვლა

ლოგარითმების შეკრების და გამოკლების წესებზე საუბრისას, მე კონკრეტულად ხაზგასმით აღვნიშნე, რომ ისინი მუშაობენ მხოლოდ ერთი და იგივე ფუძეებით. რა მოხდება, თუ მიზეზები განსხვავებულია? რა მოხდება, თუ ისინი არ არიან იგივე რიცხვის ზუსტი სიმძლავრეები?

ახალ საძირკველზე გადასვლის ფორმულები სამაშველოში მოდის. მოდით ჩამოვაყალიბოთ ისინი თეორემის სახით:

მოდით იყოს მოცემული ლოგარითმის ლოგაქსი. მაშინ ნებისმიერი c რიცხვისთვის ისეთი, რომ c > 0 და c ≠ 1, ტოლობა მართალია:

კერძოდ, თუ დავაყენებთ c = x, მივიღებთ:

მეორე ფორმულიდან გამომდინარეობს, რომ ლოგარითმის საფუძველი და არგუმენტი შეიძლება შეიცვალოს, მაგრამ ამ შემთხვევაში მთელი გამოთქმა არის „გადაბრუნებული“, ე.ი. ლოგარითმი გამოჩნდება მნიშვნელში.

ეს ფორმულები იშვიათად გვხვდება ჩვეულებრივ ციფრულ გამონათქვამებში. მათი მოხერხებულობის შეფასება შესაძლებელია მხოლოდ ლოგარითმული განტოლებებისა და უტოლობების ამოხსნისას.

თუმცა არის პრობლემები, რომელთა მოგვარებაც საერთოდ შეუძლებელია, გარდა ახალ ფონდში გადასვლისა. მოდით შევხედოთ რამდენიმე მათგანს:

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log5 16 log2 25.

გაითვალისწინეთ, რომ ორივე ლოგარითმის არგუმენტები შეიცავს ზუსტ ძალას. ამოვიღოთ ინდიკატორები: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

ახლა მოდით "შევუბრუნდეთ" მეორე ლოგარითმს:

ვინაიდან პროდუქტი არ იცვლება ფაქტორების გადაწყობისას, ჩვენ მშვიდად გავამრავლეთ ოთხი და ორი, შემდეგ კი ლოგარითმებს მივმართეთ.

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log9 100 lg 3.

პირველი ლოგარითმის საფუძველი და არგუმენტი ზუსტი სიმძლავრეებია. მოდით დავწეროთ ეს და მოვიშოროთ ინდიკატორები:

ახლა მოდით დავაღწიოთ ათობითი ლოგარითმი ახალ ბაზაზე გადასვლით:

ძირითადი ლოგარითმული იდენტურობა

ხშირად ამოხსნის პროცესში აუცილებელია რიცხვის ლოგარითმის სახით წარმოდგენა მოცემულ ბაზაზე. ამ შემთხვევაში შემდეგი ფორმულები დაგვეხმარება:

პირველ შემთხვევაში, რიცხვი n ხდება არგუმენტის მაჩვენებელი. რიცხვი n შეიძლება იყოს აბსოლუტურად ნებისმიერი, რადგან ის მხოლოდ ლოგარითმის მნიშვნელობაა.

მეორე ფორმულა რეალურად არის პერიფრაზირებული განმარტება. ასე ჰქვია: .

ფაქტობრივად, რა მოხდება, თუ რიცხვი b გაიზარდა ისეთ ხარისხამდე, რომ რიცხვი b ამ ხარისხში იძლევა რიცხვს a? მართალია: შედეგი არის იგივე რიცხვი a. კიდევ ერთხელ ყურადღებით წაიკითხეთ ეს აბზაცი - ბევრი ადამიანი ჩერდება მასზე.

ახალ ბაზაზე გადასვლის ფორმულების მსგავსად, მთავარი ლოგარითმული იდენტურობაზოგჯერ ეს ერთადერთი გამოსავალია.

დავალება. იპოვნეთ გამოთქმის მნიშვნელობა:

გაითვალისწინეთ, რომ log25 64 = log5 8 - უბრალოდ აიღო კვადრატი ლოგარითმის ფუძიდან და არგუმენტიდან. იმავე ფუძით ძალაუფლების გამრავლების წესების გათვალისწინებით, მივიღებთ:

თუ ვინმემ არ იცის, ეს იყო რეალური დავალება ერთიანი სახელმწიფო გამოცდიდან :)

ლოგარითმული ერთეული და ლოგარითმული ნული

დასასრულს, მე მივცემ ორ იდენტობას, რომლებსაც ძნელად შეიძლება ვუწოდოთ თვისებები - უფრო მეტიც, ისინი ლოგარითმის განსაზღვრის შედეგებია. ისინი გამუდმებით ჩნდებიან პრობლემებში და, რა გასაკვირია, პრობლემებს უქმნიან თუნდაც „მოწინავე“ მოსწავლეებს.

  1. ლოგა = 1 არის. ერთხელ და სამუდამოდ დაიმახსოვრეთ: ლოგარითმი ამ ფუძის ნებისმიერი a ფუძის ტოლია ერთის.
  2. ლოგა 1 = 0 არის. ფუძე a შეიძლება იყოს ნებისმიერი, მაგრამ თუ არგუმენტი შეიცავს ერთს, ლოგარითმი ნულის ტოლია! რადგან a0 = 1 არის განმარტების პირდაპირი შედეგი.

ეს არის ყველა თვისება. დარწმუნდით, რომ ივარჯიშეთ მათ პრაქტიკაში! ჩამოტვირთეთ მოტყუების ფურცელი გაკვეთილის დასაწყისში, ამობეჭდეთ და მოაგვარეთ პრობლემები.

Იხილეთ ასევე:

b-ის ლოგარითმი a-ს ბაზაზე აღნიშნავს გამოხატვას. ლოგარითმის გამოთვლა ნიშნავს x () სიმძლავრის პოვნას, რომლის დროსაც ტოლობა დაკმაყოფილებულია

ლოგარითმის ძირითადი თვისებები

აუცილებელია ზემოაღნიშნული თვისებების ცოდნა, ვინაიდან ლოგარითმებთან დაკავშირებული თითქმის ყველა პრობლემა და მაგალითი წყდება მათ საფუძველზე. დანარჩენი ეგზოტიკური თვისებების მიღება შესაძლებელია ამ ფორმულებით მათემატიკური მანიპულაციებით

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

ლოგარითმების ჯამისა და სხვაობის ფორმულის გამოთვლისას (3.4) საკმაოდ ხშირად გვხვდება. დანარჩენი გარკვეულწილად რთულია, მაგრამ რიგ ამოცანებში ისინი შეუცვლელია რთული გამონათქვამების გასამარტივებლად და მათი მნიშვნელობების გამოსათვლელად.

ლოგარითმების გავრცელებული შემთხვევები

ზოგიერთი საერთო ლოგარითმებია ისეთები, რომლებშიც ფუძე არის ათიც კი, ექსპონენციალური ან ორი.
ათი ბაზის ლოგარითმს ჩვეულებრივ უწოდებენ ათობითი ლოგარითმს და უბრალოდ აღინიშნება lg(x-ით).

ჩანაწერიდან ირკვევა, რომ ჩანაწერში საფუძვლები არ წერია. Მაგალითად

ბუნებრივი ლოგარითმი არის ლოგარითმი, რომლის ფუძე არის ექსპონენტი (აღნიშნულია ln(x)-ით).

მაჩვენებელი არის 2.718281828…. მაჩვენებლის დასამახსოვრებლად შეგიძლიათ შეისწავლოთ წესი: მაჩვენებლის ტოლია ლეო ნიკოლაევიჩ ტოლსტოის დაბადების წელი 2,7 და ორჯერ. ამ წესის ცოდნა, თქვენ გეცოდინებათ როგორც მაჩვენებლის ზუსტი მნიშვნელობა, ასევე ლეო ტოლსტოის დაბადების თარიღი.

და კიდევ ერთი მნიშვნელოვანი ლოგარითმი ორი საფუძვლისთვის აღინიშნება

ფუნქციის ლოგარითმის წარმოებული ტოლია ერთის გაყოფილი ცვლადზე

ინტეგრალური ან ანტიდერივატიული ლოგარითმი განისაზღვრება ურთიერთობით

მოცემული მასალა საკმარისია თქვენთვის ლოგარითმებთან და ლოგარითმებთან დაკავშირებული ამოცანების ფართო კლასის გადასაჭრელად. მასალის გასაგებად რომ დაგეხმაროთ, მე მოვიყვან მხოლოდ რამდენიმე ჩვეულებრივ მაგალითს სკოლის სასწავლო გეგმადა უნივერსიტეტები.

ლოგარითმების მაგალითები

ლოგარითმის გამონათქვამები

მაგალითი 1.
ა). x=10ac^2 (a>0,c>0).

3.5 თვისებების გამოყენებით ვიანგარიშებთ

2.
ლოგარითმების განსხვავების თვისებით გვაქვს

3.
თვისებები 3.5-ის გამოყენებით ვპოულობთ

4. სად .

ერთი შეხედვით რთული გამონათქვამი გამარტივებულია და ჩამოყალიბებულია რიგი წესების გამოყენებით

ლოგარითმის მნიშვნელობების პოვნა

მაგალითი 2. იპოვეთ x თუ

გამოსავალი. გამოსათვლელად ვიყენებთ ბოლო ტერმინს 5 და 13 თვისებებს

ჩავწერეთ ჩანაწერში და ვგლოვობთ

ვინაიდან ფუძეები ტოლია, გამონათქვამებს ვაიგივებთ

ლოგარითმები. პირველი დონე.

დაე, ლოგარითმების მნიშვნელობა იყოს მოცემული

გამოთვალეთ log(x) თუ

ამოხსნა: ავიღოთ ცვლადის ლოგარითმი, რომ დავწეროთ ლოგარითმი მისი წევრთა ჯამის მეშვეობით


ეს მხოლოდ დასაწყისია ჩვენი გაცნობისა ლოგარითმებთან და მათ თვისებებთან. ივარჯიშეთ გამოთვლებით, გაამდიდრეთ თქვენი პრაქტიკული უნარები - მალე დაგჭირდებათ მიღებული ცოდნა ლოგარითმული განტოლებების ამოსახსნელად. ასეთი განტოლებების ამოხსნის ძირითადი მეთოდების შესწავლის შემდეგ, ჩვენ გავაფართოვებთ თქვენს ცოდნას სხვა თანაბრად მნიშვნელოვან თემაზე - ლოგარითმული უტოლობები...

ლოგარითმების ძირითადი თვისებები

ლოგარითმები, ისევე როგორც ნებისმიერი რიცხვი, შეიძლება ყველანაირად დაემატოს, გამოკლდეს და გარდაიქმნას. მაგრამ რადგან ლოგარითმები არ არის ზუსტად ჩვეულებრივი რიცხვები, აქ არის წესები, რომლებსაც უწოდებენ ძირითადი თვისებები.

თქვენ აუცილებლად უნდა იცოდეთ ეს წესები - მათ გარეშე არც ერთი სერიოზული ლოგარითმული პრობლემის გადაჭრა შეუძლებელია. გარდა ამისა, ისინი ძალიან ცოტაა - ყველაფრის სწავლა ერთ დღეში შეგიძლიათ. ასე რომ, დავიწყოთ.

ლოგარითმების შეკრება და გამოკლება

განვიხილოთ ორი ლოგარითმი ერთი და იგივე ფუძეებით: ლოგაქსი და ლოგაი. შემდეგ მათი დამატება და გამოკლება შესაძლებელია და:

  1. ლოგაქსი + ლოგაი = ლოგა (x y);
  2. ლოგაქსი − ლოგაი = ლოგა (x: y).

მაშასადამე, ლოგარითმების ჯამი ტოლია ნამრავლის ლოგარითმისა, ხოლო სხვაობა უდრის კოეფიციენტის ლოგარითმს. გთხოვთ გაითვალისწინოთ: მთავარი აქ არის იდენტური საფუძველი. თუ მიზეზები განსხვავებულია, ეს წესები არ მუშაობს!

ეს ფორმულები დაგეხმარებათ გამოთვალოთ ლოგარითმული გამოხატულება მაშინაც კი, როცა მისი ცალკეული ნაწილები არ არის გათვალისწინებული (იხილეთ გაკვეთილი „რა არის ლოგარითმი“). გადახედეთ მაგალითებს და ნახეთ:

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log6 4 + log6 9.

ვინაიდან ლოგარითმებს აქვთ იგივე ფუძეები, ვიყენებთ ჯამის ფორმულას:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log2 48 − log2 3.

საფუძვლები იგივეა, ჩვენ ვიყენებთ განსხვავების ფორმულას:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

დავალება. იპოვეთ გამოთქმის მნიშვნელობა: log3 135 − log3 5.

ისევ ბაზები იგივეა, ამიტომ გვაქვს:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

როგორც ხედავთ, ორიგინალური გამონათქვამები შედგება "ცუდი" ლოგარითმებისგან, რომლებიც ცალკე არ არის გამოთვლილი. მაგრამ გარდაქმნების შემდეგ მიიღება სრულიად ნორმალური რიცხვები. ამ ფაქტს ეფუძნება მრავალი ტესტი. დიახ, ტესტის მსგავსი გამონათქვამები წარმოდგენილია მთელი სერიოზულობით (ზოგჯერ პრაქტიკულად ცვლილებების გარეშე) ერთიან სახელმწიფო გამოცდაზე.

მაჩვენებლის ამოღება ლოგარითმიდან

ახლა ცოტა გავართულოთ დავალება. რა მოხდება, თუ ლოგარითმის საფუძველი ან არგუმენტი არის ძალა? მაშინ ამ ხარისხის მაჩვენებლის ამოღება შესაძლებელია ლოგარითმის ნიშნიდან შემდეგი წესების მიხედვით:

ადვილი მისახვედრია, რომ ბოლო წესი პირველ ორს მიჰყვება. მაგრამ უმჯობესია დაიმახსოვროთ ის მაინც - ზოგიერთ შემთხვევაში ეს მნიშვნელოვნად შეამცირებს გამოთვლების რაოდენობას.

რა თქმა უნდა, ყველა ამ წესს აქვს აზრი, თუ ლოგარითმის ODZ დაფიქსირდა: a > 0, a ≠ 1, x > 0. და კიდევ ერთი რამ: ისწავლეთ ყველა ფორმულის გამოყენება არა მხოლოდ მარცხნიდან მარჯვნივ, არამედ პირიქით. , ე.ი. თქვენ შეგიძლიათ შეიყვანოთ რიცხვები ლოგარითმის ნიშანიმდე ლოგარითმში.

როგორ ამოხსნათ ლოგარითმები

ეს არის ის, რაც ყველაზე ხშირად საჭიროა.

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log7 496.

მოდით, თავი დავაღწიოთ არგუმენტის ხარისხს პირველი ფორმულის გამოყენებით:
log7 496 = 6 log7 49 = 6 2 = 12

დავალება. იპოვნეთ გამოთქმის მნიშვნელობა:

გაითვალისწინეთ, რომ მნიშვნელი შეიცავს ლოგარითმს, რომლის საფუძველი და არგუმენტი ზუსტი ხარისხებია: 16 = 24; 49 = 72. გვაქვს:

ვფიქრობ, ბოლო მაგალითი მოითხოვს გარკვეულ განმარტებას. სად წავიდა ლოგარითმები? ბოლო მომენტამდე ჩვენ ვმუშაობთ მხოლოდ მნიშვნელით. იქ მდგომი ლოგარითმის საფუძველი და არგუმენტი წარვადგინეთ სიმძლავრეების სახით და ამოვიღეთ მაჩვენებლები - მივიღეთ „სამსართულიანი“ წილადი.

ახლა გადავხედოთ ძირითად წილადს. მრიცხველი და მნიშვნელი შეიცავს ერთსა და იმავე რიცხვს: log2 7. ვინაიდან log2 7 ≠ 0 შეგვიძლია შევამციროთ წილადი - 2/4 დარჩება მნიშვნელში. არითმეტიკის წესების მიხედვით, ოთხი შეიძლება გადავიდეს მრიცხველზე, რაც გაკეთდა. შედეგი იყო პასუხი: 2.

ახალ საძირკველზე გადასვლა

ლოგარითმების შეკრების და გამოკლების წესებზე საუბრისას, მე კონკრეტულად ხაზგასმით აღვნიშნე, რომ ისინი მუშაობენ მხოლოდ ერთი და იგივე ფუძეებით. რა მოხდება, თუ მიზეზები განსხვავებულია? რა მოხდება, თუ ისინი არ არიან იგივე რიცხვის ზუსტი სიმძლავრეები?

ახალ საძირკველზე გადასვლის ფორმულები სამაშველოში მოდის. მოდით ჩამოვაყალიბოთ ისინი თეორემის სახით:

მოდით იყოს მოცემული ლოგარითმის ლოგაქსი. მაშინ ნებისმიერი c რიცხვისთვის ისეთი, რომ c > 0 და c ≠ 1, ტოლობა მართალია:

კერძოდ, თუ დავაყენებთ c = x, მივიღებთ:

მეორე ფორმულიდან გამომდინარეობს, რომ ლოგარითმის საფუძველი და არგუმენტი შეიძლება შეიცვალოს, მაგრამ ამ შემთხვევაში მთელი გამოთქმა არის „გადაბრუნებული“, ე.ი. ლოგარითმი გამოჩნდება მნიშვნელში.

ეს ფორმულები იშვიათად გვხვდება ჩვეულებრივ ციფრულ გამონათქვამებში. მათი მოხერხებულობის შეფასება შესაძლებელია მხოლოდ ლოგარითმული განტოლებებისა და უტოლობების ამოხსნისას.

თუმცა არის პრობლემები, რომელთა მოგვარებაც საერთოდ შეუძლებელია, გარდა ახალ ფონდში გადასვლისა. მოდით შევხედოთ რამდენიმე მათგანს:

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log5 16 log2 25.

გაითვალისწინეთ, რომ ორივე ლოგარითმის არგუმენტები შეიცავს ზუსტ ძალას. ამოვიღოთ ინდიკატორები: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

ახლა მოდით "შევუბრუნდეთ" მეორე ლოგარითმს:

ვინაიდან პროდუქტი არ იცვლება ფაქტორების გადაწყობისას, ჩვენ მშვიდად გავამრავლეთ ოთხი და ორი, შემდეგ კი ლოგარითმებს მივმართეთ.

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log9 100 lg 3.

პირველი ლოგარითმის საფუძველი და არგუმენტი ზუსტი სიმძლავრეებია. მოდით დავწეროთ ეს და მოვიშოროთ ინდიკატორები:

ახლა მოდით დავაღწიოთ ათობითი ლოგარითმი ახალ ბაზაზე გადასვლით:

ძირითადი ლოგარითმული იდენტურობა

ხშირად ამოხსნის პროცესში აუცილებელია რიცხვის ლოგარითმის სახით წარმოდგენა მოცემულ ბაზაზე. ამ შემთხვევაში შემდეგი ფორმულები დაგვეხმარება:

პირველ შემთხვევაში, რიცხვი n ხდება არგუმენტის მაჩვენებელი. რიცხვი n შეიძლება იყოს აბსოლუტურად ნებისმიერი, რადგან ის მხოლოდ ლოგარითმის მნიშვნელობაა.

მეორე ფორმულა რეალურად არის პერიფრაზირებული განმარტება. ასე ჰქვია: .

ფაქტობრივად, რა მოხდება, თუ რიცხვი b გაიზარდა ისეთ ხარისხამდე, რომ რიცხვი b ამ ხარისხში იძლევა რიცხვს a? მართალია: შედეგი არის იგივე რიცხვი a. კიდევ ერთხელ ყურადღებით წაიკითხეთ ეს აბზაცი - ბევრი ადამიანი ჩერდება მასზე.

ახალ ბაზაზე გადასვლის ფორმულების მსგავსად, ძირითადი ლოგარითმული იდენტურობა ზოგჯერ ერთადერთი შესაძლო გამოსავალია.

დავალება. იპოვნეთ გამოთქმის მნიშვნელობა:

გაითვალისწინეთ, რომ log25 64 = log5 8 - უბრალოდ აიღო კვადრატი ლოგარითმის ფუძიდან და არგუმენტიდან. იმავე ფუძით ძალაუფლების გამრავლების წესების გათვალისწინებით, მივიღებთ:

თუ ვინმემ არ იცის, ეს იყო რეალური დავალება ერთიანი სახელმწიფო გამოცდიდან :)

ლოგარითმული ერთეული და ლოგარითმული ნული

დასასრულს, მე მივცემ ორ იდენტობას, რომლებსაც ძნელად შეიძლება ვუწოდოთ თვისებები - უფრო მეტიც, ისინი ლოგარითმის განსაზღვრის შედეგებია. ისინი გამუდმებით ჩნდებიან პრობლემებში და, რა გასაკვირია, პრობლემებს უქმნიან თუნდაც „მოწინავე“ მოსწავლეებს.

  1. ლოგა = 1 არის. ერთხელ და სამუდამოდ დაიმახსოვრეთ: ლოგარითმი ამ ფუძის ნებისმიერი a ფუძის ტოლია ერთის.
  2. ლოგა 1 = 0 არის. ფუძე a შეიძლება იყოს ნებისმიერი, მაგრამ თუ არგუმენტი შეიცავს ერთს, ლოგარითმი ნულის ტოლია! რადგან a0 = 1 არის განმარტების პირდაპირი შედეგი.

ეს არის ყველა თვისება. დარწმუნდით, რომ ივარჯიშეთ მათ პრაქტიკაში! ჩამოტვირთეთ მოტყუების ფურცელი გაკვეთილის დასაწყისში, ამობეჭდეთ და მოაგვარეთ პრობლემები.

Ჩატვირთვა...Ჩატვირთვა...