Parašykite tiesės ab lygtį. Tiesi linija. Linijos lygtis

Tiesės, einančios per tam tikrą tašką tam tikra kryptimi, lygtis. Tiesės, einančios per du duotus taškus, lygtis. Kampas tarp dviejų tiesių. Dviejų tiesių lygiagretumo ir statmenumo sąlyga. Dviejų tiesių susikirtimo taško nustatymas

1. Tiesės, einančios per nurodytą tašką, lygtis A(x 1 , y 1) tam tikra kryptimi, nulemta nuolydžio k,

y - y 1 = k(x - x 1). (1)

Ši lygtis apibrėžia linijų, einančių per tašką, pieštuką A(x 1 , y 1), kuris vadinamas spindulio centru.

2. Tiesės, einančios per du taškus, lygtis: A(x 1 , y 1) ir B(x 2 , y 2), parašyta taip:

Tiesės, einančios per du duotus taškus, kampinis koeficientas nustatomas pagal formulę

3. Kampas tarp tiesių linijų A Ir B yra kampas, kuriuo turi būti pasukta pirmoji tiesi linija A aplink šių linijų susikirtimo tašką prieš laikrodžio rodyklę, kol jis sutampa su antrąja linija B. Jei dvi tiesės pateiktos lygtimis su nuolydžiu

y = k 1 x + B 1 ,

Tiesė, einanti per tašką K(x 0 ; y 0) ir lygiagreti tiesei y = kx + a, randama pagal formulę:

y - y 0 = k(x - x 0) (1)

Kur k yra linijos nuolydis.

Alternatyvi formulė:
Tiesė, einanti per tašką M 1 (x 1 ; y 1) ir lygiagreti tiesei Ax+By+C=0, pavaizduota lygtimi

A(x-x 1)+B(y-y 1)=0 . (2)

Parašykite tiesės, einančios per tašką K() lygtį ;) lygiagreti tiesei y = x+ .
1 pavyzdys. Parašykite tiesės, einančios per tašką M 0 (-2,1), lygtį ir tuo pačiu metu:
a) lygiagreti tiesei 2x+3y -7 = 0;
b) statmenai tiesei 2x+3y -7 = 0.
Sprendimas . Įsivaizduokime lygtį su nuolydžiu forma y = kx + a. Norėdami tai padaryti, visas reikšmes, išskyrus y, perkelkite į dešinę: 3y = -2x + 7 . Tada padalykite dešinę pusę iš koeficiento 3. Gauname: y = -2/3x + 7/3
Raskime lygtį NK, einantį per tašką K(-2;1), lygiagrečią tiesei y = -2 / 3 x + 7 / 3
Pakeitę x 0 = -2, k = -2 / 3, y 0 = 1, gauname:
y-1 = -2 / 3 (x-(-2))
arba
y = -2 / 3 x - 1 / 3 arba 3 m + 2x +1 = 0

2 pavyzdys. Parašykite tiesės, lygiagrečios tiesei 2x + 5y = 0, lygtį ir kartu su koordinačių ašimis sudaro trikampį, kurio plotas lygus 5.
Sprendimas . Kadangi tiesės lygiagrečios, norimos tiesės lygtis yra 2x + 5y + C = 0. Plotas taisyklingas trikampis, kur a ir b yra jo kojos. Raskime norimos tiesės susikirtimo taškus su koordinačių ašimis:
;
.
Taigi, A(-C/2,0), B(0,-C/5). Pakeiskime jį į ploto formulę: . Gauname du sprendinius: 2x + 5y + 10 = 0 ir 2x + 5y – 10 = 0.

3 pavyzdys. Parašykite tiesės, einančios per tašką (-2; 5) ir lygiagrečios tiesei 5x-7y-4=0, lygtį.
Sprendimas. Šią tiesią liniją galima pavaizduoti lygtimi y = 5/7 x – 4/7 (čia a = 5/7). Norimos tiesės lygtis yra y – 5 = 5 / 7 (x – (-2)), t.y. 7(y-5)=5(x+2) arba 5x-7y+45=0 .

4 pavyzdys. Išsprendę 3 pavyzdį (A=5, B=-7) naudodami formulę (2), randame 5(x+2)-7(y-5)=0.

5 pavyzdys. Parašykite tiesės, einančios per tašką (-2;5) ir lygiagrečios tiesei 7x+10=0, lygtį.
Sprendimas. Čia A = 7, B = 0. (2) formulė duoda 7(x+2)=0, t.y. x+2=0. (1) formulė netaikoma, nes šios lygties negalima išspręsti y atžvilgiu (ši tiesė lygiagreti ordinačių ašiai).

Lygtis parabolės yra kvadratinė funkcija. Yra keletas šios lygties sudarymo variantų. Viskas priklauso nuo to, kokie parametrai pateikiami problemos pareiškime.

Instrukcijos

Parabolė yra kreivė, kuri savo forma primena lanką ir yra galios funkcijos grafikas. Nepriklausomai nuo parabolės savybių, ši yra lygi. Tokia funkcija vadinama lygia; visoms argumento reikšmėms iš apibrėžimo, pasikeitus argumento ženklui, reikšmė nesikeičia: f (-x) = f (x) Pradėkite nuo paprasčiausios funkcijos: y = x^2. Iš jo išvaizdos galime daryti išvadą, kad tai tinka ir teigiamoms, ir neigiamoms argumento x reikšmėms. Taškas, kuriame x = 0 ir tuo pačiu metu y = 0, laikomas tašku.

Žemiau pateikiamos visos pagrindinės šios funkcijos ir jos konstravimo parinktys. Kaip pirmąjį pavyzdį, toliau nagrinėjame funkcijos, kurios formos: f(x)=x^2+a, kur a yra sveikas skaičius. Norint sudaryti šios funkcijos grafiką, reikia perkelti funkcijos grafiką. funkcija f(x) vienetais. Pavyzdys yra funkcija y=x^2+3, kai išilgai y ašies funkcija perkeliama dviem vienetais. Jei suteikta funkcija su priešingas ženklas, pavyzdžiui, y=x^2-3, tada jo grafikas perkeliamas žemyn išilgai y ašies.

Kitas funkcijos tipas, kuriam galima suteikti parabolę, yra f(x)=(x +a)^2. Tokiais atvejais grafikas, priešingai, pasislenka išilgai abscisių ašies (x ašies) vienetais. Pavyzdžiui, galime apsvarstyti funkcijas: y=(x +4)^2 ir y=(x-4)^2. Pirmuoju atveju, kai yra funkcija su pliuso ženklu, grafikas perkeliamas išilgai x ašies į kairę, o antruoju atveju - į dešinę. Visi šie atvejai parodyti paveikslėlyje.

Šiame straipsnyje tęsiama tiesės lygties plokštumoje tema: tokio tipo lygtį laikysime bendrąja tiesės lygtimi. Apibrėžkime teoremą ir pateiksime jos įrodymą; Išsiaiškinkime, kas yra neišsami bendroji linijos lygtis ir kaip atlikti perėjimus iš bendrosios lygties į kitų tipų linijos lygtis. Visą teoriją sustiprinsime iliustracijomis ir praktinių problemų sprendimais.

Yandex.RTB R-A-339285-1

Plokštumoje nurodykime stačiakampę koordinačių sistemą O x y.

1 teorema

Bet kuri pirmojo laipsnio lygtis, turinti formą A x + B y + C = 0, kur A, B, C yra kai kurie realieji skaičiai (A ir B tuo pačiu metu nėra lygūs nuliui), apibrėžia tiesę stačiakampė koordinačių sistema plokštumoje. Savo ruožtu bet kuri tiesė stačiakampėje koordinačių sistemoje plokštumoje yra nustatoma pagal lygtį, kurios forma yra A x + B y + C = 0 tam tikram reikšmių rinkiniui A, B, C.

Įrodymas

Ši teorema susideda iš dviejų punktų; kiekvieną iš jų įrodysime.

  1. Įrodykime, kad lygtis A x + B y + C = 0 apibrėžia tiesę plokštumoje.

Tebūnie koks nors taškas M 0 (x 0 , y 0), kurio koordinatės atitinka lygtį A x + B y + C = 0. Taigi: A x 0 + B y 0 + C = 0. Iš kairės ir dešinės lygčių A x + B y + C = 0 pusių atimkite lygties A x 0 + B y 0 + C = 0 kairę ir dešinę puses, gausime naują lygtį, kuri atrodo kaip A (x - x 0) + B (y - y 0) = 0 . Jis lygus A x + B y + C = 0.

Gauta lygtis A (x - x 0) + B (y - y 0) = 0 yra būtina ir pakankama vektorių n → = (A, B) ir M 0 M → = (x - x) statmenumo sąlyga. 0, y - y 0) . Taigi taškų aibė M (x, y) apibrėžia tiesę stačiakampėje koordinačių sistemoje, statmenoje vektoriaus n → = (A, B) krypčiai. Galime manyti, kad taip nėra, bet tada vektoriai n → = (A, B) ir M 0 M → = (x - x 0, y - y 0) nebūtų statmeni, o lygybė A (x - x 0 ) + B (y - y 0) = 0 nebūtų teisinga.

Vadinasi, lygtis A (x - x 0) + B (y - y 0) = 0 apibrėžia tam tikrą tiesę stačiakampėje koordinačių sistemoje plokštumoje, todėl lygiavertė lygtis A x + B y + C = 0 apibrėžia ta pati linija. Taip įrodėme pirmąją teoremos dalį.

  1. Įrodykime, kad bet kurią tiesę stačiakampėje koordinačių sistemoje plokštumoje galima nurodyti pirmojo laipsnio lygtimi A x + B y + C = 0.

Apibrėžkime tiesę a stačiakampėje koordinačių sistemoje plokštumoje; taškas M 0 (x 0 , y 0), per kurį eina ši tiesė, taip pat šios tiesės normalusis vektorius n → = (A, B) .

Tegul taip pat yra tam tikras taškas M (x, y) – tiesės slankusis taškas. Šiuo atveju vektoriai n → = (A, B) ir M 0 M → = (x - x 0, y - y 0) yra statmeni vienas kitam, o jų skaliarinė sandauga lygi nuliui:

n → , M 0 M → = A (x - x 0) + B (y - y 0) = 0

Perrašykime lygtį A x + B y - A x 0 - B y 0 = 0, apibrėžkime C: C = - A x 0 - B y 0 ir į galutinis rezultatas gauname lygtį A x + B y + C = 0.

Taigi, mes įrodėme antrąją teoremos dalį ir įrodėme visą teoremą kaip visumą.

1 apibrėžimas

Formos lygtis A x + B y + C = 0 - Tai bendroji tiesės lygtis plokštumoje stačiakampėje koordinačių sistemojeOxy.

Remdamiesi įrodyta teorema, galime daryti išvadą, kad tiesė ir jos bendroji lygtis, apibrėžta plokštumoje fiksuotoje stačiakampėje koordinačių sistemoje, yra neatsiejamai susijusios. Kitaip tariant, pradinė eilutė atitinka jos bendrąją lygtį; bendroji linijos lygtis atitinka duotąją tiesę.

Iš teoremos įrodymo taip pat išplaukia, kad kintamųjų x ir y koeficientai A ir B yra tiesės normaliojo vektoriaus koordinatės, kurią pateikia bendroji tiesės lygtis A x + B y + C = 0.

Pasvarstykime konkretus pavyzdys bendroji tiesės lygtis.

Tegu yra lygtis 2 x + 3 y - 2 = 0, kuri atitinka tiesę duotoje stačiakampėje koordinačių sistemoje. Normalus šios linijos vektorius yra vektorius n → = (2, 3) . Nubrėžkime brėžinyje nurodytą tiesią liniją.

Taip pat galime teigti: tiesė, kurią matome brėžinyje, yra nustatoma pagal bendrąją lygtį 2 x + 3 y - 2 = 0, nes visų duotoje tiesėje esančių taškų koordinatės atitinka šią lygtį.

Lygtį λ · A x + λ · B y + λ · C = 0 galime gauti padauginę abi bendrosios tiesės lygties puses iš skaičiaus λ, nelygaus nuliui. Gauta lygtis yra lygiavertė pradinei bendrajai lygčiai, todėl ji apibūdins tą pačią tiesę plokštumoje.

2 apibrėžimas

Užbaikite bendrąją linijos lygtį– tokia bendroji tiesės A x + B y + C = 0 lygtis, kurioje skaičiai A, B, C skiriasi nuo nulio. Priešingu atveju lygtis yra Nebaigtas.

Išanalizuokime visus nepilnos bendrosios tiesės lygties variantus.

  1. Kai A = 0, B ≠ 0, C ≠ 0, bendroji lygtis įgauna formą B y + C = 0. Tokia nepilna bendroji lygtis stačiakampėje koordinačių sistemoje O x y apibrėžia tiesę, lygiagrečią O x ašiai, nes bet kuriai realiajai x reikšmei kintamasis y įgaus reikšmę - C B. Kitaip tariant, bendroji tiesės A x + B y + C = 0 lygtis, kai A = 0, B ≠ 0, nurodo taškų (x, y), kurių koordinatės lygios tam pačiam skaičiui, vietą. - C B.
  2. Jei A = 0, B ≠ 0, C = 0, bendroji lygtis yra y = 0. Ši nepilna lygtis apibrėžia x ašies O x .
  3. Kai A ≠ 0, B = 0, C ≠ 0, gauname nepilną bendrąją lygtį A x + C = 0, apibrėžiančią tiesę, lygiagrečią ordinatėms.
  4. Tegu A ≠ 0, B = 0, C = 0, tada nepilna bendroji lygtis bus x = 0, ir tai yra koordinačių tiesės O y lygtis.
  5. Galiausiai, kai A ≠ 0, B ≠ 0, C = 0, nepilna bendroji lygtis įgauna formą A x + B y = 0. Ir ši lygtis apibūdina tiesią liniją, kuri eina per pradžią. Tiesą sakant, skaičių pora (0, 0) atitinka lygybę A x + B y = 0, nes A · 0 + B · 0 = 0.

Grafiškai pavaizduokime visus aukščiau išvardintus nepilnos bendrosios tiesės lygties tipus.

1 pavyzdys

Yra žinoma, kad duota tiesė yra lygiagreti ordinačių ašiai ir eina per tašką 2 7, - 11. Būtina užrašyti bendrąją duotosios tiesės lygtį.

Sprendimas

Ordinačių ašiai lygiagreti tiesė pateikiama A x + C = 0 formos lygtimi, kurioje A ≠ 0. Sąlyga taip pat nurodo taško, per kurį eina tiesė, koordinates, o šio taško koordinatės atitinka nepilnos bendrosios lygties A x + C = 0 sąlygas, t.y. lygybė yra tiesa:

A 2 7 + C = 0

Iš jo galima nustatyti C, jei A suteikiame kokią nors ne nulį reikšmę, pavyzdžiui, A = 7. Šiuo atveju gauname: 7 · 2 7 + C = 0 ⇔ C = - 2. Žinome abu koeficientus A ir C, pakeisime juos lygtimi A x + C = 0 ir gauname reikiamą tiesės lygtį: 7 x - 2 = 0

Atsakymas: 7 x - 2 = 0

2 pavyzdys

Brėžinyje pavaizduota tiesi linija; reikia užrašyti jos lygtį.

Sprendimas

Pateiktas brėžinys leidžia lengvai paimti pradinius duomenis, kad išspręstume problemą. Brėžinyje matome, kad duotoji tiesė yra lygiagreti O x ašiai ir eina per tašką (0, 3).

Tiesi linija, lygiagreti abscisei, nustatoma nepilna bendroji lygtis B y + C = 0. Raskime B ir C reikšmes. Taško (0, 3) koordinatės, kadangi per jį eina duotoji tiesė, tenkins tiesės B y + C = 0 lygtį, tuomet galioja lygybė: B · 3 + C = 0. Nustatykime B vertę, kuri skiriasi nuo nulio. Tarkime B = 1, tokiu atveju iš lygybės B · 3 + C = 0 galime rasti C: C = - 3. Mes naudojame žinomos vertės B ir C, gauname reikiamą tiesės lygtį: y - 3 = 0.

Atsakymas: y-3 = 0.

Bendroji tiesės, einančios per tam tikrą plokštumos tašką, lygtis

Tegul duotoji tiesė eina per tašką M 0 (x 0 , y 0), tada jos koordinatės atitinka bendrąją tiesės lygtį, t.y. lygybė yra teisinga: A x 0 + B y 0 + C = 0. Atimkime kairę ir dešinę šios lygties puses iš kairės ir dešinės bendrosios pilnosios lygties pusės. Gauname: A (x - x 0) + B (y - y 0) + C = 0, ši lygtis yra lygiavertė pradinei bendrajai, eina per tašką M 0 (x 0, y 0) ir turi normalią vektorius n → = (A, B) .

Gautas rezultatas leidžia užrašyti bendrąją tiesės lygtį su žinomomis normalaus linijos vektoriaus koordinatėmis ir tam tikro šios linijos taško koordinatėmis.

3 pavyzdys

Duotas taškas M 0 (- 3, 4), per kurį eina tiesė, ir šios tiesės normalusis vektorius n → = (1 , - 2) . Būtina užrašyti duotosios tiesės lygtį.

Sprendimas

Pradinės sąlygos leidžia gauti reikiamus duomenis lygčiai sudaryti: A = 1, B = - 2, x 0 = - 3, y 0 = 4. Tada:

A (x - x 0) + B (y - y 0) = 0 ⇔ 1 (x - (- 3)) - 2 y (y - 4) = 0 ⇔ ⇔ x - 2 y + 22 = 0

Problema galėjo būti išspręsta kitaip. Bendroji tiesės lygtis yra A x + B y + C = 0. Pateiktas normalus vektorius leidžia gauti koeficientų A ir B reikšmes, tada:

A x + B y + C = 0 ⇔ 1 x - 2 y + C = 0 ⇔ x - 2 y + C = 0

Dabar suraskime C reikšmę naudodami tašką M 0 (- 3, 4), nurodytą uždavinio sąlygos, per kurį eina tiesė. Šio taško koordinatės atitinka lygtį x - 2 · y + C = 0, t.y. - 3 - 2 4 + C = 0. Taigi C = 11. Reikiama tiesės lygtis yra tokia: x - 2 · y + 11 = 0.

Atsakymas: x - 2 y + 11 = 0 .

4 pavyzdys

Duota tiesė 2 3 x - y - 1 2 = 0 ir taškas M 0, esantis šioje tiesėje. Žinoma tik šio taško abscisė ir ji lygi – 3. Būtina nustatyti duoto taško ordinatę.

Sprendimas

Taško M 0 koordinates pažymėkime x 0 ir y 0 . Šaltiniai duomenys rodo, kad x 0 = - 3. Kadangi taškas priklauso duotai tiesei, tai jo koordinatės atitinka bendrąją šios tiesės lygtį. Tada lygybė bus tiesa:

2 3 x 0 – y 0 – 1 2 = 0

Apibrėžkite y 0: 2 3 · (- 3) - y 0 - 1 2 = 0 ⇔ - 5 2 - y 0 = 0 ⇔ y 0 = - 5 2

Atsakymas: - 5 2

Perėjimas nuo bendrosios tiesės lygties prie kito tipo tiesės lygčių ir atvirkščiai

Kaip žinome, yra keletas lygčių tipų, skirtų tai pačiai tiesei plokštumoje. Lygties tipo pasirinkimas priklauso nuo uždavinio sąlygų; galima pasirinkti patogiau sprendžiant. Čia labai praverčia įgūdžiai konvertuoti vieno tipo lygtį į kito tipo lygtį.

Pirmiausia panagrinėkime perėjimą nuo bendrosios A x + B y + C = 0 lygties į kanoninę lygtį x - x 1 a x = y - y 1 a y.

Jei A ≠ 0, tai terminą B y perkeliame į dešinę bendrosios lygties pusę. Kairėje pusėje mes išimame A iš skliaustų. Dėl to gauname: A x + C A = - B y.

Šią lygybę galima parašyti kaip proporciją: x + C A - B = y A.

Jei B ≠ 0, kairėje bendrosios lygties pusėje paliekame tik terminą A x, kitus perkeliame į dešinę, gauname: A x = - B y - C. Iš skliaustų paimame – B, tada: A x = - B y + C B .

Perrašykime lygybę proporcijos forma: x - B = y + C B A.

Žinoma, nereikia įsiminti gautų formulių. Pereinant nuo bendrosios lygties prie kanoninės, pakanka žinoti veiksmų algoritmą.

5 pavyzdys

Pateikiama bendroji tiesės 3 lygtis y - 4 = 0. Būtina jį paversti kanonine lygtimi.

Sprendimas

Parašykime pradinę lygtį kaip 3 y – 4 = 0. Toliau dirbame pagal algoritmą: terminas 0 x lieka kairėje pusėje; o dešinėje pusėje dedame - 3 iš skliaustų; gauname: 0 x = - 3 y - 4 3 .

Gautą lygybę parašykime proporcija: x - 3 = y - 4 3 0 . Taigi, mes gavome kanoninės formos lygtį.

Atsakymas: x - 3 = y - 4 3 0.

Norint paversti bendrąją tiesės lygtį į parametrines, pirmiausia pereinama prie kanoninės formos, o po to pereinama nuo kanoninės tiesės lygties prie parametrinių lygčių.

6 pavyzdys

Tiesi linija pateikiama lygtimi 2 x - 5 y - 1 = 0. Užrašykite šios eilutės parametrines lygtis.

Sprendimas

Pereikime nuo bendrosios lygties prie kanoninės:

2 x - 5 y - 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Dabar paimame abi gautos kanoninės lygties puses, lygias λ, tada:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 λ y = - 1 5 + 2 λ , λ ∈ R

Atsakymas:x = 5 λ y = - 1 5 + 2 λ , λ ∈ R

Bendrąją lygtį galima konvertuoti į tiesės, kurios nuolydis y = k · x + b, lygtį, bet tik tada, kai B ≠ 0. Perėjimui terminą B y paliekame kairėje pusėje, likusieji perkeliami į dešinę. Gauname: B y = - A x - C . Padalinkime abi gautos lygybės puses iš B, kurios skiriasi nuo nulio: y = - A B x - C B.

7 pavyzdys

Pateikiama bendroji tiesės lygtis: 2 x + 7 y = 0. Turite konvertuoti šią lygtį į nuolydžio lygtį.

Sprendimas

Atlikime reikiamus veiksmus pagal algoritmą:

2 x + 7 y = 0 ⇔ 7 y - 2 x ⇔ y = - 2 7 x

Atsakymas: y = - 2 7 x .

Iš bendrosios tiesės lygties pakanka tiesiog gauti lygtį x a + y b = 1 formos atkarpose. Norėdami atlikti tokį perėjimą, skaičių C perkeliame į dešinę lygybės pusę, gautos lygybės abi puses padaliname iš – C ir galiausiai perkeliame kintamųjų x ir y koeficientus į vardiklius:

A x + B y + C = 0 ⇔ A x + B y = - C ⇔ ⇔ A - C x + B - C y = 1 ⇔ x - C A + y - C B = 1

8 pavyzdys

Reikia paversti bendrąją tiesės x - 7 y + 1 2 = 0 lygtį į tiesės lygtį atkarpomis.

Sprendimas

Perkelkime 1 2 į dešinę pusę: x - 7 y + 1 2 = 0 ⇔ x - 7 y = - 1 2 .

Abi lygybės puses padalinkime iš -1/2: x - 7 y = - 1 2 ⇔ 1 - 1 2 x - 7 - 1 2 y = 1 .

Atsakymas: x - 1 2 + y 1 14 = 1 .

Apskritai atvirkštinis perėjimas taip pat yra lengvas: nuo kitų tipų lygčių prie bendrosios.

Linijos lygtis atkarpose ir lygtis su kampiniu koeficientu gali būti lengvai konvertuojama į bendrą, tiesiog surinkus visus terminus kairėje lygybės pusėje:

x a + y b ⇔ 1 a x + 1 b y - 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y - k x - b = 0 ⇔ A x + B y + C = 0

Kanoninė lygtis konvertuojama į bendrąją pagal šią schemą:

x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x (y - y 1) ⇔ ⇔ a y x - a x y - a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Norėdami pereiti nuo parametrinių, pirmiausia pereikite prie kanoninio, o tada prie bendro:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x - x 1 a x = y - y 1 a y ⇔ A x + B y + C = 0

9 pavyzdys

Pateikiamos tiesės x = - 1 + 2 · λ y = 4 parametrinės lygtys. Būtina užrašyti bendrąją šios tiesės lygtį.

Sprendimas

Pereikime nuo parametrinių lygčių prie kanoninių:

x = - 1 + 2 · λ y = 4 ⇔ x = - 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y - 4 0 ⇔ x + 1 2 = y - 4 0

Pereikime nuo kanoninio prie bendro:

x + 1 2 = y - 4 0 ⇔ 0 · (x + 1) = 2 (y - 4) ⇔ y - 4 = 0

Atsakymas: y – 4 = 0

10 pavyzdys

Pateikta tiesės lygtis atkarpose x 3 + y 1 2 = 1. Būtina pereiti prie bendra išvaizda lygtys

Sprendimas:

Tiesiog perrašome lygtį reikiama forma:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y - 1 = 0

Atsakymas: 1 3 x + 2 y - 1 = 0 .

Bendrosios tiesės lygties sudarymas

Aukščiau sakėme, kad bendrąją lygtį galima parašyti žinomomis normaliojo vektoriaus koordinatėmis ir taško, per kurį eina linija, koordinatėmis. Tokia tiesė apibrėžiama lygtimi A (x - x 0) + B (y - y 0) = 0. Ten taip pat išanalizavome atitinkamą pavyzdį.

Dabar pažiūrėkime daugiau sudėtingų pavyzdžių, kuriame pirmiausia reikia nustatyti normalaus vektoriaus koordinates.

11 pavyzdys

Duota tiesė, lygiagreti tiesei 2 x - 3 y + 3 3 = 0. Taip pat žinomas taškas M 0 (4, 1), per kurį eina duotoji tiesė. Būtina užrašyti duotosios tiesės lygtį.

Sprendimas

Pradinės sąlygos mums sako, kad tiesės yra lygiagrečios, tada kaip normalųjį tiesės vektorių, kurios lygtį reikia parašyti, imame tiesės n → = (2, - 3) krypties vektorių: 2 x – 3 m. + 3 3 = 0. Dabar mes žinome visus reikalingus duomenis, kad sukurtume bendrą linijos lygtį:

A (x - x 0) + B (y - y 0) = 0 ⇔ 2 (x - 4) - 3 (y - 1) = 0 ⇔ 2 x - 3 y - 5 = 0

Atsakymas: 2 x - 3 y - 5 = 0 .

12 pavyzdys

Duota tiesė eina per pradžią statmenai tiesei x - 2 3 = y + 4 5. Būtina sukurti bendrąją lygtį duotai linijai.

Sprendimas

Normalusis tam tikros linijos vektorius bus tiesės x - 2 3 = y + 4 5 krypties vektorius.

Tada n → = (3, 5) . Tiesi linija eina per pradžią, t.y. per tašką O (0, 0). Sukurkime bendrąją duotosios linijos lygtį:

A (x - x 0) + B (y - y 0) = 0 ⇔ 3 (x - 0) + 5 (y - 0) = 0 ⇔ 3 x + 5 y = 0

Atsakymas: 3 x + 5 y = 0 .

Jei tekste pastebėjote klaidą, pažymėkite ją ir paspauskite Ctrl+Enter

Kanoninės tiesės erdvėje lygtys yra lygtys, apibrėžiančios tiesę, einančią per nurodytą tašką kolineariai krypties vektoriui.

Tegu duotas taškas ir krypties vektorius. Savavališkas taškas yra tiesėje l tik jei vektoriai ir yra kolineariniai, t.y., jiems tenkinama sąlyga:

.

Aukščiau pateiktos lygtys yra kanoninės tiesės lygtys.

Skaičiai m , n Ir p yra krypties vektoriaus projekcijos į koordinačių ašis. Kadangi vektorius yra ne nulis, tada visi skaičiai m , n Ir p vienu metu negali būti lygus nuliui. Tačiau vienas ar du iš jų gali pasirodyti lygūs nuliui. Pavyzdžiui, analitinėje geometrijoje leidžiamas šis įrašas:

,

o tai reiškia, kad vektoriaus projekcijos ašyje Oy Ir Ozas yra lygūs nuliui. Todėl ir vektorius, ir tiesė, apibrėžta kanoninėmis lygtimis, yra statmenos ašims Oy Ir Ozas t.y. lėktuvai yOz .

1 pavyzdys. Parašykite lygtis tiesei, esančioje statmenai plokštumai ir einančios per šios plokštumos susikirtimo su ašimi tašką Ozas .

Sprendimas. Raskime šios plokštumos susikirtimo tašką su ašimi Ozas. Kadangi bet kuris taškas, esantis ant ašies Ozas, turi koordinates, tada, darant prielaidą, kad pateiktoje plokštumos lygtyje x = y = 0, gauname 4 z- 8 = 0 arba z= 2. Todėl šios plokštumos susikirtimo taškas su ašimi Ozas turi koordinates (0; 0; 2) . Kadangi norima tiesė yra statmena plokštumai, ji lygiagreti jos normaliajam vektoriui. Todėl tiesės krypties vektorius gali būti normalusis vektorius duotas lėktuvas.

Dabar užrašykite reikiamas tiesės, einančios per tašką, lygtis A= (0; 0; 2) vektoriaus kryptimi:

Tiesės, einančios per du duotus taškus, lygtys

Tiesią liniją galima apibrėžti dviem taškais, esančiais ant jos Ir Šiuo atveju tiesės nukreipiantis vektorius gali būti vektorius . Tada kanoninės linijos lygtys įgauna formą

.

Aukščiau pateiktos lygtys nustato tiesę, einančią per du nurodytus taškus.

2 pavyzdys. Parašykite lygtį tiesės erdvėje, einančios per taškus ir .

Sprendimas. Užrašykime reikiamas tiesės lygtis tokia forma, kokia pateikta teorinėje nuorodoje:

.

Kadangi , Tada norima tiesi linija yra statmena ašiai Oy .

Tiesi kaip plokštumų susikirtimo linija

Tiesė erdvėje gali būti apibrėžta kaip dviejų nelygiagrečių plokštumų susikirtimo linija ir, t.y. kaip taškų rinkinys, atitinkantis dviejų tiesinių lygčių sistemą

Sistemos lygtys dar vadinamos bendrosiomis tiesės erdvėje lygtimis.

3 pavyzdys. Sudarykite kanonines tiesės lygtis erdvėje, pateiktą bendromis lygtimis

Sprendimas. Norėdami parašyti kanonines tiesės lygtis arba, kas yra tas pats, tiesės, einančios per du duotus taškus, lygtis, turite rasti bet kurių dviejų tiesės taškų koordinates. Pavyzdžiui, jie gali būti tiesės susikirtimo taškai su bet kuriomis dviem koordinačių plokštumomis yOz Ir xOz .

Tiesės ir plokštumos susikirtimo taškas yOz turi abscisę x= 0. Todėl šioje lygčių sistemoje darant prielaidą x= 0, gauname sistemą su dviem kintamaisiais:

Jos sprendimas y = 2 , z= 6 kartu su x= 0 apibrėžia tašką A(0; 2; 6) norima eilutė. Tada darant prielaidą, kad pateiktoje lygčių sistemoje y= 0, gauname sistemą

Jos sprendimas x = -2 , z= 0 kartu su y= 0 apibrėžia tašką B(-2; 0; 0) tiesės susikirtimas su plokštuma xOz .

Dabar užrašykite tiesės, einančios per taškus, lygtis A(0; 2; 6) ir B (-2; 0; 0) :

,

arba padalijus vardiklius iš -2:

,

Įkeliama...Įkeliama...