Инструментальные методы анализа n совокупность традиционных методов. Физико-химические или инструментальные методы анализа Современные инструментальные методы анализа в аналитической химии

Выполнение количественных определений весовым и объемным (титриметрическим) методами химического анализа иногда связано с большими трудностями, главными из них являются:

Необходимость предварительного отделения определяемой части от примесей;

Сравнительно небольшая чувствительность, ограничивающая применение классических методов анализа малых количеств определяемых элементов;

Большие затраты времени (особенно в весовом методе) на проведение полного анализа.

Физико-химические методы отличаются повышенной по сравнению с классическими методами чувствительностью и избирательностью, поэтому для анализа этими методами, как правило, требуется незначительное количество анализируемого вещества, а содержание определенного элемента в образце может быть чрезвычайно мало.

Таким образом, физико-химические методы анализа отличаются экспрессностью , избирательностью, высокой чувствительностью.

По чувствительности первое место занимают масс-спектральный и радиоактивационный методы анализа. За ними следуют неплохо применяемые спектральный, спектрофотометрический и полярографический методы.

Например, чувствительность определения некоторых элементов различными методами следующее: Объемным можно определить около 10-1 % ; весовым около 10 -2 % ; спектроскопическим и фотоколориметрическим 10 -3 -10 -5 % ; флуорометрическим 10 -6 -10 -7 %; кинетическими 10 -6 -10 -8 % ; радио химическими 10 -8 -10 -9 % ; методом нейтронного активационного анализа определяют многие примеси в количествах, менее 10 -8 -10 -9 % .

По точности многие физико-химические методы анализа уступают классическим, и особенно весовому методу. Нередко, когда весовым и объемным методами достигается точность, определяемая сотыми и десятыми долями процента, при выполнении анализа физико-химические методами ошибки определений составляют 5-10 % , а иногда значительно больше.

На точность определений в зависимости от метода анализа оказывают влияния различные факторы.

Например, на точность эмиссионного анализа оказывают влияние:

метод взятия средней пробы, анализируемого вещества;

непостоянство источника возбуждения (электрической дуги, искры, пламени горелки);

величина ошибки фотометрического измерения;

негомогенность фотографической эмульсии (в случае спектрографии) и т.д.

Помимо относительно невысокой точности многие физико-химические методы имеют и некоторые другие недостатки. Например, эмиссионная спектроскопия удобна лишь при проведении массовых анализов, так как для определения того или иного элемента в образце требуется калибровка прибора по стандартному образцу, занимающая много времени. Ни один из физико-химических методов анализа не является универсальным.

Необходимо отметить, что, несмотря на прогресс инструментальных методов анализа, позволяющих решать химико-аналитические задачи, классические методы анализа не утратили своего значения и являются основой современной аналитической химии.

Все методы количественного анализа, физические и фи-

зико-химические методы анализа подразделяются на следующие группы: электрохимические; спектральные (оптические); хроматографические; радиометрические; масспектрометрические.

Электрохимические методы анализа. К группе электрохимических методов анализа относятся следующие виды анализа.

Электровесовой анализ основан на выделении из растворов электролитов веществ, осаждающихся на электродах при прохождении через растворы постоянного электрического то-

ка. Выделившийся при электролизе металл или (оксид) взвешивают на аналитических весах и по массе осадка судят о содержании определяемого вещества в растворе.

Полярография основана на изменении силы тока, изменяющейся в зависимости от величины напряжения в процессе электролиза, в условиях, когда один из электродов (катод) имеет очень малую поверхность (поляризующийся электрод), а другой (анод) – большую (неполяризующийся электрод). Поляризующимся катодом является капли ртути, вытекающие из тонкого отверстия капиллярной трубки, а также платиновый (вращающийся), графитовый, серебряный и другие электроды. Неполяризующимся анодом является “данная” ртуть или стандартные электроды сравнения с большой поверхностью. Силу тока, при которой достигается полный разряд всех ионов анализируемого вещества, поступающих в приэлектродное пространство в следствие диффузии, называют предельным диффузионным током. Величина этого тока пропорциональна исходной концентрации определяемого вещества (ионов) в растворе.

Амперометрическая титрование , являющееся разновидностью полярографического анализа основано на изменении в процессе титрования раствора определяемого вещества величины предельно диффузионного тока, проходящего через раствор при постоянном напряжении между индикаторным поляризующимся электродом и неполяризующимся электродом сравнения.

Кулонометрия основана на изменении количества электричества, израсходованного на электролиз определенного количества вещества при постоянном потенциале, который соответствует потенциалу выделения данного элемента. В основе этого метода лежит закон Фарадея.

Метод титрования, в котором точка эквивалентности соответствует моменту, когда сила тока электролиза достигает величины “фонового” тока, называют кулонометрическим титрованием . Обычно сила фонового тока равна 0 , т.к. раствор в этот момент не содержит заряженных частиц.

Кондуктометрия основана на измерении электропроводимости анализируемых растворов, изменяющейся в результате химических реакций и зависящей от природы электролита, его температуры и концентрации раствора.

Метод титрования, при котором точку эквивалентности фиксирует по пересечению двух прямых, отражающих изменение эквивалентной электропроводимости исследуемого раствора по мере прибавления титранта в процессе титрования, называют кондуктометрическим титрованием .

Спектральные (оптические) методы анализа. К группе спектральных методов анализа относятся следующие методы.

Эмиссионный спектральный анализ – физический метод, основанный на изучении эмиссионных спектров паров анализируемого вещества (спектров испускания или изучения), возникающих под влиянием сильных источников возбуждений (электриче ской дуги, высоковольтной искры); этот метод дает возможность определять элементный состав вещества; т.е. судить о том, какие химические элементы входят в состав данного вещества.

Фотометрия пламени , являющаяся разновидностью эмиссионного спектрального анализа, основана на изучении эмиссионных спектров элементов анализируемого вещества,

возникающих под влияние мягких источников возбуждения. В этом методе анализируемый раствор распыляют в пламени. Этот метод дает возможность судить о содержании в анализируемом образце главным образом щелочных и щелочноземельных металлов, а также некоторых других элементов, например, галлия, индия, таллия, свинца, марганца, меди, фосфора.

Абсорбционная спектроскопия основана на изучении спектров поглощения вещества, являющихся его индивидуальной характеристикой. Различают спектрофотометрический

метод , основанный на определении спектра поглощения или измерении светопоглощения (как в ультрафиолетовой, так и в видимой и инфракрасной областях спектра) при строго определенной длине волны (монохроматическое излучение), которое соответствует максимуму кривой поглощения данного исследуемого вещества, а также фотоколориметрический метод , основанный на определении спектра поглощения или измерений светопоглощения в видимом участке спектра.

Турбодиметрия основана на измерении интенсивности света, поглощаемого неокрашенной суспензией твердого вещества. В турбодиметрии интенсивность света, поглощенного раствором или прошедшего через него, измеряет также как в фотоколометрии окрашенных растворов.

Нефелометрия основана на измерении интенсивности света, отраженного или рассеянного окрашенной или неокрашенной суспензией твердого вещества (взвешенного в данной среде осадка).

Люминесцентный, или флуоресцентный, метод анализа основан на измерении интенсивности излучаемого веществами видимого света (флуоресценцией) при облучении их ультрафиолетовыми лучами.

К оптическим методам анализа также относятся рефрактометрический метод, основанный на измерении коэффициента преломления, и поляриметрический, основанный на изу-

чении вращения плоскости поляризации.

Хроматографические методы анализа. По механизму разделения различают несколько видов хроматографических методов анализа.

Адсорбционная жидкостная хроматография основана на избирательной адсорбции (поглощении) отдельных компонентов анализируемой смеси в жидкой среде. Она обусловлена различной адсорбируемостью растворенных компонентов.

Адсорбционная газовая хроматография основана на использовании различия в адсорбируемости газов и паров. В за-

висимости от основного фактора, определяющего разделение, различают следующие виды газовой хроматографии: газо-жидкостную и газо-адсорбционную.

Распределительная хроматография основана на использовании различия в распределении (сорбируемости) отдельных компонентов анализируемой смеси между двумя несмешивающимися жидкими фазами – подвижным и неподвижным растворителями.

Бумажная хроматография - разновидность распределительной хроматографии, в которой носителем для неподвижного растворителя являются полоски или листы фильтровальной бумаги, не содержащей минеральных примесей.

Ионообменная хроматография основана на использовании ионообменных процессов, протекающих между подвижными полями адсорбента и полями электролита, содержащимися в анализируемом растворе.

Масс-спектрометрические методы анализа. Масс-спектрометриические методы анализа основаны на определении отдельных ионизированных атомов, молекул и радикалов посредством разделения истоков ионов, содержащих частицы с разным отношением массы к заряду в результате комбинированного действия электрического и магнитного полей.

Физико-химический анализ по Н.С. Курнакову. Метод, предложенный Н.С. Куржаковым, позволяет изучать фи-

зические свойства систем в зависимости от их химического состава. Например, для аналитических целей могут быть использованы кривые зависимости температуры плавления от состава свинцово-оловянного сплава.

Этот метод называется физико-химическим анализом. Не следует смешивать понятия “физико-химический метод анали-

за” с понятием “физико-химический анализ”.

Если в процессе нагревания или охлаждения исследуемого вещества в анализируемом объекте не наблюдаются фазовые превращения, связанные с выделением или поглощением

тепла, то кривые нагревания или охлаждения характеризуются плавным ходом. Если же в системе происходят фазовые превращения, то на кривой изменения температур в зависимости от характера этих превращений на протяжении некоторого промежутка времени наблюдаются горизонтальные участки при неизменной температуре или резкие перегибы кривой. Подобная кривая охлаждения дает возможность судить о всех фазовых превращениях, происходящих в исследуемом образце в процессе охлаждения.

Другие методы анализа. Метод электронного парамагнитного резонанса (ЭПР) - основан на использовании явления резонансного поглощения электромагнитных волн парамагнитными частицами в постоянном магнитном поле и успешно применяется для измерения концентрации парамагнитных веществ, исследования окислительно-восстановительных реакций, изучения химической кинетики и механизма химических реакций и т.п.

Метод ядерного магнитного резонанса (ЯМР) основан на использовании резонансного поглощения электромагнитных волн исследуемым веществом в постоянном магнитном поле, обусловленного ядерным магнетизмом. Метод ЯМР применяется для исследования комплексных соединений, состояния ионов в растворе, для изучения химической кинетики и т.п.

Заключение

Современная химия охватывает большую область человеческих знаний, поскольку является наукой, изучающей вещества и законы их превращения. Химия находится в непрерывном развитии и глубоко раскрывает основные законы, позволяющие определить поведение электронов в атомах и молекулах, разработать методы расчета структур молекул и твердых тел, теории химической кинетики и химического равновесия. Руководствуясь основными законами химической термодинамики, химия позволяет оценить направленность химических процессов и глубину их протекания. Важные сведения дает изучение кристаллического состояния веществ.

Эти вопросы позволят студентам освоить разделы химии, которые не изучались в средней школе или изучались частично.

Знания, приобретенные в данной части курса химии необходимы для изучения специальных разделов (свойства растворов, окислительно-восстановительные реакции, электрохимические процессы, физико-химические свойства веществ)

Базовые темы пособия могут быть полезными в деятельности специалистов любой отрасли техники. Понимание основных законов химии, умение работать с учебной и специальной литературой позволит специалистам находить оптимальные решения стоящих перед ними задач.

Так же представлены разделы химии, имеющие важное значение в практической деятельности специалистов радио- и электротехнического направления. Рассмотрены электрохимические процессы (работа гальванических элементов, электролиз), приведены примеры химических источников тока и технического применения электролиза.

Надежность и долговечность изделий электронной техники зависит от коррозионной устойчивости отдельных деталей приборов, поэтому в пособии рассмотрены основные закономерности коррозионных процессов, дана их классификация, представлены два механизма их протекания: химический и электрохимический, а также приведены способы и метоы защиты от химической и электрохимической коррозии.

На основе сведений, представленных в данном пособии, показаны некоторые физико-химические свойства металлов и полупроводников (электропроводность, магнитные свойства). Дано понятие о химической идентификации веществ на основе качественного и количественного методов анализа.

Знания необходимы при изучении последующих курсов, таких как материаловедение, сопротивление материалов, теоретические основы различных технологических процессов в электронике, электротехнике, микроэлектронике, радиотехнике, энергетике и других направлениях подготовки специалистов.

Научно-технический прогресс не возможен без развития химии, создающей новые вещества с новыми свойствами, которые могут быть использованы в различных отраслях промышленности.

Инструментальные (физические и физико-химические) методы анализа основаны на использовании зависимости между измеряемыми физическими свойствами веществ и их качественным и количественным составом. Так как физические свойства веществ измеряются с помощью различных приборов – «инструментов», то эти методы анализа называют также инструментальными методами.

Общее число физико-химических методов анализа довольно велико – оно составляет несколько десятков. Наибольшее практическое значение среди них имеют следующие:

оптические методы, основанные на измерении оптических свойств веществ;

электрохимические методы, основанные на измерении электрохимических свойств системы;

хроматографические методы, основанные на использовании способности различных веществ к избирательной сорбции.

Среди указанных групп наиболее обширной по числу методов и важной по практическому значению является группа оптических методов анализа .

Эмиссионный спектральный анализ. В основе метода лежит измерение интенсивности света, излучаемого веществом (атомами или ионами) при его энергетическом возбуждении, например, в плазме электрического разряда. Метод даёт возможности определять микро- и ультрамикроколичества вещества, анализировать за короткое время несколько элементов.

Пламенная фотометрия является разновидностью эмиссионного анализа. Она основана на использовании газового пламени в качестве источника энергетического возбуждения излучения. Метод в основном используют для анализа щелочных и щелочноземельных металлов.

Абсорбционно-спектральный анализ основан на изучении спектров поглощения лучей анализируемыми веществами. При прохождении через раствор свет или его компоненты поглощаются или отражаются. По величине поглощения или отражения лучей судят о природе и концентрации вещества.

Атомно-абсорбционный анализ. В основе метода лежит измерение поглощения монохроматического излучения атомами определяемого вещества в газовой фазе после атомизации вещества.

Нефелометрический анализ. Основан на отражении света твердыми частицами, взвешенными в растворе. Анализ проводится с помощью приборов нефелометров.

Люминесцентный анализ – это совокупность оптических методов анализа, основанных на люминесценции (свечении вещества, возникающем при его возбуждении различными источниками энергии). По способу (источнику) возбуждения различают: рентгенолюминесценцию – свечение вещества под воздействием рентгеновских лучей; хемилюминесценцию – свечение вещества за счет энергии химической реакции.

В аналитической практике из всех видов люминесценции наибольшее распространение получила флуоресценция, возникающая под действием излучения в УФ и видимой области спектра. Большим достоинством рентгенофлуоресцентного метода является возможность анализа образца без его разрушения, что особенно ценно при анализе уникальных изделий.

Электрохимические методы анализа основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Аналитическим сигналом может служить любой электрический параметр (потенциал, сила тока, сопротивление и т. д.), который связан с концентрацией анализируемого раствора функциональной зависимостью и поддающийся измерению.

Различают прямые и косвенные электрохимические методы.

В прямых методах используется зависимость силы тока (потенциала и т. д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т. д.) измеряют с целью нахождения т. к. т. определяемого компонента подходящим титрантом, т. е. используется зависимость измеряемого параметра от объёма титранта.

К наиболее распространенным электрохимическим методам анализа относятся потенциометрический, вольтамперометрический и кондуктометрический.

Потенциометрический метод основан на измерении электродных потенциалов, которые зависят от активности ионов, а в разбавленных растворах – от концентрации ионов.

Для измерений составляется гальванический элемент из двух электродов: электрода сравнения (электродный потенциал которого известен) и индикаторного электрода, на котором происходит главный процесс – обмен ионами и возникает электродный потенциал, который измеряют путем сравнения. Затем по уравнению Нернста находят количество определяемого компонента.

Потенциометрическое титрование основано на определении точки эквивалентности по результатам потенциометрических измерений. Вблизи точки эквивалентности происходит резкое изменение (скачок) потенциала индикаторного электрода.

Для потенциометрического титрования собирают цепь из индикаторного электрода в анализируемом растворе и электрода сравнения. В качестве электродов сравнения чаще всего применяют каломельный или хлорсеребряный.

Вольтамперометрический метод анализа основан на изучении поляризационных или вольтамперных кривых (кривых зависимости силы тока от напряжения), которые получаются, если при электролизе раствора анализируемого вещества постепенно повышать напряжение и фиксировать при этом силу тока. Электролиз следует проводить с использованием легкополяризуемого электрода с небольшой поверхностью, на котором происходит электровосстановление или электроокисление вещества.

Амперометрическое титрование (потенциометрическое поляризационное титрование) – разновидность вольтамперометрического метода (наряду с полярографией). Оно основано на измерении величины тока между электродами электрохимической ячейки, к которым приложено некоторое напряжение, соответствующее величине предельного тока. По этим данным строят кривую амперометрического титрования в координатах «сила тока – объём титранта» и графически находят точку эквивалентности. В качестве индикаторного электрода в амперометрическом титровании обычно используют вращающиеся платиновые, графитовые и другие твердые электроды.

Примеры решения задач

Пример 1. При открытии катионов серебра Ag + реакцией с хлорид-ионами Сl – в водном растворе по образованию белого осадка хлорида серебра AgCl

Ag + + Cl – ® AgCl↓

предел обнаружения катионов серебра равен 0,1 мкг, предельное разбавление V lim = 1∙ 10 4 мл/г. Определите предельную концентрацию С lim и минимальный объём V min предельно разбавленного раствора.

Решение. Найдем предельную концентрацию С min:

C min = = = 1 ∙ 10 –4 г/мл.

Рассчитаем минимальный объём предельно разбавленного раствора:

V min = = = 0,001 мл.

Таким образом, предельная концентрация предельно разбавленного раствора С min = 1 ∙ 10 -4 г/мл и минимальный объём V min = 0,001 мл.

Пример 2. Катионы серебра Ag + можно открыть реакцией с хромат-ионами CrO по образованию красного осадка хромата серебра Ag 2 CrO 4

2 Ag + + CrO → Ag 2 CrO 4

при V min = 0,02 мл в водном растворе нитрата серебра AgNO 3 с молярной концентрацией С (AgNO 3) = 0,0004 моль/л. Определите предел обнаружения g и предельное разбавление V lim для катиона Ag + .

Решение. Найдем вначале предельную концентрацию катионов серебра, учитывая, что в условии задачи дана концентрация нитрата серебра, выраженная в моль/л:

C min = = = 4 ∙ 10 –5 г/мл,

где М (Ag +) – атомная масса серебра.

g = C min V min ∙ 10 6 = 4 ∙ 10 –5 ∙ 0,02 ∙ 10 6 = 0,8 мкг,

V lim = = = 2,5 ∙ 10 –4 мл/г.

Таким образом, предел обнаружения для катиона Ag + g = 0,8 мкг, а предельное разбавление V lim =2,5 ∙ 10 –4 мл/г.

Пример 3

Разделить с помощью группового реагента катионы Al +3 и Mg +2 .

Решение. Al +3 относится к катионам IV группы, а Mg +2 – V группы. Групповым реагентом на катионы IV и V групп является гидроксид натрия. В качестве аналитического сигнала наблюдается выпадение в осадок соответствующих гидроксидов:

Al +3 + 3ОН – ⇄ Al(ОН) 3 ↓;

Mg +2 + 2ОН – ⇄ Mg(ОН) 2 ↓.

Однако при добавлении избытка реагента Al(ОН) 3 растворяется с образованием комплексного соединения, а Mg(ОН) 2 – нет:

Al(ОН) 3 + NаОН ⇄ Nа;

Mg(ОН) 2 + NаОН ¹.

Таким образом, при разделении катион Al +3 будет находиться в фильтрате, а катион Mg +2 – в осадке.

Пример 4

Какой объём раствора AgNO 3 с массовой долей 2 % потребуется для осаждения хлорида из навески СаСl 2 ∙ 6 Н 2 О массой 0,4382 г?

Решение. Массу AgNO 3 вычисляем на основании закона эквивалентов.

Инструментальные методы анализа - количественные аналитические методы, для выполнения которых требуется электрохимическая оптическая, радиохимическая и иная аппаратура. К инструментальным методам анализа обычно относят:

¾ электрохимические методы - потенциометрию, полярографию, кондуктометрию и др.;

¾ методы, основанные на испускании или поглощении излучения,- эмиссионный спектральный анализ, фотометрические методы, рентгеноспектральный анализ и др.;

¾ масс-спектральный анализ;

¾ методы, основанные на измерении радиоактивности.

Все инструментальные (физические и физико-химические) методы основаны на измерении физических величин, характеризующих объект анализа (пробу).

Измеряемая в ходе анализа физическая величина, функционально связанная с содержанием только определяемого компонента Х в исследуемом объекте, называется аналитическим сигналом.

Для каждого метода характерен свой аналитический сигнал. В таблице 1 приведены примеры сигналов и соответствующих им методов, относящихся к двум важнейшим группам – оптическим и электрохимическим методам анализа.

Таблица 1

Примеры инструментальных методов анализа

Зависимость аналитического сигнала от содержания Х называют градуировочной функцией . Ее записывают как уравнение вида I = f (C). В этом уравнении символом С обозначают содержание Х, выраженное в единицах количества вещества (моль), единицах массы (кг, г) или концентрации (моль/л и др.); эти величины прямо пропорциональны друг другу. Величину сигнала в общем случае обозначают символом I , хотя в отдельных методах используют специфические обозначения (таблица 1). В каждом методе градуировочные функции однотипны, но точный вид градуировочной функции для конкретной методики зависит от природы Х и условий измерения сигнала.



Во многих методах зависимость сигнала от концентрации описывается нелинейными функциями, например, в люминесцентном анализе – показательной (I = kC n ), в потенциометрии - логарифмической (I = I 0 + k lgC ), и т.д. Однако все градуировочные функции схожи тем, что по мере возрастания С величина I изменяется непрерывно, а каждому значению С соответствует единственное значение I .

Рисунок 1

Типичные градуировочные графики для некоторых инструментальных методов

lgС
I
С
С
I
I

К наиболее применимым электрохимическим методам анализа относятся потенциометрический, полярографический и кондуктометрический.

§2. Классификация оптических методов

К оптическим методам относятся рефрактометрия, поляриметрия, абсорбционные оптические методы.

Рефрактометрический анализ основан на измерении показателя преломления (рефракции) веществ, по которому следует судить о природе вещества, чистоте и содержании в растворах.

Преломление луча света возникает на границе двух сред, если среды имеют различную плотность. Отношение синуса угла падения (α) к синусу угла преломления (β) называют относительным показателем преломления (п) второго вещества по отношению к первому и является величиной постоянной:

Показатель преломления вещества зависит от его природы, а также от длины волны света и от температуры.

Поляриметрический метод основан на свойстве некоторых веществ изменять направление световых колебаний.

Вещества, обладающие свойством изменять направление колебаний при прохождении через них поляризованного света, называются оптически активными. У поляризованного луча, пропущенного через слой раствора оптически активного вещества, меняется направление колебаний, а плоскость поляризации оказывается повернутой на некоторый угол, называемый углом поворота плоскости поляризации, который зависит от поворота плоскости поляризации, концентрации и толщины слоя раствора, длины волны поляризованного луча и температуры.

Оптические абсорбционные методы - это методы анализа, основанные на поглощении электромагнитного излучения анализируемыми веществами. Именно оптические абсорбционные методы получили широкое распространение в научно-исследовательских и сертификационных лабораториях. При поглощении света атомы и молекулы поглощающих веществ переходят в новое возбужденное состояние.

В зависимости от вида поглощающих веществ и способа трансформирования поглощенной энергии различают атомно-абсорбционный, молекулярно-абсорбционный анализ, нефелометрию и люминесцентный анализ.

Атомно-абсорбционный анализ основан на поглощении световой энергии атомами анализируемых веществ.

Молекулярный абсорбционный анализ основан на поглощении света молекулами анализируемого вещества и сложными ионами в ультрафиолетовой, видимой и инфракрасной областях спектра (спектрофотометрия, фотоколориметрия, ИК-спектроскопия).

Фотоколориметрия и спектрофотометрия основаны на взаимодействии излучения с однородными системами, их обычно объединяют в одну группу фотометрических методов анализа.

Нефелометрия основана на поглощении и рассеянии световой энергии взвешенными частицами анализируемого ве-щества.

Люминесцентный (флуорометрический) анализ основан на измерении излучения, возникающего в результате выделения энергии возбужденными молекулами анализируемого вещества.

Люминесценцией называют свечение атомов, ионов, молекул и других более сложных частиц вещества, которое возникает в результате перехода в них электронов при возвращении из возбужденного в нормальное состояния.

§3. Основные законы фотометрического анализа и формулы.

Фотометрический анализ относится к абсорбционным методам, т.е. основан на измерении поглощения света веществом. Он включает спектрофотометрию, фотоколориметрию и визуальную фотометрию, которую обычно называют колориметрией.

Каждое вещество поглощает излучение с определенными (характерные только для него) длинами волн, т.е. длина волны поглощаемого излучения индивидуальна для каждого вещества, и на этом основан качественный анализ по светопоглошению.

Основой количественного анализа является закон Бугера-Ламберта-Бера:

А = e l c

где А = –lg (I / I 0) = –lg T – оптическая плотность;

I 0 и I – интенсивность потока света, направленного на поглощающий раствор и прошедшего через него;

с – концентрация вещества, моль/л;

l – толщина светопоглощающего слоя;

e - молярный коэффициент светопоглощения;

T - коэффициент пропускания.

Для определения концентрации анализируемого вещества наиболее часто используют следующие методы:

1) молярного коэффициента светопоглощения;

2) градуировочного графика;

3) добавок;

4) дифференциальной фотометрии;

5) фотометрического титрования.

Метод молярного коэффициента поглощения . При работе по этому методу определяют оптическую плотность нескольких стандартных растворов А ст, для каждого раствора рассчитывают e = А ст / ( ст) и полученное значение e усредняют. Затем измеряют оптическую плотность анализируемого раствора А х и рассчитывают концентрацию с х по формуле

с х = А х /(el ).

Ограничением метода является обязательное подчинение анализируемой системы закону Бугера-Ламберта-Бера, по крайней мере, в области исследуемых концентраций.

Метод градуировочного графика. Готовят серию разведений стандартного раствора, измеряют их поглощение, строят график в координатах А ст – С ст. Затем измеряют поглощение анализируемого раствора и по графику определяют его концентрацию.

Метод добавок. Этот метод применяют при анализе растворов сложного состава, так как он позволяет автоматически учесть влияние «третьих» компонентов. Сущность его заключается в следующем. Сначала определяют оптическую плотность А х анализируемого раствора, содержащего определяемый компонент неизвестной концентрации с х, а затем в анализируемый раствор добавляют известное количество определяемого компонента (с ст) и вновь измеряют оптическую плотность А х+ст.

Оптическая плотность А х анализируемого раствора равна

А х = e l c х,

а оптическая плотность анализируемого раствора с добавкой стандартного

А х+ст = e l (c х + с ст).

Концентрацию анализируемого раствора находим по формуле:

с х = с ст А х / (А х+ст – А х).

Метод дифференциальной фотометрии. Если в обычной фотометрии сравнивается интенсивность света, прошедшего через анализируемый раствор неизвестной концентрации, с интенсивностью света, прошедшего через растворитель, то в дифференциальной фотометрии второй луч света проходит не через растворитель, а через окрашенный раствор известной концентрации – так называемый раствор сравнения.

Фотометрическим методом можно определять также компоненты смеси двух и более веществ. Эти определения основаны на свойстве аддитивности оптической плотности:

А см = А 1 + А 2 + …+ А n

где А см - оптическая плотность смеси; А 1 , А 2 , А n – оптические плотности для различных компонентов смеси.

Фотометрические методы анализа применяются для контроля разнообразных производственных процессов. Эти методы могут быть применены для анализа больших и малых содержаний, но особенно ценной их особенностью является возможность определения примесей (до 10 -5 ...10 -6 %). Методы абсорбционной спектроскопии используют в химической, металлургической, фармацевтической и других отраслях, а также в медицине и сельскохозяйственном производстве.

§4. Лабораторная работа

ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ АНАЛИЗА. КЛАССИФИКАЦИЯ МЕТОДОВ. ОПТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА. МОЛЕКУЛЯРНО-АБСОРБЦИОННАЯ СПЕКТРОСКОПИЯ .

Физико-химические или инструментальные методы анализа основаны на измерении с помощью приборов (инструментов) физических параметров анализируемой системы, которые возникают или изменяются в ходе выпол­нения аналитической реакции.

Бурное развитие физико-химических методов анализа было вызвано тем, что классические методы химического анализа (гравиметрия, титриметрия) уже не могли удовлетворять многочисленные запросы химической, фарма­цевтической, металлургической, полупроводниковой, атомной и других от­раслей промышленности, требовавших повышения чувствительности методов до 10 -8 – 10 -9 %, их селективности и экспрессности, что позволило бы управ­ лять технологическими процессами по данным химического анализа, а также выполнять их в автоматическом режиме и дистанционно.

Ряд современных физико-химических методов анализа позволяют одно­временно в одной и той же пробе выполнять как качественный, так и количе­ственный анализ компонентов. Точность анализа современных физико-хими­ческих методов сопоставима с точностью классических методов, а в некото­рых, например в кулонометрии, она существенно выше.

К недостаткам некоторых физико-химических методов следует отнести дороговизну используемых приборов, необходимость применения эталонов. Поэтому классические методы анализа по-прежнему не потеряли своего зна­чения и применяются там, где нет ограничений в скорости выполнения ана­лиза и требуется высокая его точность при высоком содержании анализируе­мого компонента.

КЛАССИФИКАЦИЯ ФИЗИКО - ХИМИЧЕСКИХ

МЕТОДОВ АНАЛИЗА

В основу классификации физико-химических методов анализа положена природа измеряемого физического параметра анализируемой системы, вели­чина которого является функцией количества вещества. В соответствии с этим все физико-химические методы делятся на три большие группы:

- электрохимические;

- оптические и спектральные;

- хроматографические .

Электрохимические методы анализа основаны на измерении электриче­ских параметров: силы тока, напряжения, равновесных электродных потен­циалов, электрической проводимости, количе-ства электричества, величины которых пропорциональны содержанию вещества в анализируемом объекте.

Оптические и спектральные методы анализа основаны на измерении пара­метров, характеризующих эффекты взаимодействия электромагнитного излу­чения с веществами: интенсивности излучения возбужденных атомов, погло­щения монохроматического излучения, показателя преломления света, угла вращения плоскости поляризованного луча света и др.

Все эти параметры являются функцией концентрации вещества в анали­зируемом объекте.

Хроматографические методы - это методы разделения однородных много­компонентных смесей на отдельные компоненты сорбционными методами в динамических условиях. В этих условиях компоненты распределяются меж­ду двумя несмешивающимися фазами: подвижной и неподвижной. Распреде­ление компонентов основано на различии их коэффициентов распределения между подвижной и неподвижной фазами, что при- водит к различным скоро­стям переноса этих компонентов из неподвижной в подвижную фазу. После разделения количественное содержание каждого из компонентов может быть определено различными методами анализа: классическими или инструментальными.

МОЛЕКУЛЯРНО-АБСОРБЦИОННЫЙ

СПЕКТРАЛЬНЫЙ АНАЛИЗ

Молекулярно-абсорбционный спектральный анализ включает в себя спек­трофотометрический и фотоколориметрический виды анализа.

Спектрофотометрический анализ основан на определении спектра по­глощения или измерении светопоглощения при строго определенной длине волны, которая соответствует максимуму кривой поглощения исследуемого вещества.

Фотоколориметрический анализ базируется на сравнении интенсивности окрасок исследуемого окрашенного и стандартного окрашенного растворов определенной концентрации.

Молекулы вещества обладают определенной внутренней энергией Е, со­ставными частями которой являются:

Энергия движения электронов Е эл находящихся в электростати-ческом поле атомных ядер;

Энергия колебания ядер атомов друг относительно друга Е кол ;

- энергия вращения молекулы Е вр

И математически выражается как сумма всех указанных выше энергий:

Е = Е эл + Е кол + Е вр.

При этом, если молекула вещества поглощает излучение, то ее первона­чальная энергия Е 0 повышается на величину энергии поглощенного фотона, то есть:

Е Δ = Е 1 – Е 0 = = hC / λ .

Из приведенного равенства следует, что чем меньше длина волны λ, тем больше частота колебаний и, следовательно, больше Е, то есть энергия, сооб­щенная молекуле вещества при взаимодействии с электромагнитным излуче­нием. Поэтому характер взаимодействия лучевой энергии с веществом в зави­симости от длины волны света λ будет различен.

Совокупность всех частот (длин волн) электромагнитного излучения называют электромагнитным спектром . Интервал длин волн разбивают на области:

ультрафиолетовая (УФ) примерно 10-380 нм, видимая 380-750 нм, инфракрасная (ИК) 750-100000 нм.

Области электромагнитного спектра

γ-излучение рентген вакуум УФ ближн. УФ видимая

______________ │_______│_______________│______│_

λ(нм) …… 10 100 380 750

ближн. ИК далекая ИК радиоволны

λ(нм) 1000 10000 100000 ….

Энергии, которую сообщают молекуле вещества излучения УФ- и види­мой части спектра, достаточно, чтобы вызвать изменение электронного со­стояния молекулы.

Энергия ИК-лучей меньше, поэтому ее оказывается достаточно только для того, чтобы вызвать изменение энергии колебательных и вращательных переходов в молекуле вещества. Таким образом, в различных частях спектра можно получить различную информацию о состоянии, свойствах и строении веществ.

ЗАКОНЫ ПОГЛОЩЕНИЯ ИЗЛУЧЕНИЯ

В основе спектрофотометрических методов анализа лежат два основных закона. Первый из них - закон Бугера Ламберта, второй закон - закон Бера. Объединенный закон Бугера - Ламберта Бера имеет следующую формулировку:

Поглощение монохроматического света окрашенным раствором прямо пропорционально концентрации поглощающего свет вещества и толщине слоя раствора, через который он проходит.

Закон Бугера - Ламберта - Бера является основным законом светопоглощения и лежит в основе большинства фотометрических методов анализа. Математически он выражается уравнением:

I = Ι 0 · 10 - КС l

Или lg I / Ι 0 = К · C · l

Величину lg I /Ι 0 называют оптuческой плотностью поглощающего вещества и обозначают буквами D или А . Тогда закон можно записать так: D = К · C · l

Отношение интенсивности потока монохроматического излучения, про­шедшего через испытуемый объект, к интенсивности первоначального потока излучения называется

nрозрачностью, или nроnусканием , раствора и обознача­ется буквой Т:

Т =­ I / Ι 0

Это соотношение может быть выражено в процентах. Величина Т, харак­теризующая пропускание слоя толщиной 1 см, называется коэффициентом nро­пускания. Оптическая плотность D и пропус-кание Т связаны между собой соотно­шением

D = -lg Т

Или, если Т выражено в процентах,

D = 2 - 1gТ.

D и Т являются основными величинами, характеризующими поглощение раствора данного вещества с определенной его концентрацией при опреде­ленной длине волны и толщине поглощаю­щего слоя.

Зависимость D (С) имеет прямолинейный характер, а Т(С) или Т(l) - экспоненци­альный. Это строго соблюдается только для монохроматических потоков из­лучений.

Величина коэффициента погашения К зависит от способа выражения концентрации вещества в растворе и толщины поглощаю­щего слоя. Если концентрация выражена в молях на литр, а толщина слоя - в санти­метрах, то он называется молярным коэффи­циентом погашения , обозначается символом ε и равен оптической плотности раствора с концентрацией 1 моль/л, помещенного в кювету с толщиной слоя 1 см.

Величина молярного коэффициента светопоглощения зависит:

От природы растворенного вещества;

Длины волны монохроматического света;

Температуры;

Природы растворителя.

Причины несоблюдения закона Бyгера - Ламберта - Бера.

1. Закон выведен и справедлив только для монохроматического света, поэтому недостаточная монохроматизация может вызвать отклонение закона и тем в большей степени, чем меньше монохроматизация света.

2. В растворах могут протекать различные процессы, которые изменяяют концентрацию поглощающего вещества или его природу: гидролиз, ионизация, гидратация, ассоциация, полимеризация, комплексообразование и др.

3. Светопоглощение растворов существенно зависит от рН раствора. При изменении рН раствора могут изменяться:

Степень ионизации слабого электролита;

Форма существования ионов, что приводит к изменению светопоглощения;

Состав образующихся окрашенных комплексных соединений.

Поэтому закон справедлив для сильно разбавленных растворов, и область его применения ограничена.

ВИЗУАЛЬНАЯ КОЛОРИМЕТРИЯ

Интенсивность окраски растворов можно измерять различными методами. Среди них выделяют субъективные (визуальные) методы колориметрии и объективные, то есть фотоколориметрические.

Визуальными называют такие методы, при которых оценку интенсивности окраски испытуемого раствора делают невооруженным глазом. При объективных методах колориметрического определения для измерения интенсивности окраски испытуемого раствора вместо непосредственного наблюдения пользуются фотоэлементами. Определение в этом случае проводят в специальных приборах - фотоколориметрах, поэтому метод получил название фотоколориметрического.

Цвета видимого излучения:

Интервал длин Основной цвет

волн, нм

340-450 фиолетовый

450-495 синий

495-570 зеленый

570-590 желтый

590-620 оранжевый

620-750 красный

К визуальным методам относятся:

Метод стандартных серий;

Метод колориметрического титрования, или дублирования;

Метод уравнивания.

Метод стандартных серий. При выполнении анализа методом стандартных серий интенсивность окраски анализируемого окра-шенного раствора сравнивают с окрасками серии специально при-готовленных стандартных растворов (при одинаковой толщине слоя).

Метод колориметрического титрования (дублирования) основан на сравне­нии окраски анализируемого раствора с окраской другого раствора - контрольного. Контрольный раствор содержит все компоненты исследуемого рас­твора, за исключением определяемого вещества, и все использовавшиеся при подготовке пробы реактивы. К нему добавляют из бюретки стандартный рас­твор определяемого вещества. Когда этого раствора будет добавлено столько, что интенсивности окраски контрольного и анализируемого растворов урав­няются, считают, что в анализируемом растворе содержится столько же опре­деляемого вещества, сколько его было введено в контрольный раствор.

Метод уравнивания отличается от описанных выше визуальных колори­метрических методов, в которых подобие окрасок стандартного и испытуемо­го растворов достигается изменением их концентрации. В методе уравнива­ния подобие окрасок достигается изменением толщины слоев окрашенных растворов. Для этой цели при определении концентрации веществ использу­ют колориметры сливания и погружения.

Достоинства визуальных методов колориметрического анализа:

Техника определения проста, нет необходимости в сложном дорогосто­ящем оборудовании;

Глаз наблюдателя может оценивать не только интенсивность, но и от­тенки окраски растворов.

Недостатки: - необходимо готовить стандартный раствор или серии стандартных рас­творов;

Невозможно сравнивать интенсивность окраски раствора в присутствии других окрашенных веществ;

При длительном сравнивании интенсивности окраски глаз человека утом­ляется, и ошибка определения увеличивается;

Глаз человека не столь чувствителен к небольшим изменениям опти­ческой плотности, как фотоэлектрические устройства, вследствие это­го невозможно обнаружить разницу в концентрации примерно до пяти относительных процентов.

ФОТОЭЛЕКТРОКОЛОРИМЕТРИЧЕСКИЕ МЕТОДЫ

Фотоэлектроколориметрия применяется для измерения поглощения света или пропускания окрашенными растворами. Приборы, используемые для этой цели, называются фотоэлектроколориметрами (ФЭК).

Фотоэлектрические методы измерения интенсивности окраски связаны с использованием фотоэлементов. В отличие от приборов, в которых сравнение окрасок производится визуально, в фотоэлектроколориметрах приемником световой энергии является прибор фотоэлемент . В этом приборе световая энергия преобразует в электрическую. Фотоэлементы позволяют проводить колориметрические определения не только в видимой, но также в УФ- и ИК-областях спектра. Измерение световых потоков с помощью фотоэлектрических фотометров более точно и не зависит от особенностей глаза наблюдателя. Применение фотоэлементов позволяет автоматизировать определение концентрации веществ в химическом контроле технологических процессов. Вследствие этого фотоэлектрическая колориметрия значительно шире используется в практике заводских лабораторий, чем визуальная.

На рис. 1 показан обычный порядок расположения узлов в приборах для измерения пропускания или поглощения растворов.

Рис .1 Основные узлы приборов для измерения по­глощения излучения: 1 - источник излучения; 2 - монохроматор; 3 - кюветы для растворов; 4 - преобразователь; 5 - индикатор сигнала.

Фотоколориметры в зависимости от числа используемых при измерениях фотоэлементов делятся на две группы: однолучевые (одноплечие) - приборы с одним фотоэлементом и двухлучевые (двуплечие) - с двумя фотоэлементами.

Точность измерений, получаемая на однолучевых ФЭК, невелика. В заводских и научных лабораториях наиболее широкое распространение получил фотоэлектрические установки, снабженные двумя фотоэлементами. В основу конструкции этих приборов по­ложен принцип уравнивания интенсивности двух световых пучков при помощи переменной щелевой диафрагмы, то есть принцип оп­тической компенсации двух све­товых потоков путем изменений раскрытия зрачка диафрагмы.

Принципиальная схема при­бора представлена на рис. 2. Свет от лампы накаливания 1 с помощью зеркал 2 разделяется на два параллельных пучка. Эти световые пучки проходят через светофильтры 3, кюветы с раство­рами 4 и попадают на фотоэлементы 6 и 6" , которые включены на гальванометр 8 по дифферен­циaльнoй схеме. Щелевая диаф­рагма 5 изменяет интенсивность светового потока, падающего на фотоэлемент 6 . Фотометрический нейтральный клин 7 служит для ослабления светового потока, падающего на фотоэле­мент 6".

Рис.2. Схема двухлучевого фотоэлектроколориметра

ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ В ФОТОЭЛЕКТРОКОЛОРИМЕТРИИ

Для определения концентрации анализируемых веществ в фотоэлектро­колориметрии применяют:

Метод сравнения оптических плотностей стандартного и исследуемого окрашенных растворов;

- метод определения по среднему значению молярного коэффициента светопоглощения;

- метод градуировочного графика;

Метод добавок.

Метод сравнения оптических плотностей стандартного и исследуемого окрашенных растворов. Для определения готовят эталонный раствор определяемо­гo вещества известной концен-трации, которая приближается к концентрацииисследуемого рас-твора. Определяют оптическую плотность этого раствора при

Определенной длине волны D эт . Затем определяют оптическую плотность ис­следуемого раствора D х при той же длине волны и при той же толщине слоя. Сравнивая значения оптических плотностей исследуемого и эталонного рас­творов, находят неизвестную концентрацию определяемого вещества.

Метод сравнения применим при однократных анализах и требует обяза­тельного соблюдения основного закона светопоглощения.

Метод градуировочноro графика. Д ля определения концентрации вещества этим методом готовят серию из 5-8 стан-дартных растворов различной кон­центрации. При выборе интервала концентраций стандартных растворов руководствуются следующими положениями:

Ø он должен охватывать область возможных измерений концентрации исследуемого раствора;

Ø оптическая плотность исследуемого раствора должна соответствовать примерно середине градуировочной кривой;

Ø желательно, чтобы в этом интервале концентраций соблюдался основной закон светопоглощения, то есть график зависимости был прямолинейным;

Ø величина оптической плотности должна находиться в пределах 0, 14… 1,3.

Измеряют оптическую плотность стандартных растворов и строят график зависимости D (С). Определив D х исследуемого раствора, по градуировочному графику находят С х (рис. 3).

Этот метод позволяет определить концентрацию вещества даже в тех случаях, когда основной закон светопоглощения не соблюдается. В таком случае готовят большое количество стандартных растворов, отличающихся по концентрации не более чем на 10 %.

Рис. 3 . Зависимость оптической плотности раствора от концентра­ции (калибровочная кривая)

Метод добавок - это разновидность метода сравнения, осно-ванный на сравнении о п тической плотности исследуемого раствора и того же раствора с добавкой известно количества определяемого вещества.

Применяют его для устранения ме ш ающего влияния посто - ронних примесей, определения малых количеств анализируемого вещества в присутствии больших количеств посторонних веществ. Метод требует обязательного соблюдения основного закона свето - поглощения.

СПЕКТРОФОТОМЕТРИЯ

Это метод фотометрического анализа, в котором определение содержания вещества производят по поглощению им монохроматического света в види­мой, УФ- и ИК-областях спектра. В спектрофотометрии, в отличие от фото­метрии, монохроматизация обеспечивается не светофильтрами, а монохроматорами, позволяющими непрерывно изменять длину волны. В качестве монохроматоров используют призмы или дифракционные решетки, которые обеспечивают значительно более высокую монохроматичность света, чем светофильтры, поэтому точность спектрофотометрических определений выше.

Спектрофотометрические методы , по сравнению с фотоколориметрическими , позволяют решать более широкий круг задач:

Ø проводить количественное определение веществ в широком интервал длин волн (185-1100 нм);

Ø осуществлять количественный анализ многокомпонентных систем (одновременное определение нескольких веществ);

Ø определять состав и константы устойчивости светопоглощающих комплексных соединений;

Ø определять фотометрические характеристики светопоглощающих соединений.

В отличие от фотометров монохроматором в спектрофо - тометрах служит призма или дифракционная решетка, позволяя - ющая непрерывно менять длину волны. Существуют приборы для измерений в видимой, УФ- и ИК-областях спектра. Принципи - альная схема спектрофотометра практически не зависит от спектральной области.

Спектрофотометры, как и фотометры, бывают одно- и двулучевые. В двулучевых приборах световой поток каким-либо способом раздваивают или внутри монохроматора, или по выходе из него: один поток затем проходит через испытуемый раствор, другой - через растворитель.

Однолучевые приборы особенно удобны при выполнении количественных определений, основанных на измерении оптической плотности при о д ной длине волны. В этом случае простота прибора и легкость эксплуатации представляют существенное преимущество. Большая скорость и удобство измерения при работе с двулучевыми приборами полезны в качественном анализе, когда для получения спектра оптическая плотность должна быть измерена в большом интервале длин волн. Кроме того, двулучевое устройств о легко приспособить для автоматической записи непрерывно меняющейся оптической плотности: во всех современных регистрирующих спектрофото - метрах для этой цели используют именно двулучевую систему.

И одно-, и двулучевые приборы пригодны для измерений видимого и УФ-излучений. В основе ИК-спектрофотометров, выпускаемых промышленностью, всегда лежит двулучевая схема, поскольку их обычно используют для развертки и записи большой области спектра.

Количественный анализ однокомпонентных систем проводится теми же методами, что и в фотоэлектроколориметрии:

- методом сравнения оптических плотностей стандартного и исследуемого растворов;

- методом определения по среднему значению молярного коэффициента светопоглощения;

- методом градуировочного графика,

И не имеет никаких отличительных особенностей.

СПЕКТРОФОТОМЕТРИЯ В КАЧЕСТВЕННОМ АНАЛИЗЕ

Качественный анализ в ультрафиолетовой части спектра. Ультрафиолетовые спектры поглощения обычно имеют две-три, иногда пять и более полос по­глощения. Для однозначной идентификации исследуемого вещества записывают его спектр поглощения в различных растворителях и сравнивают полученные данные с соответствующими спектрами сходных веществ известного состава. Если спектры поглощения исследуемого вещества в разных paстворителях совпадают со спектром известного вещества, то можно с большой долей вероятности сделать заключение об идентичности химического состава этих соединений. Для идентификации неизвестного вещества по его спектру поглощения необходимо располагать достаточным количеством спектров поглощения органических и неорганических веществ. Существуют атласы, в которых приведены спектры поглощения очень многих, в основном органических веществ. Особенно хорошо изучены ультрафиолетовые спектры аромати - ческих углеводородов.

При идентификации неизвестных соединений следует также обратить вни­мание на интенсивность поглощения. Очень многие органические соедине­ния обладают полосами поглощения, максимумы которых расположены при одинаковой длине волны λ, но интенсивность их различна. Например, в спект­ре фенола наблюдается полоса поглощения при λ = 255 нм, для которой мо­лярный коэффициент поглощения при максимуме поглощения ε mах = 1450. При той же длине волны ацетон имеет полосу, для которой ε mах = 17.

Качественный анализ в видимой части спектра. Идентификацию окрашен­ного вещества, например красителя, также можно проводить, сравнивая его спектр поглощения в видимой части со спектром сходного красителя. Спект­ры поглощения большинства красителей описаны в специальных атласах и руководствах. По спектру поглощения красителя можно сделать заключе­ние о чистоте красителя, потому что в спектре примесей имеется ряд полос поглощения, которые отсутствуют в спектре красителя. По спектру поглоще­ния смеси красителей можно также сделать заключение о составе смеси, осо­бенно если в спектрах компонентов смеси имеются полосы поглощения, рас­положенные в разных областях спектра.

Качественный анализ в инфракрасной области спектра.

Поглощение ИК-излучения связано с увеличением колебательной и вра­щательной энергий ковалентной связи, если оно приводит к изменению дипольного момента молекулы . Это значит, что почти все молекулы с ковалентными связями в той или иной мере способны к поглощению в ИК-области.

Инфракрасные спектры многоатомных ковалентных соединений обычно очень сложны: они состоят из множества узких полос поглощения и сильно отличаются от обычных УФ- и видимых спектров. Различия вытекают из природы взаимодействия поглощающих молекул и их окружения. Это взаимодей­ствие (в конденсированных фазах) влияет на электронные переходы в хромофоре, поэтому линии поглощения уширяются и стремятся слиться в широкие полосы поглощения. В ИК -спектре, наоборот, частота и коэффициент поглощения, соответствующие отдельной связи, обычно мало меняются с измене­нием окружения (в том числе с изменением остальных частей молекулы). Линии тоже расширяются, но не настолько, чтобы слиться в полосу.

Обычно по оси ординат при построении ИК - спектров откладывают пропускание в процентах, а не оптическую плотность. При таком способе построения полосы поглощения выглядят как впадины на кривой, а не как максимумы на УФ-спектрах.

Образование инфра­красных спектров связано с энергией колебаний молекул. Колебания могут быть направлены вдоль валентной связи между атомами молекулы, в таком случае они называются валентными. Различают симметричные валентные колебания, в которых атомы колеблются в одинаковых направлениях, и асим­мeтpичныe валентные колебания, в которых атомы колеблются в противопо­ложных направлениях. Если колебания атомов происходят с изменением угла между связями, они называются деформационными. Такое разделение весьма условно, потому что при валентных колебаниях происходит в той или иной степени деформация углов и наоборот. Энергия деформационных колебаний обычно меньше, чем энергия валентных колебаний, и полосы поглощения, обусловленные деформационными колебаниями, располагаются в области более длинных волн.

Колебания всех атомов молекулы обусловливают полосы поглощения, индивидуальные для молекул данного вещества. Но среди этих колебаний можно выделить колебания групп атомов, которые слабо связаны с колебаниями атомов остальной части молекулы. Полосы поглощения, обусловленные такими колебаниями, называют характеристическими полосами. Они наблюдаются, как правило, в спектрах всех молекул, в которых имеются данные группы атомов. Примером характеристических полос могут служить полосы 2960 и 2870 см -1 . Первая полоса обусловлена асимметричными валентными колебаниями связи С-Н в метильной группе СН 3 , а вторая - симметричны­ми валентными колебаниями связи С-Н этой же группы. Такие полосы с небольшим отклонением (±10 см -1) наблюдаются в спектрах всех насы­щенных углеводородов и вообще в спектре всех молекул, в которых имеются СН 3 - группы.

Другие функциональные группы могут влиять на положение характеристической полосы, причем разность частот может составлять до ±100 см -1 , но такие случаи немногочисленны, и их можно учитывать на основании литературных данных.

Качественный анализ в инфракрасной области спектра проводится двумя способами.

1. Снимают спектр неизвестного вещества в области 5000-500 см -1 (2 - 20 мк) и отыскивают сходный спектр в специальных каталогах или таблицах. (или при помощи компьютерных баз данных)

2. В спектре исследуемого вещества отыскивают характерис-тические полосы, по которым можно судить о составе вещества.

При контроле загрязнения окружающей среды аналитические методы должны позволять проводить определение как следовых количеств элементов (на уровне n·10 -3 -n·10 -7 %), так и при высоких уровнях загрязнения, причем желательно одновременно, в разнообразных объектах, отличающихся физическими свойствами и химическим составом.

Когда какой-либо метод анализа сравнивается с другими, необходимо принимать во внимание ряд факторов, в совокупности характеризующих метод. К ним относятся:

    область применения - объекты анализа и номенклатура веществ (неорганических и органических), определение которых возможно с использованием данного метода;

    рабочий диапазон определяемых концентраций – интервал, в котором возможно определение компонента без применения дополнительных стадий разбавления или концентрирования;

    селективность определения – возможность определения интересующего вещества в присутствии или при влиянии мешающих компонентов и факторов, например матричные эффекты;

    метрологические характеристики (чувствительность определения, пределы обнаружения, воспроизводимость и правильность получаемых результатов измерений и т.п.);

    способность к распознаванию различных физико-химических форм контролируемых веществ в различных матрицах, например, ионы в разном валентном состоянии;

    производительность оборудования , пригодность для выполнения массовых измерений;

    аппаратурное оснащение - сложность аппаратурного оснащения и его стоимость, возможность применения в производственных и полевых условиях;

    требования к подготовке и квалификации персонала (лаборант, инженер, необходимость специальной подготовки).

Методы, которые одинаково удовлетворяли бы всем вышеперечисленным требованиям, пока не разработаны, однако основные условия могут быть соблюдены при использовании современных физико-химических методов анализа и их комбинаций.

    1. Характеристики наиболее распространенных инструментальных методов анализа

Электроаналитические (электрохимические) методы. В их основе лежат электрохимические процессы в растворах. Эти методы давно известны и часто находят применение при повседневном контроле объектов окружающей среды, имеют преимущества с точки зрения низкой стоимости аппаратурного оснащения и необходимых расходов на эксплуатацию приборов. Преимущества электрохимических методов анализа:

Высокая чувствительность и селективность, быстрота отклика на изменение состава анализируемого объекта;

Большая номенклатура определяемых химических элементов и веществ;

Широкие интервалы измеряемых концентраций - от десятков % до n*10 -8 %;

Правильность и высокая воспроизводимость результатов (относительное стандартное отклонение результатов анализа в большинстве ЭМА менее 0.3);

Возможность определения наряду с валовым содержанием и физико-химических форм определяемых элементов;

Простота аппаратурного оформления, доступность аппаратуры и малая стоимость анализа;

Возможность использования в лабораторных, производственных и полевых условиях, легкость автоматизации и дистанционного управления.

Представляют область аналитической химии, весьма перспективную для усовершенствования аппаратурного оформления и автоматизации с помощью микропроцессоров.

Таблица 1 Классификация инструментальных методов анализа

Название метода и его варианты

Определяемые компоненты

Предел обнаружения, мг/л (мг/кг)

Диапазон линейности

Электроаналитические методы

Вольтамперометрия (полярография)

ионы металлов и их связанные формы, газы

специф. но ср. чувств.

Потенциометрия

неорганические ионы

Ионометрия с ионоселективными электродами

неорганические ионы

Кулоно- и кондуктометрия

неорганич. соединения, газы

Спектральные методы анализа

Молекулярная спектрометрия

Спектрофотометрия в видимой области

неорганические и органические соединения

просты и шир.прим.

УФ-спектрофотометрия

неорг. и органические в-ва

ИК-спектрометрия

КР-спетрометрия

идентификация орг. веществ

высокоспец

Атомная спектрометрия

Атомно-абсорбционная спектрометрия

химические элементы, главным образом металлы

Атомно-эмиссионная спектрометрия

более 70 химических элементов

Атомная флуоресцентная спектрометрия

органические вещества и металлоорганические комплексы

Радиоспектроскопические методы

Электронный парамагнитный резонанс (ЭПР)

Макрокомпоненты, свободные радикалы.

высокоспецифичны,

Ядерный магнитный резонанс (ЯМР)

органические соединения, содержащие ядра Н, С, F, P

малочувствительны.

Масс-спектрометрические

Масс-спектрометрия

Следы элементов

Хроматографические методы

Газовая хроматография

газы, летучие органические соединения

Зависит от типа

высокоспецифичны,.

Газожидкостная хроматограф.

органические соединения

детектора

Высокоэффективная жидкостная хроматография

нелетучие органические соединения

применяются.

Ядерно-физические методы

Нейтронно-активационный анализ

химические элементы, за исключением легких

требуют спец.

-, - и - радиометрия

радионуклиды

-, - и - спектрометрия

* - сильно зависит от определяемого элемента; ** - зависит от используемого детектора

Недостатки - эффект взаимного влияния элементов, невозможность многоэлементного определения, влияние органических веществ.

Спектральные методы анализа основаны на использовании взаимодействия атомов или молекул определяемых веществ с электромагнитным излучением широкого диапазона энергий. В порядке уменьшения энергии, это могут быть: гамма кванты, рентгеновское излучение, ультрафиолетовое и видимое, инфракрасное, микроволновое и радиоволновое излучение.

Взаимодействие молекул или атомов вещества с различными формами энергии находит проявление в трех тесно связанных друг с другом спектроскопических явлениях - эмиссии, адсорбции и флуоресценции, которые, так или иначе, используются в аналитической технике. Аналитическим сигналом может быть испускание или поглощение излучения веществом, поэтому различают два вида спектрального анализа: абсорбционную спектроскопию (использует спектры поглощения) и эмиссионную спектроскопию (спектры испускания).

Спектральные методы анализа начали развиваться еще с середины XIX века и к настоящему времени приобрели всеобщее распространение в качественном и количественном анализе. Широкое применение спектральных методов анализа обусловлено их универсальностью, избирательностью, низкими пределами обнаружения, экспрессностью, возможностью автоматизации, как отдельных стадий, так и всего процесса анализа в целом. Современные спектральные приборы имеют автоматизированные системы ввода проб, встроенные микропроцессоры, которые управляют процессом проведения анализа, обрабатывают данные эксперимента и выдают их в удобной для потребителя форме.

К группе спектральных методов анализа относятся:

    молекулярно-абсорбционный спектральный анализ в видимой, УФ- и ИК- области;

    метод анализа по спектрам комбинационного рассеивания света;

    люминесцентный или флуоресцентный анализы;

    атомно-эмиссионный, атомно-абсорбционный и атомно-флуоресцентный анализы;

    радиоспектроскопические методы анализа (ЭПР- спектроскопия, ЯМР- спектроскопия).

Молекулярная спектрометрия . В зависимости от используемого энергетического диапазона оптические методы анализа делятся на спектроскопию в видимой и ультрафиолетовой областях спектра (диапазон длин волн от 200 до 700 нм, 1 нм = 10 -9 м) и инфракрасную спектрометрию (от длин волн, при которых свет становится невидимым для глаз человека ~ 780 нм до области, где излучение уже обладает свойствами высокочастотных радиоволн ~ 0.5 мм). Классические фотометрия и спектрофотометрия все еще находят широкое применение (микропроцессорное управление, позволяющее полностью автоматизировать процесс измерения). Инфракрасная спектрометрия особенно полезна для идентификации и установления структуры органических соединений. КР-спетрометрия.

Атомная спектрометрия . В последние 20-30 лет выросла роль атомно-абсорбционной и атомно-эмиссионной спектрометрии. Методы требуют более сложной и дорогой аппаратуры, но позволяют выполнять массовые анализы и определять большинство химических элементов в матрицах самого разнообразного состава с крайне низкими пределами обнаружения (при абсолютном содержании ~ 10 -14 г). Эти инструментальные методы анализа становятся обычными (рутинными) даже в небольших лабораториях контроля окружающей среды, особенно при контроле загрязнения атмосферы и природных вод, когда простейшая предварительная пробоподготовка или концентрирование (экстракция, упаривание проб воды или улавливание атмосферных загрязнений на фильтре) способствуют повышению чувствительности определений.

Атомно-флуоресцентная спектрометрия также позволяет определять различные элементы, но на основе переизлучения световой энергии, поглощенной свободными атомами.

ЭПР-спектрометрия . Методом ЭПР исследуются молекулы, атомы и радикалы в газовой среде, растворах и различных типах матриц. ЭПР - один из наиболее чувствительных методов обнаружения и идентификации свободных радикалов, установления их электронной конфигурации и геометрии. Метод применяется для исследования комплексных соединений, в частности соединений переходных и редкоземельных металлов.

Спектроскопия ядерного магнитного резонанса - метод измерения относительной энергии и состояния ядерных спинов молекулы в магнитном поле. Метод пригоден для изучения атомов, обладающих ядерным спином, и может применяться для количественного и качественного анализа, особенно при анализе соединений с неизвестной структурой. Чаще всего используется применительно к ядрам 1 H, 19 F и 31 P.

Масс-спектрометрия . Этим методом анализируют вещество, преобразуя его в ионы и разделяя их затем в электрическом или магнитном поле.

Методы молекулярной спектрометрии (ИК-, УФ-, ЯМР-, ЭПР- и масс - спектрометрия) больше связаны с установлением структуры и исследованием механизма протекающих процессов, чем с простой идентификацией состава.

Хроматографические методы. По существу, хроматография является методом разделения смесей. После разделения смеси на компоненты осуществляется их идентификация и количественное определение. Для этого используются специальные устройства, называемые детектором и основанные на разных принципах измерения количества или концентрации вещества - от простейших термоэлементов или фотометров до масс-спектрометров высокого разрешения в комплексе с микропроцессором. Инструментальная хроматография является гибридным методом: хроматографическая колонка разделяет компоненты пробы на отдельные зоны, а детектор обычно измеряет концентрацию разделенных компонентов в фазе-носителе после их выхода из колонки.

Хроматографические методы, особенно газожидкостная и высокоэффективная жидкостная хроматография, часто оказываются незаменимыми при анализе сложных многокомпонентных смесей, а также для идентификации и количественного определения органических веществ со сходной структурой. Особенно быстро развиваются методы, сочетающие хроматографическое разделение смеси анализируемых веществ на компоненты и последующее их определение с помощью масс- или ИК-спектрометрии (хромато-масс- спектрометрия ГЖХ-МС, газожидкостная хроматография - фурье-спектроскопия в инфракрасной области ГЖХ-ИК-ФС)

Ядерно-физические методы занимают особое положение и применяются более ограниченно, так как требуют специально подготовленных лабораторий, соблюдения множества требований радиационной безопасности и пригодны лишь для определения радиоактивных изотопов химических элементов, обладающих специфическими ядерно-физическими характеристиками - явлением радиоактивного распада.

Ни один из перечисленных методов анализа не является универсальным с точки зрения пригодности для определения содержания всех интересующих компонентов и в любых объектах контроля.

При выборе конкретного метода анализа рассмотрению в первую очередь подлежат следующие вопросы:

    групповые характеристики и особенности физико-химических свойств загрязнителя, подлежащего контролю;

    Химический состав и физические свойства контролируемых объектов;

    Возможный диапазон изменения концентраций определяемого вещества в объектах контроля;

    Метрологические характеристики метода: чувствительность (предел обнаружения), точность и правильность (селективность, воспроизводимость результатов определений, отсутствие помех определению со стороны сопутствующих компонентов т.п.);

    Требования, предъявляемые к способу подготовки пробы вещества перед измерением;

    Время, затрачиваемое на единичное измерение;

    Общая продолжительность анализа с учетом пробоподготовки, измерения и выдачи результатов;

    Возможность автоматизации процесса пробоподготовки, измерения и выдачи результатов анализа.

Последние четыре пункта особенно важны при выборе метода, пригодного для выполнения массовых анализов.

Loading...Loading...