Работа сердца и физические нагрузки. Как влияют физические нагрузки на сердце и состояние сосудов? Профессия против сердца

Объем потребления мышцей кислорода варьирует в зависимости от типа волокон. В медленных волокнах способность митохондрий извлекать кислород из крови примерно в 3-5 раз выше по сравнению с быстрыми волокнами.

Минутный объем сердца - наиболее важ ный фактор, определяющий МПК. Во время тренировки на выносливость минутный объем сердца может увеличиться на 20%. Это является основной причиной изменений МПК, происходящих в результате тренировки, так как разница в (а~в)0 2 между выносливыми спортсменами и людьми, ведущими сидячий образ жизни, невелика.

Несмотря на то, что высокий уровень МПК важен для выносливости, это не единственное условие успеха. Другие факторы спортивного успеха - способность продолжать тренироваться при высоком уровне потребления 0 2 , скорость и способность к удалению молочной кислоты.

4. РЕГУЛЯЦИЯ ДЫХАНИЯ ПРИ ФИЗИЧЕСКОЙ НАГРУЗКЕ

Во время физической нагрузки извлечение 0 2 из крови увеличивается втрое, что сопровождается 30-кратным или даже большим увеличением кровотока. Таким образом, во время физической нагрузки скорость метаболизма в мышцах может повыситься в целых 100 раз.

4.1. Повышение альвеолярно-капиллярного градиента Р0 2 , кровоток и удаление С0 2

Во время физической нагрузки увеличивается количество 0 2 , поступающего в кровь в легких. Р0 2 крови, попадающей в легочные капилляры, падает с 5,3 до 3,3 кПа (с 40 до 25 мм рт. ст.) или меньше, вследствие чего альвео-лярно-капиллярный градиент Р0 2 увеличивается, и больше 0 2 попадает в кровь. Минутный объем кровотока также увеличивается с 5,5 л/мин до 20~35 л/мин. Поэтому общее количество 0 2 , поступающего в кровь, увеличивается с 250 мл/мин в состоянии покое до значений, достигающих 4000 мл/мин. Увеличивается также количество С0 2 , удаленного из каждой единицы крови.

Рост потребления 0 2 пропорционален нагрузке вплоть до максимального уровня. При увеличении нагрузки наступает момент, когда в крови начинает повышаться уровень молочной кислоты (лактатный порог). Когда аэробный ресинтез запасов энергии не поспевает за их использованием, образование молочной кислоты в мышцах возрастает, и возникает кислородная задолженность. На практике анаэробный порог достигается, когда уровень молочной кислоты в крови превышает 4 ммоль/л. Анаэробный порог можно изучать по изменению параметров дыхания и с помощью электромиографического исследования, при этом нет необходимости брать образцы крови для анализа, причиняющие некоторую боль.

4.2. Изменения дыхательного коэффициента (ДК) во время физической нагрузки

Дыхательный коэффициент (ДК) представляет собой отношение объема произведенного С0 2 к объему 0 2 , потребленного в единицу времени. В состоянии покоя он может составлять, например, 0,8. Когда преобладает метаболизм глюкозы, он равен 1. У людей, находящихся в плохой физической форме, метаболизм глюкозы преобладает над метаболизмом жиров уже при низком уровне нагрузки. У тренированных, выносливых спортсменов способность использовать жирные кислоты для производства энергии сохраняется и при высоком уровне нагрузки. Во время физической нагрузки ДК повышается; его значение, возможно, даже достигает 1,5-2,0 из-за дополнительного С0 2 , образовавшегося при буферизации молочной кислоты во время активной физической нагрузки. Во время компенсации кислородной задолженности после физической нагрузки ДК падает до 0,5 или ниже.

4.3. Контроль вентиляции во время физической нагрузки

Вентиляция легких увеличивается с началом физической нагрузки, но не сразу достигает необходимого в данный момент уровня, процесс происходит постепенно. Неотложная потребность в энергии восполняется богатыми энергией фосфатами, а затем их ресинтезом с использованием кислорода, который содержится в тканевой жидкости или накоплен в переносящих кислород белках (рис. 5).

В начале физической нагрузки происходит резкое увеличение вентиляции, а в конце ее - столь же резкое уменьшение. Это наводит на мысль об условном или приобретенном рефлексе. Во время физической нагрузки можно ожидать заметного уменьшения давления кислорода в артериальной крови и повышения давления С0 2 в венозной крови из-за возросшего метаболизма скелетных мышц. Однако оба они остаются почти в норме, демонстрируя чрезвычайно высокую способность дыхательной системы обеспечивать адекватную оксигенацию крови, даже при тяжелой нагрузке. Поэтому газам крови не нужно отклоняться от нормы, чтобы физическая нагрузка простимулировала дыхание.

Так как РС0 2 в артериальной крови не меняется во время умеренной физической нагрузки, накопления избытка Н + в результате из накопления С0 2 не наблюдается. Но во время напряженной физической нагрузки наблюдается увеличение концентрации Н + в артериальной крови вследствие образования и поступления молочной кислоты из мышц в кровь. Это изменение концентрации Н + , возможно, отчасти является причиной гипервентиляции во время серьезной физической нагрузки.

Дыхание во время физической нагрузки, скорее всего, стимулируется в основном ней-рогенными механизмами. Часть этой стимуляции является результатом непосредственного возбуждения дыхательного центра ответвлениями аксонов, спускающихся из мозга к мотонейронам, обслуживающим сокращающиеся мышцы. Считается, что существенную роль в стимуляции дыхания во время физической нагрузки играют также афферентные пути от рецепторов в суставах и мышцах.

Кроме того, в результате повышенной физической активности часто возрастает температура тела, что способствует стимуляции альвеолярной вентиляции. Возможно, стимуляции вентиляции во время физической нагрузки способствует увеличение концентрации адреналина и норадреналина в плазме крови.

4.4. Фактор, ограничивающий способность переносить физическую нагрузку

Нри максимальной физической нагрузке фактическая вентиляция легких составляет всего 50% от максимального дыхательного объема. Кроме того, насыщение гемоглобина артериальной крови кислородом происходит даже во время самой тяжелой физической нагрузки. Поэтому дыхательная система не может быть фактором, ограничивающим способность здорового человека переносить физическую нагрузку. Однако для людей в плохой физической форме натренированность дыхательных мышц может стать проблемой. Фактором, ограничивающим способность переносить физическую нагрузку, является способность сердца накачивать кровь к мышцам, которая, в свою очередь, влияет на максимальную скорость переноса 0 2 Функциональное состояние сердечно-сосудистой системы является распространенной проблемой. Митохондрии в сокращающейся мышце - это конечные потребители кислорода и важнейший определяющий фактор выносливости.

5. УТОМЛЕНИЕ

Все испытывают мышечную усталость, но пока еще остаются некоторые аспекты, которые в этом явлении поняты не до конца.

Усталость может иметь компонент, связанный с центральной нервной системой. Чтобы продолжить тренировку или участие в соревнованиях, нужна мотивация. Люди - это социальные животные, и общение является важным фактором в процессе тренировки. В принципе, важную роль в утомлении могут играть мотонейроны, управляющие двигательными единицами. Нейроны высвобождают ацетилхолин при каждом командном импульсе. Запасы аце-тилхолина ограничены, и его синтез требует как энергии, так и сырья, причем запасы холина гораздо меньше, чем запасы уксусной кислоты. Следующим этапом, который может участвовать в утомлении, является нервно-мышечный синапс, где ацетилхолин передает импульс мышечным волокнам, а затем расщепляется. Еще одним источником усталости может быть клеточная мембрана волокна и ее транспортеры ионов. Необходимые ионы и их баланс могут быть слабым местом. В мышечных волокнах высок уровень калия, но он высвобождается, когда потенциал действия распространяется по всей цитоплазматической мембране мышечного волокна, и он, таким образом, может диффундировать, если повторный захват происходит слишком медленно. Транспортеры ионов нуждаются в энергии, равно как и внутриклеточные транспортеры кальция в мембране саркоплазматического ретикулума. Возможно также, что меняются транспортеры ионов или их липидная среда в мембранах. Источником энергии служат цитоплаз-матический гликолиз и митохондриальное окисление энергетического топлива. Каталитические белки могут стать менее функциональными из-за изменений, которые они претерпевают во время своего действия. Одной из причин является накопление молочной кислоты и понижение уровня рН, если нагрузка была настолько высока, что гликолиз происходит слишком быстро по сравнению с митохондриальным окислением вследствие ограничения усвояемости кислорода. Даже если затем обеспечение кислородом происходит удовлетворительно, но уровень нагрузки высок (например, 75-80% максимального потребления кислорода у спортсмена), утомление номешает выполнению нагрузки из-за нехватки гликогена в мышечных волокнах, хотя уровень глюкозы крови остается нормальным. Это указывает на важность правильного питания перед тяжелой физической нагрузкой на выносливость. Однако не рекомендуется принимать пищу непосредственно неред физической нагрузкой, потому что в таком случае кровообращение направлено в брюшную область и недоступно для мышц. Запасы гликогена нужно пополнять заранее.

Повышенное потребление кислорода и полученные из кислорода радикалы могут повредить всем функциям мышечных волокон, если системе антиоксидантной защиты не удается защитить ферменты, мембранные липиды и транспортеры ионов. Очевидно, что антиоксидантная защита -одно из слабых мест, так как эксперименты над крысами показали, что пониженный уровень глутатиона непосредственно зависит от времени испытания. Проникновение митохондриальных и цитоплазматических белков в плазму во время тяжелой физической нагрузки указывает на то, что митохондрии могут быть повреждены, равно как и цитоплазматическая мембрана мышечных волокон.

6. ЗАКЛЮЧЕНИЕ

Тренировка на выносливость может увеличить плотность капилляров в мышцах и даже размер коронарных артерий, обеспечивая повышение объема кровообращения. Она может также уменьшить как систолическое, так и диастолическое кровяное давление примерно на 1-1 ,3 кПа (8~10 мм рт. ст.) у людей с умеренной гипертонией. Физическая нагрузка оказывает благоприятное воздействие на уровень липидов в крови. Хотя уменьшение общего содержания холестерина и уровня холестерина липопротеинов низкой плотности при тренировках на выносливость относительно невелико, по всей видимости, наблюдается относительно большое повышение уровня холестерина липопротеинов высокой плотности и снижение уровня тригли-церидов. Физическая нагрузка также играет важную роль в контроле и снижении массы тела и при контроле диабета. Благодаря этому и многим другим благоприятным воздействиям, регулярная физическая нагрузка может не только уменьшить риск сердечных приступов и инсультов, но и повышает качество жизни с улучшением как физической формы, так и умственных способностей. Кроме того, она может также способствовать увеличению продолжительности здоровой жизни.

За последние три десятилетия внимание исследователей, занимающихся различными аспектами физической нагрузки, переместилось с отдельных органов на внутриклеточный/молекулярный уровень. Поэтому в будущем исследования физической нагрузки, вероятно, и дальше будут испытывать влияние новых технологий (например, генные микрочипы) и других инструментов молекулярной биологии. Эти обстоятельства, возможно, приведут к появлению таких областей, как функциональная гено-мика (идентификация функций различных участков генома) и протеомика (исследование свойств белков) в связи с физической нагрузкой.

ГЛОССАРИЙ

АДФ ~ аденозиндифосфат, высокоэнергетическое фосфатное соединение, из которого образуется АТФ.

Актин - тонкая нить белка, которая взаимодействует с нитями миозина, чтобы заставить мышцу сократиться.

Анаэробный - в отсутствие кислорода.

Атрофия - потеря размера или массы ткани тела, например, атрофия мышц при неподвижности.

АТФ - аденозинтрифосфат, высокоэнергетическое фосфатное соединение, из которого организм получает энергию.

Аэробный - в присутствии кислорода.

Аэробный метаболизм - процесс, происходящий в митохондриях, в ходе которого кислород используется для производства энергии (АТФ); также известен как клеточное дыхание.

БГ - быстрый гликолитический.

Беговая дорожка - эргометр, в котором система, состоящая из мотора и шкива, приводит в движение широкое полотно, по которому человек может идти или бежать.

БОГ - быстрый окислительно-гликолитиче-ский.

Быстрое волокно - тип мышечных волокон, имеющий высокую миозин-АТФазную активность с низкой окислительной способностью; задействуется в основном при скоростной или силовой активности.

Венозный возврат - объем крови, поступающий к сердцу в единицу времени.

Выносливость - способность сопротивляться усталости; включает в себя мышечную выносливость и кардиореспираторную выносливость.

Гематокрит - процентное содержание эритроцитов в общем объеме крови.

Гидростатическое давление - давление, оказываемое жидкостью.

Гипертрофия - увеличение размера мышц в результате регулярной краткосрочной физической нагрузки высокой интенсивности.

Гликоген - углевод (сильно разветвлённый полисахарид, состоящий из субъединиц глюкозы), накапливающийся в теле; встречается в основном в мышцах и печени.

Гликолиз - метаболический путь, который расщепляет глюкозу на две молекулы пи-ровиноградной кислоты (аэробно) или две молекулы молочной кислоты (анаэробно).

Гликолитический иуть метаболизма ~ метаболический путь, при котором энергия производится с помощью гликолиза.

Гликолитическое волокно - волокно скелетной мышцы, в котором наблюдается высокая концентрация гликолитических ферментов и большой запас гликогена.

ДК - дыхательный коэффициент, представляющий собой отношение объема произведенного С0 2 к объему 0 2 , потребленного в единицу времени

Закон Франка-Старлинга - в определенных пределах повышенный конечно-диастоли-ческий объем сердца (увеличение длины мышечных волокон) увеличивает силу его сокращения.

Изнеможение - неспособность работать.

К - креатин, вещество, содержащееся в скелетных мышцах, обычно в форме креатин-фосфата (КФ).

Кардиоваскулярный сдвиг - увеличение частоты сердечных сокращений во время физической нагрузки для компенсации уменьшения ударного объема сердца. Эта компенсация помогает поддерживать постоянный минутный объем сердца.

Кардиореснираторная выносливость - способность выдерживать длительную физическую нагрузку.

Кислородная задолженность - повышенное потребление кислорода после физической нагрузки по сравнению с состоянием покоя.

Конечно-диастолический объем - объем крови в левом желудочке в конце диастолы, непосредственно перед сокращением.

КФ - креатинфосфат, энергоемкое соединение, играющее ведущую роль в снабжении энергией работающих мышц с помощью поддержания концентрации АТФ путем передачи фосфата и энергии в АДФ.

Лактатный норог - точка, по достижении которой метаболические потребности нри физической нагрузке уже не могут больше поддерживаться доступными аэробными источниками и возрастает анаэробный метаболизм, что выражается в увеличении концентрации молочной кислоты в крови.

Медленное волокно - тип мышечных волокон, обладающий высокой окислительной и низкой гликолитической сиособностью; задействуется при нагрузке на выносливость.

Миоглобин - гемопротеин, подобный гемоглобину, но содержащийся в мышечной ткани, запасающий кислород.

Миозин - сократительный белок, из которого состоят толстые нити в мышечных волокнах.

Миозин-АТФаза - ферментативный участок на шаровидной головке миозина, который катализирует расщепление АТФ до АДФ и Ф|, высвобождая химическую энергию, используемую для сокращения мышц. Мнофибрилла _ толстая или тонкая сокращающаяся нить в цитоплазме поперечнополосатой мышцы; пучки миофибрилл имеют повторяющуюся саркомерную структуру вдоль продольной оси скелетной мышцы.

МО - медленный окислительный. Молочная кислота _ молекула с тремя атомами углерода, образованная гликолити-ческим путем в отсутствие кислорода; она распадается, образуя ионы лактата и водорода.

MO max ~ максимальный минутный объем сердца.

ПЧД - произведение ЧСС на давление (ПЧД = ЧСС х систолическое кровяное давление, где ЧСС _ частота сердечных сокращений); используется для оценки нагрузки на сердце во время физической нагрузки. МПК _ максимальное потребление кислорода, максимальная способность тела потреблять кислород при максимальном напряжении. Также известно как аэробная способность и показатель кардиореспира-торной выносливости. МПК = МО тах х (а - в)0 2тах, где МО тах ~ максимальный минутный объем сердца; (а - в)0 2тах ~~ максимальная ар-териовенозная разница по кислороду. Мышечная выносливость - снособность

мышц избегать усталости. Мышечное волокно - клетка мышцы. «Мышечный насос» скелетной мышцы - эффект «мышечного насоса», который сокращающиеся скелетные мышцы оказывают на ток крови в расположенных ниже кровеносных сосудах. Окислительное фосфорилирование - процесс, при котором энергия, полученная в ходе реакции водорода и кислорода с образованием воды, передается АТФ во время его образования. ОПСС - общее периферическое сопротивление сосудов. Поперечный мостик - выступ на миозине, тянущийся от толстой нити мышечного волокна и способный приложить силу к тонкой нити, заставляя нити скользить друг по другу.

Саркомер - повторяющаяся структурная единица миофибриллы; состоит из толстых и тонких нитей; располагается между двумя смежными Z-линиями.

Сахарный дпабет - болезнь, при которой контроль глюкозы в плазме нарушается из-за недостатка инсулина или снижения отклика клетки-мишени на инсулин.

Сгущение крови - относительное (не абсолютное) увеличение массы эритроцитов на единицу объема крови в результате со-кращепия плазменного объема.

Система АТФ-КФ - другое название ~ фос-фагенная система. Простая анаэробная энергетическая система, функционирующая для поддержания уровня АТФ. Расщепление креатинфосфата (КФ) высвобождает Ф, который объединяется с АДФ, чтобы образовать АТФ.

Систолическое кровяпое давление - максимальное артериальное кровяное давление во время сердечного цикла, являющееся результатом систолы (фаза сокращения сердца).

Скелетная мышца - поперечнополосатая мышца, прикрепленная к костям или коже и отвечающая за движения скелета и выражение лица; управляется соматической нервной системой.

Сократительная способность - сила сердечного сокращения, не зависящая от длины волокна.

Снецифика тренировки - физиологическая адаптация к физической нагрузке высоко специфична по отношению к характеру физической активности. Чтобы извлечь максимальную пользу, тренировка должна полностью соответствовать нотребностям спортсмена и роду его физической активности.

Теория «скользящих нитей» - теория, объясняющая действие мышц. Миозин при помощи поперечных мостиков соединяется с нитью актина, создавая усилие, которое заставляет две нити скользить друг относительно друга.

Титин - эластичный белок в саркомерах.

Тканевая жидкость - внеклеточная жидкость, окружающая клетки ткани; в нее не входит плазма, которая окружает клетки крови наряду с внеклеточной жидкостью.

Толстая нить - нить миозина 12-18 нм в мышечной клетке.

Тонкая нить -нить 5-8 нм в мышечной клетке, состоящая из актина, тропонина и тропомиозина.

Билет 2

Систола желудочков сердца,ее периоды и фазы. Положение клапанов и давление в полостях сердца во время систолы.

Систола желудочков - период сокращения желудочков, что позволяет протолкнуть кровь в артериальное русло.

В сокращении желудочков можно выделить несколько периодов и фаз:

· Период напряжения - характеризуется началом сокращения мышечной массы желудочков без изменения объема крови внутри них.

· Асинхронное сокращение - начало возбуждения миокарда желудочков, когда только отдельные волокна вовлечены. Изменения давления в желудочках хватает для закрытия предсердно-желудочковых клапанов в конце этой фазы.

· Изоволюметрическое сокращение - вовлечен практически весь миокард желудочков, но изменения объема крови внутри них не происходит, так как закрыты выносящие (полулунные - аортальный и легочный) клапаны. Термин изометрическое сокращение не совсем точен, так как в это время происходит изменение формы (ремоделирование) желудочков, натяжение хорд.

· Период изгнания - характеризуется изгнанием крови из желудочков.

· Быстрое изгнание - период от момента открытия полулунных клапанов до достижения в полости желудочков систолического давления - за этот период выбрасывается максимальное количество крови.

· Медленное изгнание - период, когда давление в полости желудочков начинает снижаться, но все еще больше диастолического давления. В это время кровь из желудочков продолжает двигаться под действием сообщенной ей кинетической энергии, до момента выравнивания давления в полости желудочков и выносящих сосудов.

В состоянии спокойствия желудочек сердца взрослого человека за каждую систолу выбрасывает от 60 мл крови (ударный объем). Сердечный цикл длится до 1 с, соответственно, сердце делает от 60 сокращений в минуту (частота сердечных сокращений, ЧСС). Нетрудно подсчитать, что даже в состоянии покоя сердце перегоняет 4 л крови в минуту (минутный объем сердца, МОС). Во время максимальной нагрузки ударный объём сердца тренированого человека может превышать 200 мл, пульс - превышать 200 ударов в минуту, а циркуляция крови может достигать 40 л в минуту.в о время последующей систолы желудочков давление в них становится выше давления в предсердиях (которые начинают расслабляться), что приводит к закрытию предсердно-желудочковых клапанов. Внешним проявлением этого события является I тон сердца. Затем давление в желудочке превышает аортальное, в результате чего открывается клапан аорты и начинается изгнание крови из желудочка в артериальную систему.

2.Центробежные нервы сердца,характер поступающих по ним влияний на деятельность сердца. понятие о тонусе ядра блуждающего нерва.


Деятельность сердца регулируется двумя парами нервов: блуждающими и симпатическими. Блуждающие нервы берут начало в продолговатом мозге, а симпатические нервы отходят от шейного симпатического узла. Блуждающие нервы тормозят сердечную деятельность. Если начать раздражать блуждающий нерв электрическим током, то происходит замедление и даже остановка сердечных сокращений. После прекращения раздражения блуждающего нерва работа сердца восстанавливается. Под влиянием импульсов, поступающих к сердцу по симпатическим нервам, учащается ритм сердечной деятельности и усиливается каждое сердечное сокращение. При этом возрастает систолический, или ударный, объем крови. Блуждающий и симпатический нервы сердца обычно действуют согласованно: если повышается возбудимость центра блуждающего нерва, то соответственно понижается возбудимость центра симпатического нерва.

Во время сна, в состоянии физического покоя организма сердце замедляет свой ритм за счет усиления влияния блуждающего нерва и некоторого снижения: влияния симпатического нерва. Во время физической работы ритм сердца учащается. При этом происходит усиление влияния симпатического нерва и снижение влияния блуждающего нерва на сердце. Таким путем обеспечивается экономный \режим работы сердечной мышцы.

Изменение просвета кровеносных сосудов происходит под влиянием импульсов, передающихся на стенки сосудов пососудосуживающим нервам. Импульсы, поступающие по этим нервам, возникают в продолговатом мозге в сосудодвигательном центре . Повышение кровеносного давления в аорте вызывает растяжение ее стенок и, как следствие, раздражение прессорецепторов аортальной рефлексогенной зоны. Возникшее в рецепторах возбуждение по волокнам аортального нерва достигает продолговатого мозга. Рефлекторно повышается тонус ядер блуждающих нервов, что приводи к торможению сердечной деятельности, вследствие чего частота и сила сердечных сокращений уменьшаются. Тонус сосудосуживающего центра при этом снижается, что вызывает расширение сосудов внутренних органов. Торможение работы сердца и расширение просвета кровеносных сосудов восстанавливают повысившееся кровяное давление до нормальных величин.

3.Понятие об общем периферическом сопротивлении,гемодинамические факторы,определяющие его величину.

Выражается уравнением R=8*L*ню\п*r4, где L-длина сосудистого русла, ню –вязкость определяется соотношением объемов плазмы и форменных элементов,содержанием белка в плазме и другими факторами. Наименее постоянным из этих параметров является радиус сосудов,причем его изменение в любом отделе системы могут повлиять на величину ОПС весьма существенно. Если соапротивление снижается в каком то ограниченном регионе- в небольшой группе мышц,органе,то это может не влиять на ОПС,но заметно изменяет кровоток именно в этом регионе,т.к. органный кровоток также определяется приведенной выше формулой Q=(Pн-Pк)\R, где Pн можно рассматривать как давление в артерии,кровоснабжающей данный орган,Pк-давление крови,оттекающей по вене,R-сопротивление всех сосудов данного региона. В связи с увеличением возраста человека общее сопротивление сосудов постепенно квеличивается. Это обусловлено возрачстным снижением числа эластических волокон,повышением концентрации зольных веществ,ограничением растяжимости сосудов,проходящих на протяжении жизни «путь от свежей травы к сену».

№4. Почечно-надпочечниковая система регуляции тонуса сосудов.

Система регуляции сосудистого тонуса активируется при ортостатических реакциях,кровопотере,мышечной нагрузке и другиз состояниях,при которых повышается активность симпатической нервной системы. Система включает ЮГА почек, клубочковую зону надпочечников,секретируемые этими структурами гормоны и те ткани, где происходит их активация. В приведенных выше условиях повышается секреция ренина,которой переводит ангилтензиноген плазмы в ангиотензин-1,последний в легких превращается в более активную форму ангиотензин-2,который в 40 раз превосходит НА по сосудосуживающему действию,слабо влияя,однако,на сосуды мозга,скелетных мышц и сердца. Ангиотензин действует стимулирующие также на клубочковую зону надпочечников,способствуя секреции альдостерона.

Билет3

1.Понятие об эу,гипо, гиперкинетических типах гемодинамики.

Наиболее характерная особенность I типа, впервые описанного В. И. Кузнецовым, - изолированная систолическая гипертензия, обусловленная, как выясняется при исследовании, сочетанием двух факторов: увеличением минутный объем сердца кровообращения и повышением упругого сопротивления крупных артерий мышечного типа. Последний признак, вероятно, связан с избыточным тоническим напряжением гладкомышечных клеток артерий. Однако спазма артериол нет, периферическое сопротивление снижено в такой мере, что влияние минутный объем сердца на среднее гемодинамическое давление нивелируется.

При II гемодинамическом типе, встречающемся у 50 - 60% молодых людей с пограничной гипертензией, увеличение минутного и ударного объема сердца не компенсируется адекватным расширением резистивных сосудов. Несоответствие между минутным объемом и периферическим сопротивлением приводит к повышению среднего гемодинамического давления. Особенно показательно, что у этих больных периферическое сопротивление остается более высоким, чем в контроле, даже тогда, когда исчезают различия в величинах минутный объем сердца.

Наконец, III гемодинамический тип, который мы обнаружили у 25 - 30% молодых людей, характеризуется повышением периферическое сопротивление при нормальном минутном объеме сердца. Мы располагаем хорошо прослеженными наблюдениями, показывающими, что, по крайней мере, у части больных нормально кинетический тип гипертензии формируется с самого начала без предшествующей фазы гиперкинетической циркуляции. Правда, у некоторых из этих больных в ответ на нагрузку отмечается выраженная реакция гиперкинетического типа, то есть имеет место высокая готовность к мобилизации сердечного выброса.

2.Интракардиальные мех. Регуляции работы сердца.Взаимоотношение интра и экстракардиальных механизмов регуляции.

Доказано также, что интракардиальная регуляция обеспечивает гемодинамическую связь между левым и правым отделами сердца. Значение ее заключается в том, что если в правый отдел сердца при физической нагрузке поступает большое количество крови, то левый отдел его заблаговременно готовится его принять путем увеличения активного диастолического расслабления, которое сопровождается увеличением исходного объема желудочковРассмотрим интракардиальную регуляцию на примерах. Допустим, вследствие увеличения нагрузки на сердце, возрастает приток крови к предсердиям, что сопровождается возрастанием частоты сокращения сердца. Схема рефлекторной дуги данного рефлекса следующая: поступление большого количества крови в предсердиях воспринимается соответствующими механорецепторами (волюморецепторы), информация от которых поступает к клеткам ведущего узла, в области которого выделяется медиатор норадреналин. Под влиянием последнего развивается деполяризация клеток водителя ритма. Поэтому время развития медленной диастолической спонтанной деполяризации укорачивается. Следовательно, увеличивается ЧСС.

Если же к сердцу поступает значительно меньше крови, то рецепторный эффект с механорецепторов включает холинэргическую систему. В результате в клетках синоатриального узла выделяется медиатор ацетилхолин, вызывающий гиперполяризацию атипических волокон Вследствие этого время развития медленной спонтанной диастолической деполяризации увеличивается, ЧСС, соответственно, уменьшается.

Если приток крови к сердцу увеличивается, то возрастает не только частота сокращений сердца, но и систолический выброс, обусловленный интракардиальной регуляцией. Каков механизм увеличения силы сокращений сердца? Он представляется следующим образом. Информация на этом этапе поступает от механорецепторов предсердий на сократительные элементы желудочков, по всей видимости, через вставочные нейроны. Так, если приток крови к сердцу возрастает при физической нагрузке, то это воспринимается механорецепторами предсердий, что включает адренэргическую систему. В результате в соответствующих синапсах выделяется норадреналин, который через (наиболее вероятно) кальциевую (возможно цАМФ, цГМФ) клеточную систему регуляции вызывает усиленный выброс ионов кальция к сократительным элементам, увеличивая сопряжение мышечных волокон. Возможно также, что норадреналин уменьшает сопротивление в нексусах резервных кардиомиоцитов и подключает дополнительные мышечные волокна, за счет которых также возрастает сила сокращений сердца. Если же приток крови к сердцу уменьшается, то включается холинэргическая система через механорецепторы предсердий. В результате этого выделяется медиатор ацетилхолин, тормозящий выброс ионов кальция в межфибриллярное пространство, и сопряжение ослабевает. Можно допустить также, что под влиянием данного медиатора, сопротивление в нексусах рабочих моторных единиц увеличивается, что сопровождается ослаблением сократительного эффекта.

3.Системное АД,его колебания в зависимости от фазы сердечного цикла,пола, возраста и др. факторов. Давление крови в различных участках кровеносной системы.

Системное ад- давление в начальных отделах системы кровообращения – в крупных артериях. его величина зависит от изменений,происходящих в любом отделе системы.величина системного ад зависит от фазы сердечного цикла.Основные гемодинамичсекие факторы,влияющие на величину системного артериального давления,определяются из приведенной формулы:

P=Q*R(r,l,ню). Q-интенсивность и частота сокращений сердца.,тонус вен. R-тонус артериальных сосудов,эластические свойства и толщина сосудистой стенки.

АД изменяется также в связи с фазами дыхания:на вдохе оно снижается. АД-относительно мягкая констата:ее величина может колебаться в течении дня:при физической работе большей интенсивности систолическое давление может возрастать в 1.5-2 раза. Увеличивается оно также при эмоциональном и др. видах стресса. Наибольшие величины системного АД в условиях покоя регистрируются в утренние часы;у многих людей появляется и второй его пик в 15-18часов. В обычных условиях у здорового человека в течении суток АД колеблется не более,чем на 20-25 мм РТ ст.С возрастом систолическое АД постепенно возрастает - 50-60 годам до 139 мм РТ ст,при этом несколько повышается и диастолическое давление.Вопрос о нормальных величинах артериального давления является чрезвычайно важным, т к повышенное АД среди лиц старше 50 лет встречается у 30%,а среди женщин у 50%обследованных. При этом далеко не все предъявляют какие либо жалобы,несмотря на возрастающую опасность осложнений.

4. Сосудосуживающие и сосудорасширяющие нервные вляиния. Механизм их действия на тонус сосудов.

Помимо местных сосудорасширяющих механизмов скелетные мышцы снабжаются симпатическими сосудосуживающими нервами, а также (у некоторых видов животных) симпатическими сосудорасширяющими нервами. Симпатические сосудосуживающие нервы. Медиатором симпатических сосудосуживающих нервов является норадреналин. Максимальная активация симпатических адренергических нервов приводит к уменьшению кровотока в сосудах скелетных мышц в 2 и даже в 3 раза по сравнению с уровнем покоя. Такая реакция имеет важное физиологическое значение при развитии циркуляторного шока и в других случаях, когда жизненно необходимо поддерживать нормальный или даже высокий уровень системного артериального давления. Кроме норадреналина, секретируемого окончаниями симпатических сосудосуживающих нервов, большое количество норадреналина и адреналина в кровоток выделяют клетки мозгового вещества надпочечников, особенно во время тяжелой физической нагрузки. Циркулирующий в крови норадреналин оказывает такое же сосудосуживающее влияние на сосуды скелетных мышц, как и медиатор симпатических нервов. Однако адреналин чаще всего вызывает умеренное расширение мышечных сосудов. Дело в том, что адреналин взаимодействует в основном с бета-адренорецепторами, активация которых приводит к расширению сосудов, в то время как норадреналин взаимодействует с альфа-адренорецепторами и всегда вызывает сужение сосудов. Резкому увеличению кровотока в скелетных мышцах во время физической нагрузки способствуют три основных механизма: (1) возбуждение симпатической нервной системы, вызывающее общие изменения в системе кровообращения; (2) увеличение артериального давления; (3) увеличение сердечного выброса.

Симпатическая сосудорасширяющая система. Влияние ЦНС на симпатическую сосудорасширяющую систему. Симпатические нервы скелетных мышц наряду с сосудосуживающими волокнами содержат симпатические сосудорасширяющие волокна. У некоторых млекопитающих, например у кошек, эти сосудорасширяющие волокна выделяют ацетилхолин (а не норадреналин). У приматов, как полагают, сосудорасширяющий эффект оказывает адреналин, взаимодействующий с бета-адренорецепторами сосудов скелетных мышц. Нисходящие пути, благодаря которым центральная нервная система контролирует сосудорасширяющие влияния. Основной областью головного мозга, осуществляющей этот контроль, является передний гипоталамус. Возможно, симпатическая сосудорасширяющая система не имеет большого функционального значения. Сомнительно, чтобы симпатическая сосудорасширяющая система играла заметную роль в регуляции кровообращения у человека. Полная блокада симпатических нервов скелетных мышц практически не влияет на способность этих тканей к саморегуляции кровотока в зависимости от метаболических потребностей. С другой стороны, экспериментальные исследования показывают, что в самом начале физической нагрузки именно симпатическое расширение сосудов скелетных мышц, возможно, приводит к опережающему увеличению кровотока еще до того, как потребность скелетных мышц в кислороде и питательных веществах возрастет.

Билет

1.тоны сердца,их происхождение. Принципы фонокардиографии и преимущества этого метода перед аускультацией.

Тоны сердца - звуковое проявление механической деятельности сердца, определяемое при аускультации как чередующиеся короткие (ударные) звуки, которые находятся в определенной связи с фазами систолы и диастолы сердца. Т. с. образуются в связи с движениями клапанов сердца, хорд, сердечной мышцы и сосудистой стенки, порождающими звуковые колебания. Выслушиваемая громкость тонов определяется амплитудой и частотой этих колебаний (см. Аускультация ). Графическая регистрация Т. с. с помощью фонокардиографии показала, что по своей физической сущности Т. с. являются шумами, а восприятие их как тонов обусловлено кратковременностью и быстрым затуханием апериодических колебаний.

Большинство исследователей различает 4 нормальных (физиологических) Т. с., из которых I и II тоны выслушиваются всегда, a III и IV определяются не всегда, чаще графически, чем при аускультации (рис. ).

I тон выслушивается как достаточно интенсивный звук над всей поверхностью сердца. Максимально он выражен в области верхушки сердца и в проекции митрального клапана. Основные колебания I тона связаны с закрытием атриовентрикулярных клапанов; участвуют в его образовании и движениях других структур сердца.

II тон также выслушивается над всей областью сердца, максимально - на основании сердца: во втором межреберье справа и слева от грудины, где его интенсивность больше, чем I тона. Происхождение II тона связано в основном с закрытием клапанов аорты и легочного ствола. В его состав входят также низкоамплитудные низкочастотные колебания, возникающие в результате открытия митрального и трехстворчатого клапанов. На ФКГ в составе II тона выделяют первый (аортальный) и второй (легочный) компоненты

Ill тон - низкочастотный - воспринимается при аускультации как слабый, глухой звук. На ФКГ определяется на низкочастотном канале, чаще у детей и спортсменов. В большинстве случаев он регистрируется на верхушке сердца, и его происхождение связывают с колебаниями мышечной стенки желудочков вследствие их растяжения в момент быстрого диастолического наполнения. Фонокардиографически в ряде случаев различают лево- и правожелудочковый III тон. Интервал между II и левожелудочковым тоном составляет 0,12-15 с . От III тона отличают так называемый тон открытия митрального клапана - патогномоничный признак митрального стеноза. Наличие второго тона создает аускультативную картину «ритма перепела». Патологический III тон появляется при сердечной недостаточности и обусловливает прото- или мезодиастолический ритм галопа (см. Галопа ритм ). Ill тон лучше выслушивается стетоскопической головкой стетофонендоскопа или методом непосредственной аускультации сердца ухом, плотно приложенным к грудной стенке.

IV тон - предсердный - связан с сокращением предсердий. При синхронной записи с ЭКГ регистрируется у окончания зубца Р. Это слабый, редко выслушиваемый тон, регистрирующийся на низкочастотном канале фонокардиографа в основном у детей и спортсменов. Патологически усиленный IV тон обусловливает при аускультации пресистолический ритм галопа. Слияние III и IV патологических тонов при тахикардии определяют как «суммационный галоп».

Фонокардиография - это один из методов диагностического исследования сердца. Он основан на графической регистрации звуков, сопровождающих сердечные сокращения, с помощью микрофона, который преобразует звуковые колебания в электрические, усилителя, системы частотных фильтров и регистрирующего устройства. Регистрируют в основном тоны и шумы сердца. Получаемое при этом графическое изображение называют фонокардиограммой. Фонокардиография существенно дополняет аускультацию и дает возможность объективно определить частоту, форму и продолжительность регистрируемых звуков, а также их изменение в процессе динамического наблюдения за больным. Используется фонокардиография главным образом для диагностики пороков сердца, фазового анализа сердечного цикла. Это особенно важно при тахикардии, аритмиях, когда с помощью однойаускультации трудно решить, в какой фазе сердечного цикла возникли те или иные звуковые явления.

Безвредность и простота метода позволяют производить исследования даже у больного, находящегося в тяжелом состоянии, и с частотой, необходимой для решения диагностических задач. В отделениях функциональной диагностики для осуществления фонокардиографии выделяют помещение с хорошей звукоизоляцией, в котором поддерживают температуру 22-26°С, поскольку при более низкой температуре у обследуемого возможно появление мышечного дрожания, искажающего фонокардиограмму. Исследование проводят в лежачем положении больного, при задержке дыхания в фазе выдоха. Анализ фонокардиографии и диагностическое заключение по ней проводит только специалист с учетом аускультативных данных. Для правильной трактовки фонокардиографии применяют синхронную запись фонокардиограммы и электрокардиограммы.

Аускультацией называется выслушивание звуковых явлений, возникающих в организме.

Обычно эти явления бывают слабыми и для их улавливания пользуются непосредственной и посредственной аускультацией; первой называется выслушивание ухом, а второй - выслушивание при помощи специальных слуховых инструментов - стетоскопа и фонендоскопа.

2.Гемодинамические механизмы регуляции деятельности сердца. Закон сердца, его значение.

Гемодинамические, или миогенные, механизмы регуляции обеспечивают постоянство систолического объема крови. Сила сокращений сердца зависит от его кровенаполнения, т.е. от исходной длины мышечных волокон и степени их растяжения во время диастолы. Чем больше растянуты волокна, тем больше приток крови к сердцу, что приводит к увеличению силы сердечных сокращений во время систолы - это "закон сердца" (закон Франка- Старлинга). Такой тип гемодинамической регуляции называется гетерометрическим.

Она объясняется способностью Са2+ выходить из сарко-плазматического ретикулума. Чем больше растянут саркомер, тем больше выделяется Са2+ и тем больше сила сокращений сердца. Этот механизм саморегуляции включается при перемене положения тела, при резком увеличении объема циркулирующей крови (при переливании), а также при фармакологической блокаде симпатической нервной системы бета-симпатоли-тиками.

Другой тип миогенной саморегуляции работы сердца - го-меометрический не зависит от исходной длины кардиомиоцитов. Сила сердечных сокращений может возрастать при увеличении частоты сокращений сердца. Чем чаще оно сокращается, тем выше амплитуда его сокращений ("лестница" Боудича). При повышении давления в аорте до определенных пределов возрастает противонагрузка на сердце, происходит увеличение силы сердечных сокращений (феномен Анрепа).

Внутрисердечные периферические рефлексы относятся к третьей группе механизмов регуляции. В сердце независимо от нервных элементов экстракардиального происхождения функционирует внутриорганная нервная система, образующая миниатюрные рефлекторные дуги, в состав которых входят афферентные нейроны, дендриты которых начинаются на рецепторах растяжения на волокнах миокарда и коронарных сосудов, вставочные и эфферентные нейроны (клетки Догеля I, II и III порядка), аксоны которых могут заканчиваться на миокардиоцитах, расположенных в другом отделе сердца.

Так, увеличение притока крови к правому предсердию и растяжение его стенок приводит к усилению сокращения левого желудочка. Этот рефлекс можно заблокировать с помощью, например, местных анестетиков (новокаина) и ганглиоблокаторов (беизогексония).

Сердца закон, Старлинга закон, зависимость энергии сокращения сердца от степени растяжения его мышечных волокон. Энергия каждого сердечного сокращения (систолы) изменяется прямо пропорционально

диастолическому объёму. Сердца закон установлен английским физиологом Э. Старлингом в 1912-18 на сердечно-лёгочном препарате . Старлинг нашёл, что объём крови, выбрасываемый сердцем в артерии при каждой систоле, возрастает пропорционально увеличению венозного возврата крови к сердцу; нарастание силы каждого сокращения связано с увеличением объёма крови в сердце к концу диастолы и увеличением вследствие этого растяжения волокон миокарда.Сердца закон не определяет всей деятельности сердца, а объясняет один из механизмов его приспособления к меняющимся условиям существования организма. В частности,Сердца закон лежит в основе поддержания относительного постоянства ударного объёма крови при повышении сосудистого сопротивления в артериальном отделе сердечно-сосудистой системы. Этот саморегулирующийся механизм, обусловленный свойствами мышцы сердца, присущ не только изолированному сердцу, но участвует и в регуляции деятельности сердечно-сосудистой системы в организме; контролируется нервными и гуморальными влияниями

3.Объемная скорость кровотока,ее величина в различных отделах ссс.гемодинамические факторы,определяющие ее величину.

Q-объемная скорость кровотока представляет собой количество крови,протекающей через поперечное сечение системы в единицу времени. Эта величина суммарная одна т та же на всех участках сис. Кровообращения, если рассматривать ее в целом. Т.Е. количество крови, выбрасываемой вы минуту из сердца,равно количеству крови, возвращающейся в него и проходящей через суммарное сечение круга кровообращения в любом его участке за это же время.объемный кровоток распределяется в сосудистой системе неравномерно и зависит от а)от степени «привилегированности»органа, Б)от функциональной нагрузки на него. Головной мозг и сердце получают значительно больше крови (15и 5-в покое;4 и 5-физ нагрузка),печень и жкт(20 и 4);мыщцы (20и 85);кости, костный мозг,жировая ткань(15 и 2). Функциональная гиперпия достигается многими механизмами.Под влиянием хим.,гуморальных,нервных влияний в работающем органе происходит расширение сосудов,сопротивление кровотоку в них снижается,что приводит к перераспределению крови и в условиях неизменного артериального давления может вызвать ухудшение кровоснабжения сердца.печени и др. органов. В условиях физ. Нагрузки происходит повышение сисчтемного АД,порой довольно существенное(до 180-200),чем предотвращается снижение кровотока во внутренних органах и обеспечивается,повышение кровотока в работающем органе. Гемодинамически может быть выражены формулой Q=P*п*r4/8*ню*L

4.понятие об острой, Q-объемная скорость кровотока представляет собой количество крови,протекающей через поперечное сечение системы в единицу времени. Эта величина суммарная одна т та же на всех участках сис. Кровообращения, если рассматривать ее в целом. Т.Е. количество крови, выбрасываемой вы минуту из сердца,равно количеству крови, возвращающейся в него и проходящей через суммарное сечение круга кровообращения в любом его участке за это же время.объемный кровоток распределяется в сосудистой системе неравномерно и зависит от а)от степени «привилегированности»органа, Б)от функциональной нагрузки на него. Головной мозг и сердце получают значительно больше крови (15и 5-в покое;4 и 5-физ нагрузка),печень и жкт(20 и 4);мыщцы (20и 85);кости, костный мозг,жировая ткань(15 и 2). Функциональная гиперпия достигается многими механизмами.Под влиянием хим.,гуморальных,нервных влияний в работающем органе происходит расширение сосудов,сопротивление кровотоку в них снижается,что приводит к перераспределению крови и в условиях неизменного артериального давления может вызвать ухудшение кровоснабжения сердца.печени и др. органов. В условиях физ. Нагрузки происходит повышение сисчтемного АД,порой довольно существенное(до 180-200),чем предотвращается снижение кровотока во внутренних органах и обеспечивается,повышение кровотока в работающем органе. Гемодинамически может быть выражены формулой Q=P*п*r4/8*ню*L

4.Понятие об острой,подострой, хронической регуляции АД.

Острая-нервнорефлекторный механизм,инициируемый барорецепторами кровеносных сосудов. Наиболее мощным влиянием на депроссорную зону гемодинамического центра обладают барорецепторы зон аортальной и каротидной. наложение в виде муфты гипсосовой повязки на такую зону исключает возбуждение барорецепторов,поэтому был сделан вывод,что они реагируют не на само давление, а на растяжение стенки сосуда под влиянием давления крови. Этому способствуют и стркутурные особенности участков сосудов,где имеются барорецепторы:они истончены, в них мало мышечных и много эластических волокон. Депрессорные эффекты барорецепторов используются и в практической медицине:надавливание на шею в обл. проекции сонной артерии может способствовать прекращению приступа тахикардии,а черезкожное раздражение в каротидной зоне,применяется для снижения аД. С другой стороны,адаптация барорецепторов в результате длительного поввышния АД, а так же развитие склеротических изменений стенок кровеносных сосудов и понижение их растяжимости могут стать факторами, способствующими развитию гипертензии. Перерезка депрессорного нерва у собак дает такой эффект в относительно короткий срок. У крликов перерезка нервыа,начинающегося в аортальной зоне,рецепторы которой более активны при значительных подъемах ад,вызывает смерть от резкого увеличения ад и нарушений мозгового кровотока. Для поддержания стабильности ад барорецпторы самого сердца еще более важны,чем сосудистые. Новокаинизация рецепторов эпикарда может привести к развитию гипертензии. Барорецепторы мозга изменяют свою активность лишь при терминальных состояниях организма. Барорецпторные рефлексы подавляются при действии ноцицептивных в частности,связанных с нарушениями коронарног кровотока,а так же при активации хеморецепторов,эмрциональном стрессе и физической нагрузке. Одним из механизмов подавления рефлекса при физ. Нагрузке является увеличение венозного возврата крови к сердцу, а так же реалимзация разгрузочного рефлека Бейнбриджа и гетерометрической регуляции.

Подострая регуляция – ад вкл гемодинамические механизмы, реализуемые черз изменения оцк. у обезглавленных животных с разрушенным спинным мозгом через 30 мин после кровопотери или введения в сосуды жидкости в объеме 30% о оцк происходит восстановление ад до уровня, близкого к сходному. К этим механизмам относят: 1) изменения движения жидкости из капилляров в такани и наоборот; 2)изменения депонирования крови в венозном отделе; 3) изменения почечной фильтрации и реабсчорбции (повышение ад всего на 5 мм РТ ст при прочих равных условиях может устроить диурез)

Хроническая регуляция ад – обеспечивается почечно- надпочечниковой системой,элементы которой и характер их влияния друг на друга отражены на схеме, где положительные влияния отмечены стрелками со знаком +, а отр –

Билет

1.Диастола желудочков сердца,ее периоды и фазы. положение клапанов и давление в полостях сердца во время диастолы.

К концу систолы желудочков и началу диастолы (с момента закрытия полулунных клапанов) в желудочках содержится остаточный, или резервный, объем крови (конечно-систолический объем). В это же время начинается резкое падение давления в желудочках (фаза изоволюмического, или изометрического, расслабления). Способность миокарда быстро расслабляться является важнейшим условием для наполнения сердца кровью. Когда давление в желудочках (начальное диастолическое) становится меньше давления в предсердиях, открываются атриовентрикулярные клапаны и начинается фаза быстрого наполнения, во время которой кровь с ускорением поступает из предсердий в желудочки. Во время этой фазы в желудочки поступает до 85 % их диастолического объема. По мере заполнения желудочков скорость их наполнения кровью снижается (фаза медленного наполнения). В конце диастолы желудочков начинается систола предсердий, в результате чего в желудочки поступает еще 15 % их диастолического объема. Таким образом, в конце диастолы в желудочках создается конечно-диастолический объем, которому соответствует определенный уровень конечно-диастолического давления в желудочках. Конечно-диастолический объем и конечно-диастолическое давление составляет так называемую преднагрузку сердца, которая является определяющим условием для растяжения волокон миокарда, т. е. реализации закона Франка-Старлинга.

2.Сердечно-сосудистый центр,его локализация. Структурные и функциональные особенности.

Сосудодвигательный центр

В. Ф. Овсянниковым (1871) было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла - сосудодвигательный центр - находится в продолго­ватом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то АД не изменяется. Если перере­зать мозг между продолговатым и спинным мозгом, то максимальное давление крови в сонной артерии понижается до 60-70 мм рт.ст. От­сюда следует, что сосудодвигательный центр локализован в продолго­ватом мозге и находится в состоянии тонической активности, т. е. дли­тельного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение АД.

Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IV желудочка и состоит из двух отделов - прессорного и депрессорного. Раздражение прессорного отдела сосудодвигательного центра вызывает сужение артерий и подъем, а раздражение второго - расширение артерий и падение АД.

Считают, что депрессорный отдел сосудодвигательного центра вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов.

Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегета­тивной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.

3.Функциональная классификация кровеносных сосудов.

Амортизирующие сосуды-аорта,легочная артерия и их крупные ветви,т.е. сосуды эластического типа.

Сосуды распределения-средние и мелкие артерии мышечного типа регионов и органов. их функция –рапределение потока крови по всем органам и тканям организма. При увеличении запроса ткани диаметр сосуда подстраивается к повышенному кровотоку в соответствии с изменением линейной скорости за счет эндотелийзависимого механизма. При увеличении напряжения сдвига (сила трения между слоями крови и эндотелием сосуда,препятствующая движению крови.)пристеночного слоя крови апикальная мембрана эндотелиоцитов деформируется,и они синтезируют сосудорасширяющие вещества (оксид азота),которые снижают тонус гладких мышц сосуда,т е сосуд расширяется.При нарушении этого механизма сосуды рапределения могут стать лимитирующим хзвеном,препятствующим значительному увеличению кровотока в органе,несмотря на его метаболический запрос,например коронарные и мозговые сосуды,пораженные атеросклерозом.

Сосуды сопротивления – артерия диаметром менее 100мкм,артериолы,прекапиллярные сфинктеры, сфинктеры магистральных капилляров. На долю этих сосудов приходится около 60% общего сопротивления кровотоку,с чем связано их название. Они регулируют кровоток системного,регионального и микроциркуляторного уровней.Суммарное сопротивление сосудов разных регионов формирует системное диастолическое артериальное давление,изменяет его и удерживает на определенном уровне в результате общих нейрогенных и гуморальных изменений тонуса этих сосудов. Разнонаправленные изменения тонуса сосудов сопротивления разных регионов обеспечивают перераспределение объемного кровотока между регионами.В регионе или органе они перераспределяют кровоток между микрорегионами,т е управляют микроциркуляцией.Сосуды сопротивления микрорегиона распределют кровоток между обменной и шунтовой цепями,определяют количество функционирующих капилляров.

Обменные сосуды- это капилляры.Частично транспорт веществ из крови в ткани происходит так же в артериолах и венулах.Через стенку артериол легко диффундирует кислород,а через люки –венул осуществляется диффузия из крови белковых молекул, которые в дальнейшем попадают в лимфу. Через поры проходит вода,водорастворимые неорганические и низкомолекулярные органические вещества (ионы,глюкоза,мочевин). В некоторых органах (скелетные мышцы,кожа,лекгие,цнс) стенка капилляров является барьером (гисто-гематическим,гемато-энцефалическим).В слизистой Жкт,почках,железах внут. И внеш. Секреции капилляры имеют фенестры(20-40нм),обеспечивающие деятельность этих органов.

Шунтирующие сосуды- Шунтирующие сосуды - это артериовенозные анастомозы, которые присутствуют в некоторых тканях. Когда эти сосуды открыты, кровоток через капилляры либо уменьшается, либо полностью прекращается.Наиболее типичны для кожи.: при необходимости уменьшить теплоотдачу кровоток по системе капилляров прекращается,и кровь сбрасывается по шунтам из артериальной системы в венозную.

Емкостные(аккумулирующие)сосуды - в которых изменения просвета, даже столь небольшие, что не оказывают существенного влияния на общее сопротивление, вызывают выраженные изменения распределения крови и величины притока ее к сердцу (венозный отдел системы). Это посткапиллярные венулы, венулы, мелкие вены, венозные сплетения и специализированные образования - синусоиды селезенки. Их общая ёмкость составляет около 50 % всего объема крови, содержащейся в сердечно-сосудистой системе. Функции этих сосудов связаны со способностью изменять свою ёмкость, что обусловлено рядом морфологических и функциональных особенностей емкостных сосудов.

Сосуды возврата крови в сердце- Это средние, крупные и полые вены, выполняющие роль коллекторов, через которые обеспечивается региональный отток крови, возврат её ксердцу. Ёмкость этого отдела венозного русла составляет около 18% и в физиологических условиях изменяется мало (на величину менее 1/5 от исходной ёмкости). Вены, особенно поверхностные, могут увеличивать объем содержащейся в них крови за счёт способности стенок к растяжению при повышении трансмурального давления.

4. особенности гемодинамики в малом круге кровообращения. кровоснабжение легких и его регуляция.

Значительный интерес для детской анестезиологии представляет исследование гемодинамики малого круга кровообращения. Это связано прежде всего с особой ролью гемодинамики малого круга в поддержании гомеостаза во время наркоза и оперативного вмешательства, а также многокомпонентной зависимостью ее от кровопотери, сердечного выброса, методов искусственной вентиляции легких и т. д.

К тому же давление в легочном артериальном русле значительно отличается от давления в артериях большого круга, что связано с особенностью морфологического строения легочных сосудов

Это приводит к тому, что масса циркулирующей крови в малом круге кровообращения может значительно увеличиваться, не вызывая повышения давления в легочной артерии благодаря раскрытию нефункционирующих сосудов и шунтов.

К тому же легочно-артериальное русло обладает большей растяжимостью в связи с обилием в стенках сосудов эластических волокон и оказывает сопротивление при работе правого желудочка в 5-6 раз меньше, чем то сопротивление, которое встречает при сокращении левый желудочек В физиологических условиях легочный кровоток через систему малого круга равен кровотоку в большом круге кровообращения

В связи с этим изучение гемодинамики малого круга кровообращения может дать новые интересные сведения о сложных процессах, происходящих в период оперативных вмешательств, тем более что у детей этот вопрос остается малоизученным.
Ряд авторов отмечают увеличение давления в легочной артерии и повышение легочно-сосудистого сопротивления при хронических нагноительных заболеваниях легких у детей.

Следует учесть, что синдром гипертензии малого круга кровообращения развивается вследствие сужения легочных артериол в ответ на снижение напряжения кислорода в альвеолярном воздухе.

Так как в ходе операций с использованием искусственной вентиляции легких, а особенно при операциях на легких, может наблюдаться снижение напряжения кислорода альвеолярного воздуха, то исследование гемодинамики малого круга вызывает дополнительный интерес.

Кровь из правого желудочка направляется через легочную артерию и её ветви в капиллярные сети дыхательной ткани легкого, где она обогащается кислородом. По завершении этого процесса кровь из капиллярных сетей собирается ветвями легочной вены и направляется в левое предсердие. Следует помнить, что в легочном кругу кровообращения по артериям движется кровь, которую мы обычно называем венозной, в венах течет артериальная кровь.
Легочная артерия входит в корень каждого легкого и ветвится далее вместе с бронхиальным деревом, так что каждая ветвь дерева сопровождается ветвью легочной артерии. Мелкие веточки, достигающие респираторных бронхиол, снабжают кровью конечные ветви, которые подводят кровь к капиллярным сетям альвеолярных ходов, мешочков и альвеол.
Кровь из капиллярных сетей в дыхательной ткани собирается в самые -мелкие веточки легочной вены. Они начинаются в паренхиме долек и здесь окружаются тонкими соединительнотканными оболочками. Они входят в междольковые перегородки, где они открываются в междольковые вены. Последние в свою очередь направляются по перегородкам к тем участкам, где сходятся верхушки нескольких долек. Здесь вены входят в тесный контакт с ветвями бронхиального дерева. Начиная с этого места и до корня легкого, вены идут вместе с бронхами. Другими словами, за исключением участка внутри долек, ветви легочной артерии и вены следуют совместно с ветвями брон-хиального дерева; внутри долек, однако, вместе с бронхиолами идут только артерии.
Насыщенная кислородом кровь подводится к частям самого легкого бронхиальными артериями. Последние также проходят в ткани легкого в тесной связи с бронхиальным деревом и питают капиллярные сети в его стенках. Они также кровоснабжают лимфатические узлы, разбросанные по бронхиальному дереву. Помимо этого, ветви бронхиальных артерий идут по иеждольковым перегородкам и снабжают насыщенной кислородом кровью капилляры висцерального листка плевры.
Между кровью в артериях легочного круга кровообращения и артериях большого круга имеются, естественно, различия-и давление, и содержание кислорода в первой ниже, чем во второй. Поэтому анастомозы между двумя системами кровообращения в легком будут создавать необычные фи- шологические проблемы.

Билет.

1.Биоэлектрические явления в сердце. Зубцы и интервала экг. Свойсва сердеченой мышцы оцениваемые при экг.



2. изменение работы сердца при физической нагрузки. Мех. И значение.

Работа сердца при физической нагрузке

Частота и сила сердечных сокращений во время мышечной работы значительно возрастают. Мышечная работа лежа меньше учащает пульс, чем сидя или стоя.

Максимальное кровяное давление увеличивается до 200 мм рт. и более. Нарастание кровяного давления происходит в первые 3-5 мин от начала работы, а затем у сильных тренированных людей при длительной и интенсивной мышечной работе оно держится на относительно постоянном уровне благодаря тренированности рефлекторной саморегуляции. У слабых и нетренированных людей кровяное давление начинает падать уже во время работы благодаря отсутствию тренировки или недостаточной тренировке рефлекторной саморегуляции, что приводит к потере трудоспособности вследствие уменьшения кровоснабжения мозга, сердца, мускулатуры и других органов.

У людей, тренированных к мышечной работе, число сокращений сердца в покое меньше, чем у нетренированных, и, как правило, не больше 50-60 в минуту, а у особо тренированных – даже 40-42. Можно полагать, что это уменьшение сердцебиений обусловлено выражена у занимающихся физическими упражнениями, развивающими выносливость. При редком ритме сердцебиений увеличена продолжительность фазы изометрического сокращения и диастолы. Длительность фазы изгнания почти не изменена.

Систолический объем в покое у тренированных такой же, как и у нетренированных, но по мере увеличения тренированности он уменьшается. Следовательно, у них уменьшается в покое и минутный объем. Однако у тренированных систолический объем в покое, как и у нетренированных, сочетается с увеличением полостей желудочков. Следует учесть, что полость желудочка содержит: 1) систолический объем, который выбрасывается при его сокращении, 2) резервный объем, который используется при мышечной деятельности и других состояниях, связанных с усилением кровоснабжения, и 3) остаточный объем, который почти не используется даже при самой интенсивной работе сердца. В отличие от нетренированных у тренированных особенно увеличен резервный объем, а систолический и остаточный почти одинаковы. Большой резервный объем у тренированных позволяет сразу увеличивать систолический выброс крови в начале работы. Брадикардия, удлинение фазы изометрическою напряжения, уменьшение систолического объема и другие изменения свидетельствуют об экономной деятельности сердца в покое, которая обозначается как регулируемая гиподинамия миокарда. При переходе от покоя к мышечной деятельности у тренированных сразу проявляется гипердинамия сердца, которая состоит в учащении сердечного ритма, увеличении систолы, укорочении или даже исчезновении фазы изометрического сокращения.

Минутный объем крови после тренировки возрастает, что зависит от увеличения систолического объема и силы сердечного сокращения, развития сердечной мышцы и улучшения ее питания.

Во время мышечной работы и пропорционально ее величине минутный объем сердца у человека возрастает до 25-30 дм 3 , а в исключительных случаях и до 40-50 дм 3 . Это увеличение минутного объема происходит (особенно у тренированных) главным образом за счет систолического объема, который у человека может достигать 200-220 см 3 . Менее значительную роль в увеличении минутного объема у взрослых людей играет учащение сердцебиений, которое особенно возрастает, когда систолический объем доходит до предела. Чем больше тренированность, тем относительно более мощную работу может выполнять человек при оптимальном учащении пульса до 170-180 в 1 мин. Учащение пульса выше этого уровня затрудняет наполнение сердца кровью и его кровоснабжение через венечные сосуды. При максимально интенсивной работе у тренированного, человека частота сердцебиений может доходить до 260-280 в минуту.

Во время мышечной работы увеличивается и кровоснабжение самой сердечной мышцы. Если через венечные сосуды сердца человека в покое протекает 200-250 см 3 крови в 1 мин, то во время интенсивной мышечной работы количество крови, протекающей через венечные сосуды, доходит до 3,0-4,0 дм 3 в 1 мин. При повышении кровяного давления на 50% через расширенные венечные сосуды протекает в 3 раза больше крови, чем в состоянии покоя. Расширение венечных сосудов происходит рефлекторно, а также вследствие накопления продуктов обмена веществ и поступления вкровь адреналина.

Повышение кровяного давления в дуге аорты и каротидном синусе рефлекторно расширяет венечные сосуды. Венечные сосуды расширяют волокна симпатических нервов сердца, возбуждаемые к а к адреналином, так и ацетилхолином.

У тренированных людей масса сердца возрастает прямо пропорционально развитию их скелетной мускулатуры. У тренированных мужчин объем сердца больше, чем у нетренированных, 100-300 см 3 , а у женщин - на 100 см 3 и больше.

При мышечной работе увеличивается минутный объем и возрастает кровяное давление, и поэтому работа сердца составляет 9,8-24,5 кДж в час. Если человек выполняет мышечную работу в течении 8 часов в сутки, то сердце в течении суток производит работу примерно в 196-588 кДж. Иначе говоря, сердце в сутки выполняет работу, равную той, которую затрачивает человек массой в 70 кг при подъеме на 250-300 метров. Производительность сердца возрастает при мышечной деятельности не только за счет увеличения объема систолического выброса и увеличения частоты сердцебиений, но и большего ускорения циркуляции крови, так как скорость систолического выброса увеличивается в 4 раза и больше.

Учащение и усиление работы сердца и сужение кровеносных сосудов при мышечной работе происходит рефлекторно вследствие раздражения рецепторов скелетных мышц при их сокращениях.

3.Артериальный пульс,его происхождение. Сфигмография.

Артериальным пульсом называются ритмические колебания артериальных стенок, обусловленные прохождением пульсовой волны. Пульсовая волна это распространяющееся колебание стенки артерий в результате систолического повышения артериального давления. Пульсовая волна возникает в аорте во время систолы, когда в нее выбрасывается систолический порция крови и ее стенка растягивается. Так как пульсовая волна движется по стенке артерий, скорость ее распространения не зависит от линейной скорости кровотока, а определяется морфофункциональным состоянием сосуда. Чем больше жесткость стенки, тем больше скорость распространения пульсовой волны и наоборот. Поэтому у молодых людей она составляет 7-10 м/сек, а у старых, из-за атеросклеротических изменений сосудов, возрастает. Самым простым методом исследования артериального пульса является пальпаторный. Обычно пульс прощупывается на лучевой артерии путем прижатия ее к подлежащей лучевой кости.

Метод диагностики по пульсу возник за много веков до нашей эры. Среди дошедших до нас литературных источников, самыми древними являются труды древнекитайского и тибетского происхождения. К древнекитайским относятся, например, «Бинь-ху Мо-сюэ», «Сян-лэй-ши», «Чжу-бинь-ши», «Нан-цзин», а также разделы в трактатах «Цзя-и-цзин», «Хуан-ди Нэй-цзин Су-вэнь Линь-шу» и др.

История пульсовой диагностики неразрывно связана с именем древнего китайского врачевателя - Бянь Цяо (Цинь Юэ-Жэнь). Начало пути методики пульсовой диагностики, связывают с одной из легенд, согласно которой Бянь Цяо был приглашён на лечение дочери знатного мандарина (чиновника). Ситуация осложнялась тем, что видеть и дотрагиваться до особ знатного сана было строго запрещено даже врачам. Бянь Цяо попросил тонкую бечевку. Затем предложил привязать другой конец шнура на запястье принцессы, находящейся за ширмой, но придворные лекари пренебрежительно отнеслись к приглашенному врачу и решили над ним подшутить, привязав конец шнура не на запястье принцессы, а на лапку собачки, бегавшей рядом. Через несколько секунд, к удивлению присутствующих, Бянь Цяо невозмутимо заявил, что это импульсы не человека, а животного и это животное мается глистами. Искусность врача вызвала восхищение, а шнур с доверием был перенесен на запястье принцессы, после чего было определено заболевание и назначено лечение. В результате принцесса быс­тро выздоровела, а его методика получила широкую известность.

Сфигмография (греч. sphygmos пульс, пульсация + graphō писать, изображать) - метод исследования гемодинамики и диагностики некоторых форм патологии сердечно-сосудистой системы, основанный на графической регистрации пульсовых колебаний стенки кровеносного сосуда.

Сфигмографию осуществляют с помощью специальных приставок к электрокардиографу или другому регистратору, позволяющих преобразовывать воспринимаемые приемником пульса механические колебания стенки сосуда (или сопутствующие им изменения электрической емкости либо оптических свойств исследуемого участка тела) в электрические сигналы, которые после предварительного усиления подаются на регистрирующее устройство. Записываемую кривую называют сфигмограммой (СГ). Существуют как контактные (накладываемые на кожу над пульсирующей артерией), так и бесконтактные, или дистанционные, приемники пульса. Последние обычно используют для регистрации венного пульса - флебосфигмографии. Запись пульсовых колебаний сегмента конечности с помощью накладываемых по ее периметру пневматической манжеты или тензометрического датчика называют объемной сфигмографией.

4.Особенности регуляции АД у лиц с гипо и гиперкинетическими типа кровообращения. Место гемодинамических и гуморальных механизмов в саморегуляции АД.

Билет

1.минутный объем кровообращения и систолический объем крови. Их величины. Методы определения.

Минутный объем кровообращения характеризует общее количество крови, перекачиваемое правым и левым отделом сердца в течение одной минуты в сердечно-сосудистой системе. Размерность минутного объема кровообращения - л/мин или мл/мин. Чтобы нивелировать влияние индивидуальных антропометрических различий на величину МОК, его выражают в виде сердечного индекса. Сердечный индекс - это величина минутного объема кровообращения, деленная на площадь поверхности тела в м. Размерность сердечного индекса - л/(мин м2).

Наиболее точный способ определения минутного объема крово­тока у человека предложен Фиком (1870). Он состоит в косвенном вычислении МОК, которое производят, зная разницу между содер­жанием кислорода в артериальной и При использовании метода Фика необходимо брать смешанную венозную кровь из правой половины сердца. Венозную кровь у человека берут из правой половины сердца при помощи катетера, вводимого в правое предсердие через плечевую вену. Метод Фика, являясь наиболее точным, не получил широкого распространения в практике из-за технической сложности и трудоемкости (необходи­мость катетеризации сердца, пунктирование артерии, определение газообмена). венозной крови, объем кисло­рода, потребляемого человеком в минуту.

Разделив минутный объем на число сокращений сердца в минуту, можно вычислить систолический объем крови.

Систолический объем крови - Объем крови, нагнетаемый каждым желудочком в магистральный сосуд (аорту или легочную артерию) при одном сокращении сердца, обозначают как систолический, или ударный, объем крови.

Наибольший систолический объем наблюдается при частоте сердечных сокращений от 130 до 180 удар/мин. При частоте сердечных сокращений выше 180 удар/мин систолический объем начинает сильно снижаться.

При ритме сердеч­ных сокращений 70 – 75 в минуту систолический объем равен 65 – 70 мл крови. У человека при горизонтальном положении тела в условиях покоя систолический объем составляет от 70 до 100 мл.

столический объем крови проще всего вычисляется делением минутного объема крови на число сокращений сердца за минуту. У здорового человека систолический объем крови колеблется от 50 до 70 мл.

2.Аффернтное звено регуляции деятельности сердца. Влияние возбуждения различных рефлексогенных зон на активность СС центра продолговатого мозга.

Афферентное звено собственных рефлексов К. представлено ангиоцепторами (баро- и хеморецепторами), расположенными в различных участках сосудистого русла и в сердце. Местами они собраны в скопления, образующие рефлексогенные зоны. Главными из них являются зоны дуги аорты, каротидного синуса, позвоночной артерии. Афферентное звено сопряженных рефлексов К. располагается за пределами сосудистого русла, его центральная часть включает различные структуры коры головного мозга, гипоталамуса, продолговатого и спинного мозга. В продолговатом мозге располагаются жизненно важные ядра сердечно-сосудистого центра: нейроны латеральной части продолговатого мозга через симпатические нейроны спинного мозга оказывают тоническое активирующее влияние на сердце и кровеносные сосуды; нейроны медиальной части продолговатого мозга тормозят симпатические нейроны спинного мозга; моторное ядро блуждающего нерва угнетает деятельность сердца; нейроны вентральной поверхности продолговатого мозга стимулируют деятельность симпатической нервной системы. Через гипоталамус осуществляется связь нервного и гуморального звеньев регуляции К.

3.основные гемодинамические факторы,определяющие величину системного ад.

Системное АД, основные гемодинамические факторы, определяющие его величину Одним из наиболее важных параметров гемодинамики является системное артериальная давление, т.е. давление в начальных отделах системы кровообращения - в крупных артериях. Его величина зависти от изменений, происходящих в любом отделе системы. Наряду с системным, существует понятие о местном давлении, т.е. давлении в мелких артериях, артериолах, венах, капиллярах. Это давление тем меньше, чем больше путь, пройденный кровью до этого сосуда при выходе ее из желудочка сердца. Так, в капиллярах давление крови больше, чем в венах, и равно 30-40 мм (начало) - 16-12 мм рт. ст. (конец). Это объясняется тем, что чем больший путь проходит кровь, тем больше энергии тратится на преодоление сопротивления стенок сосудов, в результате давление в полых венах близко к нулю или даже ниже нуля. Основные гемодинамические факторы, влияющие на величину системного артериального давления, определяются из формулы: Q = P р r4 / 8 Ю l, Где Q – объемная скорость кровотока в данном органе, r – радиус сосудов, Р – разность давление на «вдохе» и «выдохе» из органа. Величина системного артериального давления (АД) зависит от фазы сердечного цикла. Систолическое АД создается энергией сердечных сокращений в фазу систолы, составляет 100-140 мм рт. ст. Его величина зависит, в основном, от cистолического объема (выброса) желудочка (CО), общего периферического сопротивления (R) и частоты сердечных сокращений. Диастолическое АД создается энергией, аккумулированной в стенках крупных артерий при их растяжении во время систолы. Величина этого давления составляет 70-90 мм рт. ст. Его величина определяется, в большей степени, величинами R и ЧСС. Разница между систолическим и диастолическим давлением называется пульсовым давлением, т.к. оно определяет размах пульсовой волны, равный в норме 30-50 мм рт. ст. Энергия систолического давления расходуется: 1) на преодоление сопротивления сосудистой стенки (боковое давление - 100-110 мм рт. ст.); 2) на создание скорости движущейся крови (10-20 мм рт. ст. - ударное давление). Показателем энергии непрерывного потока движущейся крови, результирующей «величиной всех его переменных является искусственно выделяемое среднее динамическое давление. Оно может быть рассчитано по формуле Д. Хинема: Рсреднее = Рдиастолическое 1/3Рпульсового. Величина этого давления составляет 80-95 мм рт. ст. АД изменяется также в связи с фазами дыхания: на вдохе оно снижается. АД – относительно мягкая константа: ее величина может колебаться в течение дня: при физической работе большой интенсивности систолическое давление может возрастать в 1,5-2 раза. Увеличивается оно также при эмоциональном и других видах стресса. С другой стороны, АД здорового человека может снижаться относительно своей средней величины. Это наблюдается во время медленного сна и – кратковременно – при ортостатическом возмущении, связанном с переходом тела из горизонтального в вертикальное положение.

4.Особенности кровотока в мозге и его регуляция.

Роль мозга в регуляции кровообращения можно сравнить с роль могущественного монарха,диктатора: на адекватное снабжение кровью,кислородом мозга и миокарда рассчитана величина системного ад в любой момент жизнедеятельности. В покое мозг использует 20% кислорода,потребляемого всем организмом, и 70 % глюкозы; мозговой кровоток составляет 15% мок,хотя масса мозга равна лишь 2% массы тела.

Билет

1.Понятие об экстрасистоле.Возможность ее возникновения в разные фазы сердечного цикла. Компенсаторная пауза, причины ее развития.

Экстрасистолия - это нарушение сердечного ритма, обусловленное преждевременным сокращением всего сердца или отдельных его частей вследствие повышения активности очагов эктопического автоматизма Относится к наиболее часто встречающимся нарушениям сердечного ритма как у мужчин, так и у женщин. По мнению некоторых исследователей, экстрасистолия периодически возникает практически у всех людей.

Редко возникающие экстрасистолы не отражаются на состоянии гемодинамики, общем состоянии больного (иногда у больных возникают неприятные ощущения перебоев). Частые экстрасистолы, групповые экстрасистолы, экстрасистолы, исходящие из различных эктопических очагов, могут быть причиной гемодинамических расстройств. Они нередко являются предвестниками пароксизмальной тахикардии, мерцательной аритмии, фибрилляции желудочков. Такие экстрасистолии, несомненно, можно отнести к неотложным состояниям. Особенно опасны состояния, когда эктопический очаг возбуждения на время становится водителем ритма сердца, т. е. возникает приступ чередующихся экстрасистол, или приступ пароксизмальной тахикардии.

овременные исследования свидетельствуют о том, что этот вид нарушения ритма сердца часто обнаруживается у лиц, считающихся практически здоровыми. Так, Н. Zapf и V. Hutano (1967) во время однократного обследования 67 375 человек обнаружили экстрасистолию у 49 %. К. Averill и Z. Lamb (1960), обследуя 100 человек многократно в течение суток методом телеэлектрокардиографии, выявили экстрасистолию у 30 %. Поэтому представление о том, что перебои являются признаком заболевания сердечной мышцы, в настоящее время отвергнуто.

Г. Ф. Ланг (1957) указывает, что экстрасистолия приблизительно в 50 % случаев является результатом экстракардиальных влияний.

В эксперименте экстрасистолию вызывает раздражение различных отделов головного мозга - коры большого мозга, таламуса, гипоталамуса, мозжечка, продолговатого мозга.

Существует эмоциональная экстрасистолия, возникающая во время душевных переживаний и конфликтов, беспокойства, страха, гнева. Зкстрасистолическая аритмия может быть одним из проявлений общего невроза, измененной кортико-висцеральной регуляции. О роли симпатического и парасимпатического отделов нервной системы в генезе сердачных аритмий свидетельствует рефлекторная экстрасистолия, возникающая при обострении язвенной болезни желудка и двенадцативерстной кишки, хронического холецистита, хронического панкреатита, дяафрагмальных грыжах, операциях на органах брюшной полости. Причиной рефлекторной экстрасистолии могут быть патологические процессы в легких и средостении, плевральные и плевроперикардиальные сращения, шейный спондилоартроз. Возможна также условнорефлекторная экстрасистолия.

Таким образом, большую роль в возникновении экстрасистол играет состояние центральной и вегетативной нервной системы.

Чаше всего возникновению экстрасистолии способствуют органические изменения миокарда. Следует иметь в виду, что нередко даже незначительные органические изменения миокарда в сочетании с функциональными факторами и прежде всего с дискоординированными влияниями экстракардиальных нервов могут привести к появлению эктопических очагов возбуждения. При различных формах ишемической болезни сердца причиной экстрасистолии могут быть изменения миокарда или сочетание органических изменений миокарда с функциональными. Так, по данным Е. И. Чазова (1971), М. Я. Руды, А. П. Зыско (1977), Л. Т. Малой (1979), нарушения сердечного ритма отмечаются у 80-95 % больных инфарктом миокарда, причем наиболее частым нарушением ритма является экстрасистолия (желудочковая экстрасистолия наблюдается у 85-90 % госпитализированны


Введение

Сердце - жизненно необходимый орган

Тренировка сердца и сосудов

Заключение

Список источников информации


Введение


«При помощи физических упражнений и воздержанности большая часть людей может обойтись без медицины», - Аддисон Д.

Люди, занимающиеся спортом, выполняющие различные физические упражнения часто задаются вопросом: влияет ли физическая нагрузка на сердце.

Как и любой из хороших насосов, сердце было создано так, что оно при необходимости может варьировать нагрузку. Так, к примеру, в спокойном состоянии сердце сокращается (бьется) 60-80 раз в минуту. За это время сердце перекачивает приблизительно около 4 л. крови. Данный показатель называется минутным объемом или сердечным выбросом. И в случае тренировок (физических нагрузок), сердце может перекачивать в 5-10 раз больше. Такое тренированное сердце будет меньше изнашиваться, оно будет намного мощнее нетренированного и сохранится в лучшем состоянии.

Здоровье сердца можно сравнить с хорошим мотором автомобиля. Как и в автомобиле, сердце в состоянии работать напряженно, оно может работать без каких либо нарушений и в быстром темпе. Но также необходим период восстановления и отдых сердца. По ходу старения организма человека потребность во всем этом растет, но эта потребность увеличивается не настолько, как считают многие. Как и в хорошем моторе автомобиля, разумное и правильное использование дает возможность сердцу функционировать, будто это новый мотор.


1. Сердце - жизненно необходимый орган


Сердце (лат. соr, греч. cardia) - полый мышечный орган системы кровообращения <#"justify">. Сердце и физические нагрузки


Уже давно врачами было замечено, что состояние сердечно-сосудистой системы спортсменов отличается от таковой у лиц, не занимающихся спортом. Прежде всего, на себя обращало внимание снижение частоты сердечных сокращений у спортсменов, этот факт долгое время считался признаком высокой функциональной способности. В настоящее время данное обстоятельство не оценивается так однозначно, современные достижения спортивной кардиологии позволяют более глубоко понять изменения сердца и сосудов у спортсменов под влиянием физических нагрузок.

Сердце работает в среднем с частотой 80 сокращений в минуту, у детей - несколько чаще, у пожилых и престарелых - реже. За один час сердце выполняет 80 х 60 = 4800 сокращений, за сутки 4800 х 24 = 115200 сокращений, за год это число достигает 115200 х 365 =4 2048000. При средней продолжительности жизни 70 лет число сердечных сокращений - своего рода циклов работы двигателя - составит около 3 млрд.

Давайте сопоставим эту цифру с аналогичными показателями циклов работы машины. Мотор позволяет автомобилю пройти без капитального ремонта 120 тыс. км - это три кругосветных путешествия. При скорости 60 км/ч, которая обеспечивает наиболее благоприятный режим работы двигателя, срок его службы составит всего 2 тыс. ч (120000). За это время он сделает 480 млн. циклов работы двигателя.

Это число уже ближе к количеству сокращений сердца, однако сравнение явно не в пользу двигателя. Число сокращений сердца и соответственно количества оборотов коленчатого вала выражается соотношением 6:1.

Длительность службы сердца превышает аналогичный показатель двигателя более чем в 300 раз, Заметим, что в нашем сравнении для машины взяты самые высокие, а для человека - средние показатели. Если же взять для подсчета возраст долгожителей, то преимущество сердца человека перед двигателем увеличится по количеству рабочих циклов в 10-12 раз, а по сроку службы - в 500-600 раз. Это ли не доказательство высокого уровня биологической организации сердца!

Сердце имеет огромные приспособительные возможности, которые наиболее ярко проявляются при мышечной работе. При этом почти вдвое увеличивается ударный объем сердца, то есть количество крови, выбрасываемой в сосуды при каждом сокращении. Так как при этом втрое увеличивается частота работы сердца, то объем выбрасываемой в минуту крови (минутный объем сердца) возрастает в 4-5 раз. Конечно, сердце при этом затрачивает гораздо больше усилий. Работа основного - левого - желудочка увеличивается в 6-8 раз. Особенно важно то, что в этих условиях возрастает коэффициент полезного действия сердца, измеряющийся отношением механической работы сердечной мышцы ко всей затрачиваемой ею энергии. Под влиянием физических нагрузок КПД сердца увеличивается в 2,5-3 раза по сравнению с уровнем двигательного покоя. В этом состоит качественное отличие сердца от двигателя автомашины; с увеличением нагрузки сердечная мышца переходит на экономичный режим работы, тогда как двигатель, напротив, теряет в своей экономичности.

Приведенные выше расчеты характеризуют приспособительные возможности здорового, но не тренированного сердца. Гораздо более широкий диапазон изменений его работы приобретается под влиянием систематических тренировок.

Надежно повышает жизненные силы человека физическая тренировка. Механизм ее сводится к регулированию взаимоотношения процессов утомления и восстановления. Тренируется ли отдельная мышца или несколько групп, нервная клетка или слюнная железа, сердце, легкие или печень, основные закономерности тренировки каждого из них, как и системы органов, принципиально сходны. Под влиянием нагрузки, которая специфична для каждого органа, усиливается его жизнедеятельность и скоро развивается утомление. Общеизвестно, что утомление снижает работоспособность органа, менее известна его способность стимулировать восстановительный процесс в работающем органе, что существенно меняет бытующее представление об утомлении. Этот процесс полезен, и от него следует не избавляться как от чего-то вредного, и, напротив, стремиться к нему ради стимуляции восстановительных процессов!


Тренировка сердца и сосудов


Занятия лечебной физкультурой повышают качество и интенсивность работы всех физиологических процессов организма. Такое тонизирующее действие упражнений улучшает жизнедеятельность и помогает развить двигательную активность. Физические упражнения улучшают работу сердца, а именно: трофические процессы в миокарде, усиливают кровообращение и активизируют обмен веществ. Как результат, мы получаем укрепленные сердечные мышцы, повышенную способность к сокращению. Улучшение обмена веществ вызывает процессы, обратные атеросклерозу. Во время лечебной физкультуры тренируются не только сердечные мышцы, но и внесердечные.

Следовательно, для восстановления и поддержания сердца в хорошей форме помогут специальные тренировки - кардиотренировки.

Для того, чтобы обеспечить сердцу нагрузки и при этом не навредить организму, нужно правильно эту самую нагрузку рассчитать. Расчет ведется по пульсу:

Сначала вычисляем МЧСС (максимальную частоту сердечных сокращений) с учетом возраста,

Затем контролируем пульс после выполнения упражнений и сравниваем с расчетами.

Рассчитать МЧСС очень просто: нужно 220 отнять ваш возраст. Оптимальной будет нагрузка, что заставляет сердце биться с частотой, которая составляет 75-85 % от МЧСС. Если сердце бьется в результате тренировки чаще, то нагрузка слишком велика, если реже - слишком мала.

Приведем пример. Допустим вам 45 лет, значит максимальная частота сердечных сокращений для вас будет 175. Вычисляем минимальный и максимальный процент, получаем, что от 131 до 148 ударов в минуту ту нагрузку на ваше сердце, которая обеспечит его тренировки.

Однако не стоит забывать и о частоте пульса в покое. Его нужно измерять перед занятиями. Если он от 60 до 80 ударов в минуту, то все в порядке. Если сердце бьется чаще, то стоит быть осторожнее, чаще контролировать пульс во время тренировки, в случае превышения допустимой нормы уменьшить нагрузку или прекратить занятия.

Для контроля над пульсом удобно использовать специальные устройства - пульсометры, которые надевают на руку. Достаточно бросить взгляд на табло, и вы увидите режим работы вашего сердца и поймете, нужно увеличивать или уменьшать нагрузку.

Надо иметь в виду, что при некоторых заболеваниях сердца физические нагрузки противопоказаны, рекомендован покой. Это аневризмы (патологическое выпячивание стенок) сердца и аорты, частые и сильные приступы стенокардии, инфаркт миокарда в острой стадии и тяжелые постинфарктные изменения, гипертоническая болезнь с частыми кризами, сложные нарушения ритма сердечной деятельности.

При не столь тяжелых нарушениях деятельности сердца физкультура не только не запрещена, но необходима при условии, что нагрузки в начале будут щадящими. При заболеваниях сердца в некоторой степени противопоказаны статические нагрузки (когда имеется длительное напряжение отдельных групп мышц, например при долгом пребывании в одной и той же позе) и взрывные нагрузки (характеризующиеся сильным кратковременным напряжением мышц, например при поднятии тяжестей), чаще рекомендуются умеренные динамические нагрузки (когда чередуется напряжение и расслабление разных групп мышц, например при ходьбе, беге, плавании). Именно такие нагрузки направлены на укрепление, развитие, повышение эластичности сердечной мышцы.

При динамической нагрузке даже такой малой интенсивности, как обычная ходьба, сердечная мышца прекрасно тренируется: благодаря усилению ее сокращений в ней оживляются восстановительные процессы, активизируется обмен веществ. К тому же интенсивно работающие мышцы начинают сжимать и разжимать кровеносные сосуды, помогая кровообращению и таким образом разгружая сердце. Поэтому даже больным, перенесшим инфаркт миокарда и страдающим сердечной недостаточностью, показаны прогулки.

Очень хорошее средство тренировки сердечной мышцы - плавание. Но если есть проблемы с сердцем, плавать надо спокойно, размеренно, не перетруждая сердце и не доводя дело до одышки. Плавание тренирует сосуды, предотвращает венозный застой и облегчает возврат венозной крови в сердце - этому способствует горизонтальное положение в воде и эффект уменьшения веса тела, так называемой «гидро невесомости». Для лечения и профилактики вегето-сосудистой дистонии (невроза сердца), атеросклероза, гипотонии полезно плавание в прохладной воде (17-20 градусов).


Оздоровительная физическая культура при различных заболеваниях порока сердца


Пороком сердца называется стойкое патологическое изменение в строении сердца, нарушающее его функцию.

Пороки сердца бывают врождённые и приобретённые. Врождённые пороки сердца возникают в результате нарушения нормального развития сердца и магистральных сосудов во внутриутробном развитии. Они составляют 1-2% от всех заболеваний сердца. Различают две группы врождённых пороков:

Пороки с увеличенным лёгочным кровотоком.

С уменьшенным кровотоком в малом круге. К первой группе относятся врождённые дефекты межпредсердной и межжелудочковой перегородок и открытый артериальный проток. Тяжесть порока зависит от локализации и размера дефекта, выраженности шунта и состояния сосудов лёгких. Лечение пороков оперативное с хирургическим закрытием дефектов на открытом сердце. Открытый артериальный проток - это короткий тонкостенный сосуд, соединяющий внеперикардиально лёгочную артерию и аорту, который не зарастает в первые месяцы после рождения ребёнка. Лечение - оперативное. Ко второй группе врождённых пороков относятся пороки с уменьшенным лёгочным кровотоком: триада, тетрада и пентада Фалло. Здесь наблюдается сужение выхода из правого желудочка в лёгочную артерию, дефект межжелудочковой перегородки, транспозиция аорты и гипертрофия мышцы правого желудочка.

Для лечения используются три вида операций: а) обходное шунтирование крови. б) устранение стеноза выходного отдела правого желудочка или клапанов лёгочной артерии. в) радикальная коррекция. Более редкие врождённые пороки - это трикуспидальная атрезия и транспозиция магистральных сосудов. Лечение - вшивание протезов в позицию трикуспидального клапана или перемещение сосудов при транспозиции с использованием А.И.К.

Приобретённые пороки сердца связаны с перенесённым воспалением эндокарда и миокарда (при ревматизме, сепсисе, атеросклерозе, сифилисе). Под влиянием воспалительного процесса в клапане развивается рубцовая ткань, которая вызывает деформацию и укорочение створок клапанов или сужения отверстия. В результате клапан не может полностью закрыть отверстие. Возникает недостаточность клапанов.

Различают:

Недостаточность митрального клапана - insufficientia valvulae mitralis.

Сужение левого атриовентрикулярного отверстия - stenosis venosi sinistri.

Недостаточность клапанов аорты - insufficientia valvule aortae.

Сужение устья аорты - stenosis ostii aortae.

Недостаточность трёхстворчатого клапана - insufficientia valvulae tricuspidalis. Кроме того встречаются комбинированные и сочетанные пороки сердца в различных вариантах. При недостаточности клапанов во время систолы, возникает обратный противоестественный ток крови из желудочков предсердия, а из аорты и лёгочной артерии в соответствующее предсердие. При стенозе левого атриовентрикулярного отверстия во время диастолы кровь не успевает перейти из предсердия в желудочек. Возникает патологическое переполнение левого предсердия и возрастает его нагрузка. Таким образом, пороки сердца приводят к нарушению гемодинамики. Лечение пороков сердца имеет целью восстановить нарушенную гемодинамику. Оно может быть консервативным (устраняющим причину порока).

При выраженных пороках сердца (особенно врождённых) проводится хирургическим путём на открытом сердце с применением аппарата искусственного кровообращения.

ЛФК при пороках сердца.

При компенсированной недостаточности митрального клапана в специальном применении лечебной физической культуры нет необходимости. Больным рекомендуются занятия в группах здоровья. Учащиеся учебных заведений должны заниматься в специальных или подготовительных группах. Лицам молодого возраста, хорошо тренированным, могут быть разрешены (при строжайшем врачебном контроле, ограничении нагрузок и участия в соревнованиях) занятия некоторыми видами спорта. При других пороках сердца, в зависимости от их характера и компенсации, может быть назначена лечебная физическая культура или контролируемые занятия физической культурой (например, в специальных группах).

ЛФК назначается с момента формирования порока до развития, хорошо компенсированного состояния, а также в случаях появления сердечной недостаточности (декомпенсация порока сердца). Вначале в занятия включаются упражнения, улучшающие периферическое кровообращение и облегчающие работу сердца (упражнения для дистальных отделов конечностей, дыхательные упражнения), в исходном положении лежа с высоко приподнятым изголовьем. Однако при стенозе левого предсердно-желудочкового отверстия, сопровождающемся недостаточностью кровообращения II степени, исключаются упражнения с углублением дыхания, так как при этом возрастает прилив крови к сердцу и может увеличиться застой ее в легких. В дальнейшем начинают применять исходные положения, сидя и стоя; включают упражнения для всех групп мышц, постепенно увеличивая нагрузку, чем и достигается тренировка сердца. Но и в этом случае в занятия включают упражнения, улучшающие периферическое кровообращение: движения для крупных групп мышц чередуют с движениями для дистальных отделов конечностей, дыхательными упражнениями и упражнениями в расслаблении.

Лечебная гимнастика при врожденном пороке сердца.

Пороки сердца - врождённые или приобретённые аномалии и деформации клапанов сердца, отверстий или перегородок между камерами сердца или отходящих от него сосудов, нарушающие внутрисердечную и системную гемодинамику, предрасполагающие к развитию острой или хронической недостаточности кровообращения. К врождённым порокам сердца относят также пороки развития магистральных сосудов - аорты, лёгочной артерии. Приобретённые пороки сердца возникают чаще всего вследствие ревматизма, ревматоидных болезней, атеросклероза и ишемической болезни сердца, инфекционного эндокардита. Реже вследствие сифилитических и травматических поражений. Встречаются повреждения перегородок, возникающие вследствие внутрисердечных лечебных и диагностических манипуляций, так называемые иатрогенные.

Врождённые пороки сердца возникают в период его эмбрионального развития, на частоту их возникновения влияют многие недостаточно изученные факторы, а соотношение между различными формами оказывается достаточно постоянным. Самые частые - дефект межпредсердной перегородки, дефект межжелудочковой перегородки, открытый аортальный проток, стеноз перешейка аорты. Некоторые аномалии несовместимы с жизнью, другие тяжело проявляют себя в первые часы, дни или месяцы жизни, и судьба ребёнка зависит от возможной хирургической коррекции, с третьими человек может дожить до зрелого возраста и даже до старости (до 100 лет).

Частота приобретённых пороков сердца в нашей стране и других экономически развитых странах резко снизилась благодаря эффективной профилактике и лечению ревматизма. В странах, где распространена наркомания, повышена частота пороков клапанов, где оседает инфект в результате внутривенного введения нестерильных наркотических средств. Формирование приобретённых пороков сердца обусловлено деформацией и кальцинозом поражённых створок клапанов, фиброзных колец, хорд. Консервативное лечение как врождённых, так и приобретённых пороков сердца безуспешно, но хирургическая операция, как активное вмешательство, может проводиться только при наличии соответствующих показаний. Необходимо своевременно определить объём и предельный характер допустимых нагрузок, а также формы тренирующего режима. Лечебная физкультура применяется в послеоперационном периоде. В остром периоде (палатный или домашний режим) лечебная гимнастика выполняется лёжа, затем сидя. Постепенно двигательный режим расширяется: применяется ходьба.

В период выздоровления лечебная физкультура - эффективное средство реабилитации (восстановительного лечения). Цель поддерживающего периода - закрепление достигнутых результатов и восстановление физической способности пациента. Дозированная ходьба - основной вид физической активности, способствующий восстановлению функции сердца. Кроме того, ходьба, лечебная физкультура и другие умеренные являются эффективным средством вторичной профилактики заболеваний. Людям с заболеваниями сердечнососудистой системы необходимо продолжать занятия физкультурой, лучше циклическими видами - ходьбой, лыжами - всю жизнь.

При расширении двигательной активности лечебная гимнастика включает дыхательные, развивающие и другие упражнения. Комплекс упражнений для больных с полной компенсацией порока сердца (режим тренировочный): 1 - поднимание рук в стороны вверх - вдох, опустить руки - выдох; 2 - руки сжатые в кулаки к плечам, опустить вниз, 4-6 раз; 3 - отвести ногу в сторону, 4-6 раз; 4 - сгибание ноги в колене, полувыпад в сторону; 5 - наклоны туловища со скольжением рук вдоль тела при наклоне - вдох, выпрямление - выдох; 6 - выпрямление руки вперед и сгибание в локте; дыхание произвольное, 3-4 раза; 7 - поднимание ноги, согнутой в колене - вдох, опустить - выдох, 3-4 раза; 8 - наклон корпуса вперед - выдох при выпрямлении - вдох, 3-4 раза; 9 - отвести руки назад - вдох, расслабить руки - выдох, 3-4 раза; 10 - ходьба с высоким подниманием колена с постепенным замедлением ходьбы до обычной; 11 - ходьба на носочках, спокойное дыхание; 12 - поднимание рук вверх, мягко, вдох: расслабленно опустить вниз - выдох, 4-5 раз.

Оздоровительные упражнения при пороках клапанов сердца. Система физических упражнений, направленных на повышение функционального состояния до необходимого уровня (100% ДМПК и выше), называется оздоровительной, или физической, тренировкой (за рубежом - кондиционная тренировка). Первоочередной задачей оздоровительной тренировки является повышение уровня физического состояния до безопасных величин, гарантирующих стабильное здоровье. Важнейшей целью тренировки для людей всех возрастов является профилактика сердечно-сосудистых заболеваний, являющихся основной причиной нетрудоспособности и смертности в современном обществе. Кроме того, необходимо учитывать возрастные физиологические изменения в организме в процессе инволюции. Все это обусловливает специфику занятий оздоровительной физической культурой и требует соответствующего подбора тренировочных нагрузок, методов и средств тренировки.

В оздоровительной тренировке (так же, как и в спортивной) различают следующие основные компоненты нагрузки, определяющие ее эффективность: тип нагрузки, величину нагрузки, продолжительность (объем) и интенсивность, периодичность занятий (количество раз в неделю), продолжительность интервалов отдыха между занятиями. Характер воздействия физической тренировки на организм зависит прежде всего от вида упражнений, структуры двигательного акта.

В оздоровительной тренировке различают три основных типа упражнений, обладающих различной избирательной направленностью: 1. тип - циклические упражнения аэробной направленности, способствующие развитию общей выносливости; 2. тип - циклические упражнения смешанной аэробно- анаэробной направленности, развивающие общую и специальную (скоростную) выносливость; 3. тип - ациклические упражнения, повышающие силовую выносливость.

Однако оздоровительным и профилактическим эффектом в отношении атеросклероза и сердечнососудистых заболеваний обладают лишь упражнения, направленные на развитие аэробных возможностей и общей выносливости. (Это положение особо подчеркивается в рекомендациях Американского института спортивной медицины.) В связи с этим основу любой оздоровительной программы должны составлять циклические упражнения, аэробной направленности. Тренировка на выносливость в циклических видах возможна для людей, имеющих пороки сердца.

Лечение этих больных в современных клиниках немыслимо без физической реабилитации, основой которой, как говорилось выше, являются аэробные упражнения постепенно возрастающей продолжительности и интенсивности. Так, например, в реабилитационном центре Торонто (Канада) в течение 10 лет, интенсивной физической тренировкой, включающей быструю ходьбу и медленный бег, под наблюдением опытных кардиологов успешно занималось более 5000 больных. Некоторые из них настолько повысили свои функциональные возможности, что смогли принять участие в марафоне. Конечно, это уже не массовая физкультура, а сложная система реабилитационных мероприятий.

Однако после завершения больничного и санаторно-курортного этапов реабилитации в специализированных кардиологических учреждениях и перехода (примерно через 6-12 месяцев после выписки из стационара) к поддерживающему этапу, который должен продолжаться всю последующую жизнь, многие пациенты могут и должны заниматься оздоровительной тренировкой - в зависимости от своего функционального состояния. Дозировка тренировочных нагрузок производится в соответствии с данными тестирования по тем же принципам, что и у всех сердечнососудистых больных: интенсивность должна быть несколько ниже пороговой, показанной в велоэргометрическом тесте. Так, если при тестировании боли в области сердца или гипоксические изменения на ЭКГ появились при пульсе 130 уд/мин, то нужно тренироваться, снизив величину ЧСС на 10--20 уд/мин на ранних этапах реабилитации (менее года после перенесенного инфаркта). За рубежом используются полностью контролируемые программы занятий в виде строго дозированной работы на велоэргометре или ходьбы на тредбане (бегущей дорожке) под наблюдением медицинского персонала (по 20--30 мин 3-- раза в неделю).

По мере роста тренированности и повышения функциональных возможностей системы кровообращения пациенты постепенно переводятся на частично контролируемые программы, когда 1 раз в неделю занятия проводятся под наблюдением врача, а 2 раза дома самостоятельно - быстрая ходьба и бег, чередующийся с ходьбой, при заданной ЧСС. И наконец, на поддерживающем этапе реабилитации (через год и более) можно переходить к самостоятельным занятиям ходьбой и бегом, периодически контролируя свое состояние у врача. Такая целенаправленная долговременная программа дает весьма обнадеживающие результаты.


Заключение


Если Вы находитесь в самом начале пути по укреплению своего здоровья, начинайте физические упражнения в медленном темпе и, только адаптировавшись к таким нагрузкам, постепенно и ступенчато (уровень за уровнем) повышайте их интенсивность. Такой подход обеспечит наибольшую пользу при минимальном риске.

В выборе вида физической активности ориентируйтесь на свои привязанности (подвижные игры, ходьба, езда на велосипеде и т.д.) а в выборе времени - на особенности своего распорядка дня и особенности своего биоритма ("жаворонок" или "сова"). В первом случае, занятия физическими упражнениями предпочтительны до начала трудового дня, во втором - после его окончания. В таком случае физическая активность будет для Вас в удовольствие, а значит и более полезной.

Занимайтесь физическими упражнениями регулярно, а для этого выделите для него время в своем распорядке дня. Во время выполнения физических упражнений не отвлекайтесь на постороннее действия (чаще всего разговоры) - это уменьшит вероятность травматизма. Если во время выполнения физических упражнений Вы почувствовали слабость, головокружение или Вам стало трудно дышать - нагрузка чрезмерна, ее интенсивность необходимо снизить или вовсе прекратить занятия; о чрезмерности упражнений свидетельствует также продолжительность восстановительного периода более 10 минут.

Выполняйте физические упражнения в удобной обуви и не стесняющей Ваши движения одежде. Периодически меняйте виды физических упражнений (бег, велосипед, теннис и т.п.), тем самым Вы устраните элемент монотонности в занятиях, уменьшая вероятность прекращения занятий ("они мне надоели, каждый день одно и то же"). Поощряйте физическую активность своих близких, особенно детей с раннего возраста. Пусть физические упражнения станут привычкой, что поможет Вашим детям поддерживать здоровье в течение всей их жизни.

Стимулируйте и подбадривайте себя: ставьте перед собой маленькие и большие цели, а достигнув их, отмечайте их как праздничные события.

Помните, физическая активность является важным и действенным инструментом в сохранении и улучшении Вашего здоровья, а потому она должна стать неотъемлемым атрибутом Вашей жизни!

сердце физический гимнастика кардиотренировка

Список источников


1. Амосов Н.М., Муравов И.В. Сердце и физические упражнения. - М.: Знание, 1985.

Амосов Н.М., Бендет Я.А. Физическая активность и сердце. - Киев: Здоровье, 1989.

Бальсевич В.К. Физическая культура для всех и для каждого. - М.: ФиС, 1988.

Белорусова В.В. Физическое образование. - М.: Логос, 2003.

Ращупкин Г.В. Физическая культура. - Спб.: Нева, 2004.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФГБОУВПО ВОЛГОГРАДСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ФИЗИЧЕСКОЙ КУЛЬТУРЫ

СРС № 1 на тему:

Регуляция деятельности сердца

Выполнила:

Студентк 204 группы

Азимли Р.Ш.

Волгоград 2015

Список литературы

1. Физиологические свойства сердечной мышцы и их отличия от скелетной

кровоток сокращение сердечный спортсмен

К физиологическим свойствам сердечной мышцы относятся возбудимость, сократимость, проводимость и автоматия.

Возбудимость -- это способность кардиомиоцитов и всей сердечной мышцы возбуждается при действии на нее механических, химических, электрических и других раздражителей, что находит свое применение в случаях внезапной остановки сердца. Особенностью возбудимости сердечной мышцы является то, что она подчиняется закону "все -- или ничего”. Это значит, что на слабый, допороговой силы раздражитель сердечная мышца не отвечает, (т.е. не возбуждается и не сокращается) ("ничего”), а на раздражитель пороговой, достаточной для возбуждения силы сердечная мышца реагирует своим максимальным сокращением ("все”) и при дальнейшем увеличении силы раздражения ответная реакция со стороны сердца не изменяется. Это связано с особенностями строения миокарда и быстрым распространением по нему возбуждения через вставочные диски -- нексусы и анастомозы мышечных волокон. Таким образом, сила сердечных сокращений в отличие от скелетных мышц не зависит от силы раздражения. Однако этот закон, открытый Боудичем, в значительной степени условен, так как на проявление данного феномена влияют определенные условия -- температура, степень утомления, растяжимость мышц и ряд других факторов.

Проводимость -- это способность сердца проводить возбуждение. Скорость проведения возбуждения в рабочем миокарде разных отделов сердца неодинакова. По миокарду предсердий возбуждение распространяется со скоростью 0,8-- 1 м/с, по миокарду желудочков-- 0,8 --0,9 м/с. В атриовентрикулярной области на участке длиной и шириной в 1 мм проведение возбуждения замедляется до 0,02-- 0,05 м/с, что почти в 20 --50 раз медленнее, чем в предсердиях. В результате этой задержки возбуждение желудочков начинается на 0,12--0,18 с позже начала возбуждения предсердий. Существует несколько гипотез, объясняющих механизм атриовентрикулярной задержки, но этот вопрос требует своего дальнейшего изучения. Однако эта задержка имеет большой биологический смысл -- она обеспечивает согласованную работу предсердий и желудочков.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Сила сердечных сокращений зависит от исходной длины мышечных волокон (закон Франка-Старлинга). Чем больше притекает к сердцу крови, тем более будут растянуты его волокна и тем большая будет сила сердечных сокращений. Это имеет большое приспособительное значение, обеспечивающее более полное опорожнение полостей сердца от крови, что поддерживает равновесие количества притекающей к сердцу, и оттекающей от него крови. Здоровое сердце уже при небольшом растяжении отвечает усиленным сокращением, в то время как слабое сердце даже при значительном растяжении лишь немного увеличивает силу своего сокращения, а отток крови осуществляется за счет учащения ритма сокращений сердца. Кроме того, если по каким-либо причинам произошло чрезмерное сверх физиолочески допустимых границ растяжение сердечных волокон, то сила последующих сокращений уже не увеличивается, а ослабляется.

Автоматия - свойство, которым не обладают скелетные мышцы. Это свойство подразумевает возможность сердца ритмически возбуждаться без раздражителя из внешней среды.

2. Частота сердечных сокращений и сердечный цикл в покое и при мышечной работе

ЧСС (пульс) - толчкообразные колебания стенок артерий, связанные с сердечными циклами. В более широком смысле под пульсом понимают любые изменения в сосудистой системе, связанные с деятельностью сердца, поэтому в клинике различаютартериальный, венозный и капиллярный пульс.

Частота сердечных сокращений зависит от многих факторов, включая возраст, пол, положение тела, условия окружающей среды. Она выше в вертикальном положении по сравнению с горизонтальном, уменьшается с возрастом. ЧСС покоя лежа-60 ударов в минуту; стоя-65. По сравнению с положением лежа в положении сидя ЧСС увеличивается на 10%, стоя на 20-30%. В среднем ЧСС составляет около 65 в минуту, однако наблюдается ее значительны колебания. У женщин этот показатель на 7-8 выше.

ЧСС подвержена суточным колебаниям. Во время сна она снижена на 2-7, в течение 3 часов после приема пищи - возрастает, особенно, если пища богата белками, что связано с поступлением крови к органам брюшной полости. Температура окружающей среды оказывает влияние на ЧСС, которая увеличивается в линейной зависимости от эффективной температуры.

У тренированных лиц ЧСС в покое ниже, чем у нетренированных и составляет около 50-55 ударов в минуту.

Физические нагрузки приводят к увеличению ЧСС, необходимого для обеспечения возрастания минутного объема сердца, причем существует ряд закономерностей позволяющих использовать этот показатель как один из важнейших при проведении нагрузочных тестов.

Отмечается линейная зависимость между ЧСС и интенсивностью работы в пределах 80-90% максимальной предельности нагрузок.

При легкой физической нагрузке первоначально ЧСС значительно увеличивается, однако постепенно снижается до уровня, который сохраняется в течение всего периода стабильной нагрузки. При более интенсивных нагрузках имеется тенденция к увеличению ЧСС, причем при максимальной работе она нарастает до предельно достижимой. Эта величина зависит от тренированности, возраста, пола и других факторов. У тренированных людей частота сердечных сокращений достигает 180 уд/мин. При работе переменной мощности можно говорить о диапазоне частоты сокращений 130-180 уд/мин, в зависимости от изменения мощности.

Оптимальная частота 180 уд/мин при различной нагрузке. Следует отметить, что работа сердца при очень большой частоте сокращений (200 и более) становится менее эффективнее, так как значительно сокращается время наполнения желудочков и уменьшается ударный объем сердца, что может привести к патологии (В.Л. Карпман, 1964; Е.Б. Сологуб, 2000).

Тесты с возрастанием нагрузок до достижения максимальной ЧСС используется лишь в спортивной медицине, и нагрузка считается допустимой, если ЧСС достигает 170 в минуту. Этот предел обычно используется при определении переносимости физической нагрузки и функционального состояния сердечнососудистой и дыхательной систем.

3. Систолический и минутный объем кровотока в покое и при мышечной работе у тренированных и нетренированных спортсменов

Систолический (ударный) объем крови - это количество крови, которое сердце выбрасывает в соответствующие сосуды при каждом сокращении желудочка.

Наибольший систолический объем наблюдается при частоте сердечных сокращений от 130 до 180 удар/мин. При частоте сердечных сокращений выше 180 удар/мин систолический объем начинает сильно снижаться.

При ритме сердеч-ных сокращений 70 - 75 в минуту систолический объем равен 65 - 70 мл крови. У человека при горизонтальном положении тела в условиях покоя систолический объем составляет от 70 до 100 мл.

В покое объем крови, выбрасываемый из желудочка, составляет в норме от трети до половины общего количества крови, содержащейся в этой камере сердца к концу диастолы. Оставшийся в сердце после систолы резервный объем крови является своеобразным депо, обеспечивающим увеличение сердечного выброса при ситуациях, в которых требуется быстрая интенсификация гемодинамики (например, при физической нагрузке, эмоциональном стрессе и др.).

Минутный объем крови (МОК) - количество крови, перекачиваемой сердцем в аорту и легочный ствол за 1 мин.

Для условий физического покоя и горизонтального положения тела испытуемого нормальные величины МОК соответствуют диапазону 4-6 л/мин (чаще приводятся величины 5-5.5 л/мин). Средние величины сердечного индекса колеблются от 2 до 4 л/(мин. м2) - чаще приводятся величины порядка 3-3.5 л/(мин. м2).

Поскольку объем крови у человека составляет только 5-6 л, полный кругооборот всего объема крови происходит примерно за 1 мин. В период тяжелой работы МОК у здорового человека может увеличиться до 25-30 л/мин, а у спортсменов - до 35-40 л/мин.

В системе транспорта кислорода аппарат кровообращения является лимитирующим звеном, поэтому соотношение максимальной величины МОК, проявляющейся при максимально напряженной мышечной работе, с его значением в условиях основного обмена дает представление о функциональном резерве всей сердечно-сосудистой системы. Это же соотношение отражает и функциональный резерв самого сердца по его гемодинамической функции. Гемодинамический функциональный резерв сердца у здоровых людей составляет 300-400 %. Это означает, что МОК покоя может быть увеличен в 3-4 раза. У физически тренированных лиц функциональный резерв выше - он достигает 500-700 %.

Факторы, влияющие на систолический объём и минутный объём:

1. масса тела, которой пропорциональна масса сердца. При массе тела 50 - 70 кг - объём сердца 70 - 120 мл;

2. количество крови, поступающей к сердцу (венозный возврат крови) - чем больше венозный возврат, тем больше систолический объём и минутный объём;

3. сила сердечных сокращений влияет на систолический объём, а частота - на минутный объём.

4. Электрические явления в сердце

Электрокардиография -- методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологическойинструментальной диагностики в кардиологии.

Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ) -- графического представления разности потенциалов возникающих в результате работы сердца и проводящихся на поверхность тела. На ЭКГ отражается усреднение всех векторов потенциалов действия, возникающих в определённый момент работы сердца.

Список литературы

1. А.С.Солодков, Е.Б.Сологуб…Физиология человека. Общая. Спортивная. Возрастная: Учебник. Изд. 2-е.

Размещено на Allbest.ru

...

Подобные документы

    Порядок распределения сердечного выброса в покое и при мышечной работе. Объем крови, его перераспределение и изменение при мышечной работе. Артериальное давление и его регуляция при мышечной работе. Кровообращение в зонах относительной мощности.

    курсовая работа , добавлен 07.12.2010

    Исследование адаптационных изменений сердечной деятельности и внешнего дыхания у спортсменов при нагрузке большой интенсивности в работах разных авторов. Анализ частоты пульса и дыхания у девушек до и после выполнения бега на короткие и длинные дистанции.

    курсовая работа , добавлен 11.05.2014

    Влияние двигательной активности на здоровье, механизмы адаптации организма к мышечной деятельности. Определение показателей артериального давления и частоты сердечных сокращений. Тренированность как специфическая форма адаптации к мышечной деятельности.

    дипломная работа , добавлен 10.09.2010

    Анализ кардиоритмограмм пловцов, гребцов и велосипедистов. Оценка вариабельности сердечного ритма спортсменов. Выявление общей картины динамики изменения частоты сердечных сокращений в зависимости от вида спорта и продолжительности спортивной карьеры.

    курсовая работа , добавлен 18.07.2014

    Основные показатели сердечно-сосудистой системы. Режимы и цикличность спортивных тренировок. Изменение артериального давления, частоты сердечных сокращений, ударного объема крови у спортсменов в недельном и месячном циклах тренировочного процесса.

    курсовая работа , добавлен 15.11.2014

    Особенности спортивного ориентирования, как отдельного цикличного вида спорта. Физическая и тактическая подготовка юных спортсменов-ориентировщиков. Тренировка мышечной массы, силовой выносливости, аэробной производительности организма юных спортсменов.

    курсовая работа , добавлен 06.12.2012

    Основные функции крови и её форменные элементы (эритроциты, лейкоциты и тромбоциты). Система крови под влиянием физической нагрузки. Порядок проведения и результаты исследования изменения показателей крови у спортсменов-лыжников при мышечной нагрузке.

    курсовая работа , добавлен 22.10.2014

    Значение биохимических исследований в подготовке спортсменов. Уровень гормонов и клинико-биохимических показателей в крови спортсменов до и после максимальной и стандартной физической нагрузки. Биоэнергетика мышечной деятельности: результаты исследований.

    отчет по практике , добавлен 10.09.2009

    Возрастные особенности в строении организма. Развитие систем энергетического обеспечения мышечной деятельности. Формирование двигательных качеств у детей. Методы и критерии оценки развития физической подготовленности и ориентации юных спортсменов.

    курсовая работа , добавлен 10.12.2012

    Поиск и разработка новых методик, способствующих повышению работоспособности и мышечной деятельности у спортсменов. Критерии оценивания данных методик и их значение в повышении эффективности тренировочного процесса. Особенности проведения степ-теста.

Сердечно - сосудистая система во время физической нагрузки повышает свои требования. Потребность кислороде активных мышц резко возрастает, используется больше питательных веществ, ускоряются метаболические процессы, поэтому возрастает количество продуктов распада. При продолжительной нагрузке, а также при выполнении физической нагрузки в условиях высокой температуры повышается температура тела. При интенсивной нагрузке увеличивается концентрация ионов водорода в мышцах и крови, что вызывает снижение рН крови.

Во время нагрузки происходят многочисленные изменения в сердечно - сосудистой системе. Все они направлены на выполнение одного задания: позволить системе удовлетворить возросшие потребности, обеспечив максимальную эффективность ее функционирования. Чтобы лучше понять происходящие изменения, нам необходимо более внимательно рассмотреть определенные функции сердечно- сосудистой системы. Мы изучим изменения всех компонентов системы, обратив особое внимание на частоту сердечных сокращений; систолический объем крови; сердечный выброс; кровоток; артериальное давление; кровь.

ЧАСТОТА СЕРДЕЧНЫХ СОКРАЩЕНИЙ. Частота - сердечных сокращений - наиболее простой и наиболее информативный параметр сердечно - сосудистой системы. Измерение его включает определения пульса, обычно в области запястья или сонной артерии. ЧСС отражает количество работы, которую должно выполнить сердце, чтобы удовлетворить повышенные требования организма при его вовлечении в физическую деятельность. Чтобы лучше разобраться, сравним ЧСС в покое и при физической нагрузке. Частота сердечных сокращений в покое. Средняя ЧСС в покое составляет 60-80 ударов в минуту. У людей среднего возраста, у малоподвижных и у тех, кто не занимается мышечной деятельностью, ЧСС в покое может превышать 100 ударов в минуту. У отлично подготовленных спортсменов, занимающихся видами спорта, требующими проявления выносливости, ЧСС в покое составляет 28-40 ударов в минуту. ЧСС обычно снижается с возрастом. На частоту сердечных сокращений также влияют факторы окружающей среды, например, она увеличивается в условиях высокой температуры и высокогорья. Уже до начала упражнения ЧСС, как правило, превышает обычный показатель в покое. Это так называемая предстартовая реакция. Она возникает вследствие выделения нейромедиатора норадреналина симпатической нервной системы и гормона адреналина надпочечниками. По-видимому, снижается также вагусный тонус. Поскольку ЧСС перед выполнением упражнения, как правило, повышена, определение ее в покое следует осуществлять только в условиях полного расслабления, например утром, перед тем как встать с постели после спокойного сна. Частоту сердечных сокращений перед выполнением упражнения нельзя считать ЧСС в покое.



Частота сердечных сокращений при физической нагрузке.

Когда вы начинаете выполнять упражнения, ЧСС быстро возрастает пропорционально интенсивности нагрузки. Когда интенсивность работы точно контролируется и измеряется (например, на велоэргометре), показатель потребления кислорода можно предсказать. Следовательно, выражение интенсивности физической работы или упражнения в показателях потребления кислорода является не только точным, но и наиболее подходящим при обследовании как различных людей, так и одного того же человека в разных условиях.

Максимальная частота сердечных сокращений. ЧСС увеличивается пропорционально возрастанию интенсивности физической нагрузки практически до момента крайнего утомления (изнеможения). По мере приближения этого момента ЧСС начинает стабилизироваться. Это означает, что достигнут максимальный уровень ЧСС. Максимальная частота сердечных сокращений - максимальный показатель, достигаемый при максимальном усилии перед моментом крайней усталости. Это очень надежный показатель, который остается постоянным изо дня в день и изменяется незначительно только с возрастом из года в год.



Максимальную ЧСС можно определять, учитывая возраст, поскольку она снижается примерно на один удар в год, начиная с возраста 10-15 лет. Вычтя возраст из 220 мы получим приближенный средний показатель максимальной ЧСС. Следует, однако, отметить, что индивидуальные показатели максимальной ЧСС могут отличаться от полученного таким образом среднего показателя довольно значительно. Например, у 40-летнего человека средний показатель максимальной ЧСС будет 180 ударов в минуту.

Однако из всех 40-летних людей 68% будут иметь показатель максимальной ЧСС в пределах 168-192 ударов в минуту, а у 95% этот показатель будет колебаться в пределах 156-204 ударов в минуту. Этот пример демонстрирует возможность ошибки при оценке максимальной ЧСС человека.

Устойчивая частота сердечных сокращений. При постоянных субмаксимальных уровнях физической нагрузки ЧСС увеличивается относительно быстро, пока не достигнет плато - устойчивой ЧСС, оптимальной для удовлетворения потребностей кровообращения при данной интенсивности работы. При каждом последующем увеличении интенсивности ЧСС достигает нового устойчивого показателя в течении 1-2 мин. Вместе с тем чем выше интенсивность нагрузки, тем больше времени требуется для достижения этого показателя.

Понятие устойчивости ЧСС легло в основу ряда тестов, разработанных для оценки физической подготовленности. В одном из этих тестов испытуемых помещали на прибор типа велоэргометра, и они выполняли работу при двух-трех стандартизированных интенсивностях. Отличавшиеся лучшей физической подготовленностью, исходя из их кардио - респираторной выносливости, имели более низкие показатели устойчивой ЧСС при данной интенсивности работы по сравнению с менее физически подготовленными. Таким образом, этот показатель - эффективный индикатор производительности сердца: более низкая ЧСС свидетельствует о более производительном сердце.

Когда упражнение выполняются с постоянной интенсивностью в течении продолжительного времени, особенно в условиях высокой температуры воздуха, ЧСС повышается, вместо демонстрации устойчивого показателя. Эта реакция является частью феномена, который называется сердечно - сосудистым сдвигом.

СИСТОЛИЧЕСКИЙ ОБЪЕМ КРОВИ.

Систолический объем крови также увеличивается во время нагрузки, обеспечивая более эффективную работу сердца. Общеизвестно, что при почти максимальной и максимальной интенсивности нагрузки систолический объем является главным показателем кардио - респираторной выносливости. Рассмотрим, что лежит в основе этого.

Систолический объем определяют четыре фактора:

1) объем венозной крови, возвращаемой в сердце;

2) растяжимость желудочков или их способность увеличиваться;

3) сократительная способность желудочков;

4) давление в аорте или давление в легочной артерии (давление, которое должно преодолевать сопротивление желудочков в процессе сокращения).

Первые два фактора влияют на возможности заполнения желудочков кровью, определяя, какой объем крови имеется для их заполнения, а также, с какой легкостью они заполняются при данном давлении. Два последних фактора влияют на способность выталкивания из желудочков, определяя силу, с которой кровь выбрасывается, а также давление, которое она должна преодолеть, продвигаясь по артериям. Эти четыре фактора непосредственно контролируют изменения систолического объема, обусловленные увеличением интенсивности нагрузки.

Увеличение систолического объема с нагрузкой.

Ученые сошлись на том, что величина систолического объема во время нагрузки превышает показатели в состоянии покоя. Вместе с тем приводятся весьма противоречивые данные об изменении систолического объема при переходе от работы очень низкой интенсивности к работе максимальной интенсивности или к работе до возникновения крайней усталости. Большинство ученых считают, что систолический объем увеличивается с увеличением интенсивности работы, но только до 40-60 % максимальной. Считают, что при указанной интенсивности показатель систолического объема крови демонстрирует плато и не изменяется даже при достижении момента возникновения крайней усталости.

Когда тело находится в вертикальном положении, систолический объем крови увеличивается почти вдвое по сравнению с показателем в состоянии покоя, достигая максимальных значений при мышечной деятельности. Например, у физически активных, но нетренированных людей, он увеличивается от 50-60 мл в состоянии покоя до 100-120 мл при максимальной нагрузке. У отлично подготовленных спортсменов, занимающихся видами спорта, требующими проявления выносливости, показатель систолического объема может повышаться от 80-110 мл в состоянии покоя до 160-200 мл при максимальной нагрузке. При выполнении упражнения в положении супинации (например, плавание) систолический объем также увеличивается, но не столь выражено - на 20-40%. Почему существует такое различие, обусловленное разными положениями тела?

Когда тело находится в положении супинации, кровь не скапливается в нижних конечностях. Она быстрее возвращается в сердце, что и обусловливает более высокие показатели систолического объема в состоянии покоя в горизонтальном положении (супинация). Поэтому увеличение систолического объема при максимальной нагрузке не столь велико при горизонтальном положении тела по сравнению с вертикальным. Интересно, что максимальный показатель систолического объема, который может быть достигнут при выполнении упражнения в вертикальном положении, лишь ненамного превышает показатель в горизонтальном положении. Увеличение систолического объема при низкой или средней интенсивности работы в основном направлено на компенсирование силы тяжести.

Объяснение увеличения систолического объема крови.

Общеизвестно, что систолический объем крови увеличивается при переходе от состояния покоя к выполнению нагрузки, однако до последнего времени механизм этого увеличения не изучен. Одним из возможных механизмов может быть закон Франка - Старлинга, согласно которому главным фактором, регулирующим систолический объем крови, является степень растяжимости желудочков: чем сильнее растягивается желудочек, тем с большей силой он сокращается.

Некоторые более новые приборы диагностики функции сердечно - сосудистой системы позволяют точно определить изменения систолического объема при нагрузках. Метод эхокардиографии и радионуклидный метод с успехом применяли, чтобы определить, как реагируют камеры сердца на повышенную потребность в кислороде во время нагрузки. Оба метода обеспечивают получение постоянного изображения сердца в состоянии покоя, а также при почти максимальных интенсивностях нагрузки.

Для реализации механизма Франка - Старлинга необходимо, чтобы объем крови, поступающий в желудочек, возрастал. Чтобы это произошло, должен увеличиться венозный возврат крови в сердце. Это может быстро осуществиться при перераспределении крови вследствие симпатической активации артерий и артериол в неактивных участках тела и общей симпатической активации венозной системы. Кроме того, во время нагрузки мышцы более активны, поэтому их насосное действие также увеличивается. Кроме того, более интенсивными становится дыхание, поэтому повышается внутригрудное и внутрибрюшное давление. Все эти изменения усиливают венозный возврат.

Во время нагрузки сердечный выброс увеличивается, главным образом для того, чтобы удовлетворить возросшую потребность работающих мышц в кислороде.

КРОВОТОК.

Сердечно - сосудистая система еще более эффективна с точки зрения снабжения кровью тех участков, которые в этом нуждаются. Вспомним, что система сосудов способна перераспределять кровь, снабжая ею наиболее нуждающиеся участки. Рассмотрим изменения кровотока во время нагрузки.

Перераспределение крови во время физической нагрузки. При переходе от состояния покоя к выполнению физической нагрузки структура кровотока заметно изменяется. Под воздействием симпатической нервной системы кровь отводится из участков, где ее наличие необязательно, и направляется в участки, принимающие активное участие в выполнении упражнения. В состоянии покоя сердечный выброс в мышцах составляет всего 15-20%, а при интенсивных физических нагрузках - 80-85%. Кровоток в мышцах увеличивается главным образом за счет уменьшения кровоснабжения почек, печени, желудка и кишечника.

По мере повышения температуры тела вследствие выполнения упражнения либо высокой температуры воздуха значительно большее количество крови направляется к коже, чтобы перенести тепло из глубины тела к периферии, откуда тепло выделяется во внешнюю среду. Увеличение кожного кровотока означает, что кровоснабжение мышц снижено. Этим, кстати, объясняются более низкие результаты в большинстве видов спорта, требующих проявления выносливости в жаркую погоду.

С началом упражнения активные скелетные мышцы начинают испытывать возрастающую потребность в кровотоке, которая удовлетворяется путем общей симпатической стимуляции сосудов тех участков, в которые кровоток предстоит ограничить. Сосуды в этих участках суживаются и кровоток направляется к скелетным мышцам, испытывающим потребность в дополнительном количестве крови. В скелетных мышцах симпатическая стимуляция суживающих стенок сосудов волокон ослабевает, а симпатическая стимуляция сосудорасширяющих волокон увеличивается. Таким образом, сосуды расширяются и в активные мышцы поступает дополнительное количество крови.

Сердечно - сосудистый сдвиг.

При продолжительной нагрузке, а также выполнении работы в условиях повышенной температуры воздуха объем крови понижается вследствие потери организмом жидкости, обусловленной потением и общим перемещением жидкости из крови в ткани. Это - отек. При постепенном снижении общего объема крови по мере увеличения продолжительности нагрузки и перемещении большего количества крови к периферии с целью охлаждения давления сердечного наполнения снижается. Это уменьшает венозный возврат в правую часть сердца, что, в свою очередь, снижает систолический объем. Пониженный систолический объем компенсируется увеличением ЧСС, направленным на сохранение величины сердечного выброса.

Эти изменения представляют собой так называемый сердечно - сосудистый сдвиг, позволяющий продолжать упражнения низкой или средней интенсивности. Вместе с тем организм неспособен полностью компенсировать пониженный систолический объем при высоких интенсивностях физической нагрузки, так как максимальная ЧСС достигается ранее, тем самым ограничивая максимальную мышечную деятельность.

АРТЕРИАЛЬНОЕ ДАВЛЕНИЕ.

При физических нагрузках, требующих проявление выносливости, систолическое давление крови повышается пропорционально увеличению интенсивности нагрузки. Повышенное систолическое давление крови - результат увеличенного сердечного выброса, который сопровождает увеличение интенсивности работы. Оно обеспечивает быстрое перемещение крови по сосудам. Кроме того, артериальное давление крови обусловливает количество жидкости, выходящей из капилляров в ткани, транспортируя необходимые питательные вещества. Таким образом, повышенное систолическое давление способствует осуществлению оптимального процесса транспорта. Во время мышечной деятельности, требующей проявления выносливости, диастолическое давление практически не изменяется, независимо от интенсивности нагрузки.

Диастолическое давление отражает давление в артериях во время "отдыха" сердца. Ни одно из изменений, которые мы рассматривали, не влияет в значительной степени на это давление, поэтому нет причин ожидать его увеличения.

Артериальное давление достигает стабильных показателей во время субмаксимальной нагрузки, требующей проявления выносливости, постоянной интенсивности. С увеличением интенсивности нагрузки систолическое давление также возрастает. При продолжительной нагрузке постоянной интенсивности систолическое давление может постепенно снижаться, однако диастолическое давление остается неизменным.

При нагрузках на верхнюю часть тела, требующих высокой интенсивности, реакция давления крови еще более очевидна. По-видимому, это обусловлено меньшей мышечной массой и меньшим количеством сосудов в верхней части тела по сравнению с нижней. Такое различие обусловливает большее сопротивление кровотоку и, следовательно, повышенное давление крови, направленное на преодоление сопротивления.

Различия в реакции систолического давления крови между верхней и нижней частями тела имеют особое значение для сердца. Утилизация кислорода миокардом и кровоток в миокарде непосредственно связаны с произведением ЧСС и систолического давления крови. При выполнении статических, динамических силовых упражнений или упражнений для верхней части тела двойное произведение возрастает, свидетельствуя об увеличении нагрузки на сердце.

Объем плазмы. С началом мышечной деятельности почти мгновенно наблюдается переход плазмы крови в интерстициальное пространство. Повышение давления крови вызывает увеличение гидростатического давления в капиллярах. Поэтому увеличение давления крови выталкивает жидкость из сосуда в межклеточное пространство. Кроме того, вследствие аккумуляции продуктов распада в активной мышце увеличивается внутримышечное осмотическое давление, притягивая жидкость к мышце.

Если интенсивность нагрузки или факторы окружающей среды вызывают потение, можно ожидать дополнительных потерь объема плазмы. Главный источник жидкости для образования пота - интерстициальная жидкость, количество которой уменьшается по мере продолжения процесса потения.

При нагрузке продолжительностью несколько минут изменения количества жидкости, а также терморегуляция практически не оказывает никакого влияния, однако при увеличении продолжительности нагрузки их значение для обеспечения эффективной деятельности повышается..Изменения в сердечно-сосудистой системе при физической работе.

Loading...Loading...