Общее определение производной. Правила вычисления производных

Операция отыскания производной называется дифференцированием.

В результате решения задач об отыскании производных у самых простых (и не очень простых) функций по определению производной как предела отношения приращения к приращению аргумента появились таблица производных и точно определённые правила дифференцирования. Первыми на ниве нахождения производных потрудились Исаак Ньютон (1643-1727) и Готфрид Вильгельм Лейбниц (1646-1716).

Поэтому в наше время, чтобы найти производную любой функции, не надо вычислять упомянутый выше предел отношения приращения функции к приращению аргумента, а нужно лишь воспользоваться таблицей производных и правилами дифференцирования. Для нахождения производной подходит следующий алгоритм.

Чтобы найти производную , надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного - в правилах дифференцирования. Таблица производных и правила дифференцирования даны после первых двух примеров.

Пример 1. Найти производную функции

Решение. Из правил дифференцирования выясняем, что производная суммы функций есть сумма производных функций, т. е.

Из таблицы производных выясняем, что производная "икса" равна единице, а производная синуса - косинусу. Подставляем эти значения в сумму производных и находим требуемую условием задачи производную:

Пример 2. Найти производную функции

Решение. Дифференцируем как производную суммы, в которой второе слагаемое с постоянным множителем, его можно вынести за знак производной:

Если пока возникают вопросы, откуда что берётся, они, как правило, проясняются после ознакомления с таблицей производных и простейшими правилами дифференцирования. К ним мы и переходим прямо сейчас.

Таблица производных простых функций

1. Производная константы (числа). Любого числа (1, 2, 5, 200...), которое есть в выражении функции. Всегда равна нулю. Это очень важно помнить, так как требуется очень часто
2. Производная независимой переменной. Чаще всего "икса". Всегда равна единице. Это тоже важно запомнить надолго
3. Производная степени. В степень при решении задач нужно преобразовывать неквадратные корни.
4. Производная переменной в степени -1
5. Производная квадратного корня
6. Производная синуса
7. Производная косинуса
8. Производная тангенса
9. Производная котангенса
10. Производная арксинуса
11. Производная арккосинуса
12. Производная арктангенса
13. Производная арккотангенса
14. Производная натурального логарифма
15. Производная логарифмической функции
16. Производная экспоненты
17. Производная показательной функции

Правила дифференцирования

1. Производная суммы или разности
2. Производная произведения
2a. Производная выражения, умноженного на постоянный множитель
3. Производная частного
4. Производная сложной функции

Правило 1. Если функции

дифференцируемы в некоторой точке , то в той же точке дифференцируемы и функции

причём

т.е. производная алгебраической суммы функций равна алгебраической сумме производных этих функций.

Следствие. Если две дифференцируемые функции отличаются на постоянное слагаемое, то их производные равны , т.е.

Правило 2. Если функции

дифференцируемы в некоторой точке , то в то же точке дифференцируемо и их произведение

причём

т.е. производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой.

Следствие 1. Постоянный множитель можно выносить за знак производной :

Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждого из сомножителей на все остальные.

Например, для трёх множителей:

Правило 3. Если функции

дифференцируемы в некоторой точке и , то в этой точке дифференцируемо и их частное u/v , причём

т.е. производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя.

Где что искать на других страницах

При нахождении производной произведения и частного в реальных задачах всегда требуется применять сразу несколько правил дифференцирования, поэтому больше примеров на эти производные - в статье "Производная произведения и частного функций " .

Замечание. Следует не путать константу (то есть, число) как слагаемое в сумме и как постоянный множитель! В случае слагаемого её производная равна нулю, а в случае постоянного множителя она выносится за знак производных. Это типичная ошибка, которая встречается на начальном этапе изучения производных, но по мере решения уже нескольких одно- двухсоставных примеров средний студент этой ошибки уже не делает.

А если при дифференцировании произведения или частного у вас появилось слагаемое u "v , в котором u - число, например, 2 или 5, то есть константа, то производная этого числа будет равна нулю и, следовательно, всё слагаемое будет равно нулю (такой случай разобран в примере 10).

Другая частая ошибка - механическое решение производной сложной функции как производной простой функции. Поэтому производной сложной функции посвящена отдельная статья. Но сначала будем учиться находить производные простых функций.

По ходу не обойтись без преобразований выражений. Для этого может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями .

Если Вы ищете решения производных дробей со степенями и корнями, то есть, когда функция имеет вид вроде , то следуйте на занятие "Производная суммы дробей со степенями и корнями ".

Если же перед Вами задача вроде , то Вам на занятие "Производные простых тригонометрических функций".

Пошаговые примеры - как найти производную

Пример 3. Найти производную функции

Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители - суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:

Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, "икс" у нас превращается в единицу, а минус 5 - в ноль. Во втором выражении "икс" умножен на 2, так что двойку умножаем на ту же единицу как производную "икса". Получаем следующие значения производных:

Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:

Пример 4. Найти производную функции

Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:

Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:

Если Вы ищете решения таких задач, в которых надо найти производную функции, где сплошное нагромождение корней и степеней, как, например, , то добро пожаловать на занятие "Производная суммы дробей со степенями и корнями" .

Если же Вам нужно узнать больше о производных синусов, косинусов, тангенсов и других тригонометрических функций, то есть, когда функция имеет вид вроде , то Вам на урок "Производные простых тригонометрических функций" .

Пример 5. Найти производную функции

Решение. В данной функции видим произведение, один из сомножителей которых - квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:

Пример 6. Найти производную функции

Решение. В данной функции видим частное, делимое которого - квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:

Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на .

Тип задания: 7

Условие

Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b , учитывая, что абсцисса точки касания меньше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений \begin{cases} -24x_0+b=3,\\-12x_0^2+bx_0-10=3x_0+2. \end{cases}

Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.

Ответ

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y"(x_0). Но y"=-2x+5, значит, y"(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.

Получаем: x_0 = 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(-6; 2) и B(-1; 1). Обозначим через C(-6; 1) точку пересечения прямых x=-6 и y=1, а через \alpha угол ABC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \pi -\alpha, который является тупым.

Как известно, tg(\pi -\alpha) и будет значением производной функции f(x) в точке x_0. Заметим, что tg \alpha =\frac{AC}{CB}=\frac{2-1}{-1-(-6)}=\frac15. Отсюда по формулам приведения получаем: tg(\pi -\alpha) =-tg \alpha =-\frac15=-0,2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-2x-4 является касательной к графику функции y=16x^2+bx+12. Найдите b , учитывая, что абсцисса точки касания больше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=16x^2+bx+12, через которую

проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=32x_0+b=-2. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть 16x_0^2+bx_0+12=-2x_0-4. Получаем систему уравнений \begin{cases} 32x_0+b=-2,\\16x_0^2+bx_0+12=-2x_0-4. \end{cases}

Решая систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания больше нуля, поэтому x_0=1, тогда b=-2-32x_0=-34.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых касательная к графику функции параллельна прямой y=6.

Показать решение

Решение

Прямая y=6 параллельна оси Ox . Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 4 .

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=4x-6 параллельна касательной к графику функции y=x^2-4x+9. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент касательной к графику функции y=x^2-4x+9 в произвольной точке x_0 равен y"(x_0). Но y"=2x-4, значит, y"(x_0)=2x_0-4. Угловой коэффициент касательной y=4x-7, указанной в условии, равен 4 . Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что 2x_0-4=4. Получаем: x_0=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(1; 1) и B(5; 4). Обозначим через C(5; 1) точку пересечения прямых x=5 и y=1, а через \alpha угол BAC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \alpha.

Что такое производная?
Определение и смысл производной функции

Многие удивятся неожиданному расположению этой статьи в моём авторском курсе о производной функции одной переменной и её приложениях. Ведь как оно было ещё со школы: стандартный учебник в первую очередь даёт определение производной, её геометрический, механический смысл. Далее учащиеся находят производные функций по определению, и, собственно, только потом оттачивается техника дифференцирования с помощью таблицы производных .

Но с моей точки зрения, более прагматичен следующий подход: прежде всего, целесообразно ХОРОШО ПОНЯТЬ предел функции , и, в особенности, бесконечно малые величины . Дело в том, что определение производной базируется на понятии предела , которое слабо рассмотрено в школьном курсе. Именно поэтому значительная часть молодых потребителей гранита знаний плохо вникают в саму суть производной. Таким образом, если вы слабо ориентируетесь в дифференциальном исчислении либо мудрый мозг за долгие годы успешно избавился от оного багажа, пожалуйста, начните с пределов функций . Заодно освоите/вспомните их решение.

Тот же практический смысл подсказывает, что сначала выгодно научиться находить производные , в том числе производные сложных функций . Теория теорией, а дифференцировать, как говорится, хочется всегда. В этой связи лучше проработать перечисленные базовые уроки, а может и стать мастером дифференцирования , даже не осознавая сущности своих действий.

К материалам данной страницы рекомендую приступать после ознакомления со статьёй Простейшие задачи с производной , где, в частности рассмотрена задача о касательной к графику функции. Но можно и повременить. Дело в том, что многие приложения производной не требуют её понимания, и неудивительно, что теоретический урок появился достаточно поздно – когда мне потребовалось объяснять нахождение интервалов возрастания/убывания и экстремумов функции. Более того, он довольно долго находился в теме «Функции и графики », пока я всё-таки не решил поставить его раньше.

Поэтому, уважаемые чайники, не спешите поглощать суть производной, как голодные звери, ибо насыщение будет невкусным и неполным.

Понятие возрастания, убывания, максимума, минимума функции

Многие учебные пособия подводят к понятию производной с помощью каких-либо практических задач, и я тоже придумал интересный пример. Представьте, что нам предстоит путешествие в город, до которого можно добраться разными путями. Сразу откинем кривые петляющие дорожки, и будем рассматривать только прямые магистрали. Однако прямолинейные направления тоже бывают разными: до города можно добраться по ровному автобану. Или по холмистому шоссе – вверх-вниз, вверх-вниз. Другая дорога идёт только в гору, а ещё одна – всё время под уклон. Экстремалы выберут маршрут через ущелье с крутым обрывом и отвесным подъемом.

Но каковы бы ни были ваши предпочтения, желательно знать местность или, по меньшей мере, располагать её топографической картой. А если такая информация отсутствует? Ведь можно выбрать, например, ровный путь, да в результате наткнуться на горнолыжный спуск с весёлыми финнами. Не факт, что навигатор и даже спутниковый снимок дадут достоверные данные. Поэтому неплохо бы формализовать рельеф пути средствами математики.

Рассмотрим некоторую дорогу (вид сбоку):

На всякий случай напоминаю элементарный факт: путешествие происходит слева направо . Для простоты полагаем, что функция непрерывна на рассматриваемом участке.

Какие особенности у данного графика?

На интервалах функция возрастает , то есть каждое следующее её значение больше предыдущего. Грубо говоря, график идёт снизу вверх (забираемся на горку). А на интервале функция убывает – каждое следующее значение меньше предыдущего, и наш график идёт сверху вниз (спускаемся по склону).

Также обратим внимание на особые точки. В точке мы достигаем максимума , то есть существует такой участок пути, на котором значение будет самым большим (высоким). В точке же достигается минимум , и существует такая её окрестность, в которой значение самое маленькое (низкое).

Более строгую терминологию и определения рассмотрим на уроке об экстремумах функции , а пока изучим ещё одну важную особенность: на промежутках функция возрастает, но возрастает она с разной скоростью . И первое, что бросается в глаза – на интервале график взмывает вверх гораздо более круто , чем на интервале . Нельзя ли измерить крутизну дороги с помощью математического инструментария?

Скорость изменения функции

Идея состоит в следующем: возьмём некоторое значение (читается «дельта икс») , которое назовём приращением аргумента , и начнём его «примерять» к различным точкам нашего пути:

1) Посмотрим на самую левую точку: минуя расстояние , мы поднимаемся по склону на высоту (зелёная линия). Величина называется приращением функции , и в данном случае это приращение положительно (разность значений по оси – больше нуля). Составим отношение , которое и будет мерИлом крутизны нашей дороги. Очевидно, что – это вполне конкретное число, и, поскольку оба приращения положительны, то .

Внимание! Обозначение являются ЕДИНЫМ символом, то есть нельзя «отрывать» «дельту» от «икса» и рассматривать эти буквы отдельно. Разумеется, комментарий касается и символа приращения функции.

Исследуем природу полученной дроби содержательнее. Пусть изначально мы находимся на высоте 20 метров (в левой чёрной точке). Преодолев расстояние метров (левая красная линия), мы окажемся на высоте 60 метров. Тогда приращение функции составит метров (зелёная линия) и: . Таким образом, на каждом метре этого участка дороги высота увеличивается в среднем на 4 метра …не забыли альпинистское снаряжение? =) Иными словами, построенное отношение характеризует СРЕДНЮЮ СКОРОСТЬ ИЗМЕНЕНИЯ (в данном случае – роста) функции.

Примечание : числовые значения рассматриваемого примера соответствуют пропорциям чертежа лишь приблизительно.

2) Теперь пройдём то же самое расстояние от самой правой чёрной точки. Здесь подъём более пологий, поэтому приращение (малиновая линия) относительно невелико, и отношение по сравнению с предыдущим случаем будет весьма скромным. Условно говоря, метров и скорость роста функции составляет . То есть, здесь на каждый метр пути приходится в среднем пол метра подъёма.

3) Маленькое приключение на склоне горы. Посмотрим на верхнюю чёрную точку, расположенную на оси ординат. Предположим, что это отметка 50 метров. Снова преодолеваем расстояние , в результате чего оказываемся ниже – на уровне 30-ти метров. Поскольку осуществлено движение сверху вниз (в «противоход» направлению оси ), то итоговое приращение функции (высоты) будет отрицательным : метров (коричневый отрезок на чертеже). И в данном случае речь уже идёт о скорости убывания функции: , то есть за каждый метр пути этого участка высота убывает в среднем на 2 метра. Берегите одежду на пятой точке.

Теперь зададимся вопросом: какое значение «измерительного эталона» лучше всего использовать? Совершенно понятно, 10 метров – это весьма грубо. На них запросто уместится добрая дюжина кочек. Да что там кочки, внизу может быть глубокое ущелье, а через несколько метров – другая его сторона с дальнейшим отвесным подъёмом. Таким образом, при десятиметровом мы не получим вразумительной характеристики подобных участков пути посредством отношения .

Из проведённого рассуждения следует вывод – чем меньше значение , тем точнее мы опишем рельеф дороги. Более того, справедливы следующие факты:

Для любой точки подъемов можно подобрать значение (пусть и очень малое), которое умещается в границах того или иного подъёма. А это значит, что соответствующее приращение высоты будет гарантированно положительным, и неравенство корректно укажет рост функции в каждой точке этих интервалов.

– Аналогично, для любой точки склона существует значение , которое полностью уместится на этом склоне. Следовательно, соответствующее приращение высоты однозначно отрицательно, и неравенство корректно покажет убыль функции в каждой точке данного интервала.

– Особо интересен случай, когда скорость изменения функции равна нулю: . Во-первых, нулевое приращение высоты () – признак ровного пути. А во-вторых, есть другие любопытные ситуации, примеры которых вы видите на рисунке. Представьте, что судьба завела нас на самую вершину холма с парящими орлами или дно оврага с квакающими лягушками. Если сделать небольшой шажок в любую сторону, то изменение высоты будет ничтожно мало, и можно сказать, что скорость изменения функции фактически нулевая. В точках наблюдается именно такая картина.

Таким образом, мы подобрались к удивительной возможности идеально точно охарактеризовать скорость изменения функции. Ведь математический анализ позволяет устремить приращение аргумента к нулю: , то есть сделать его бесконечно малым .

По итогу возникает ещё один закономерный вопрос: можно ли для дороги и её графика найти другую функцию , которая сообщала бы нам обо всех ровных участках, подъёмах, спусках, вершинах, низинах, а также о скорости роста/убывания в каждой точке пути?

Что такое производная? Определение производной.
Геометрический смысл производной и дифференциала

Пожалуйста, прочитайте вдумчиво и не слишком быстро – материал прост и доступен каждому! Ничего страшного, если местами что-то покажется не очень понятным, к статье всегда можно вернуться позже. Скажу больше, теорию полезно проштудировать несколько раз, чтобы качественно уяснить все моменты (совет особенно актуален для студентов-«технарей», у которых высшая математика играет значительную роль в учебном процессе).

Естественно, и в самом определении производной в точке заменим на :

К чему мы пришли? А пришли мы к тому, что для функции по закону ставится в соответствие другая функция , которая называется производной функцией (или просто производной) .

Производная характеризует скорость изменения функции . Каким образом? Мысль идёт красной нитью с самого начала статьи. Рассмотрим некоторую точку области определения функции . Пусть функция дифференцируема в данной точке. Тогда:

1) Если , то функция возрастает в точке . И, очевидно, существует интервал (пусть даже очень малый), содержащий точку , на котором функция растёт, и её график идёт «снизу вверх».

2) Если , то функция убывает в точке . И существует интервал, содержащий точку , на котором функция убывает (график идёт «сверху вниз»).

3) Если , то бесконечно близко около точки функция сохраняет свою скорость постоянной. Так бывает, как отмечалось, у функции-константы и в критических точках функции , в частности в точках минимума и максимума .

Немного семантики. Что в широком смысле обозначает глагол «дифференцировать»? Дифференцировать – это значит выделить какой-либо признак. Дифференцируя функцию , мы «выделяем» скорость её изменения в виде производной функции . А что, кстати, понимается под словом «производная»? Функция произошла от функции .

Термины весьма удачно истолковывает механический смысл производной :
Рассмотрим закон изменения координаты тела , зависящий от времени , и функцию скорости движения данного тела . Функция характеризует скорость изменения координаты тела, поэтому является первой производной функции по времени: . Если бы в природе не существовало понятия «движение тела», то не существовало бы и производного понятия «скорость тела».

Ускорение тела – это скорость изменения скорости, поэтому: . Если бы в природе не существовало исходных понятий «движение тела» и «скорость движения тела», то не существовало бы и производного понятия «ускорение тела».


Дата: 20.11.2014

Что такое производная?

Таблица производных.

Производная - одно из главных понятий высшей математики. В этом уроке мы познакомимся с этим понятием. Именно познакомимся, без строгих математических формулировок и доказательств.

Это знакомство позволит:

Понимать суть несложных заданий с производной;

Успешно решать эти самые несложные задания;

Подготовиться к более серьёзным урокам по производной.

Сначала - приятный сюрприз.)

Строгое определение производной основано на теории пределов и штука достаточно сложная. Это огорчает. Но практическое применение производной, как правило, не требует таких обширных и глубоких знаний!

Для успешного выполнения большинства заданий в школе и ВУЗе достаточно знать всего несколько терминов - чтобы понять задание, и всего несколько правил - чтобы его решить. И всё. Это радует.

Приступим к знакомству?)

Термины и обозначения.

В элементарной математике много всяких математических операций. Сложение, вычитание умножение, возведение в степень, логарифмирование и т.д. Если к этим операциям добавить ещё одну, элементарная математика становится высшей. Эта новая операция называется дифференцирование. Определение и смысл этой операции будут рассмотрены в отдельных уроках.

Здесь же важно понять, что дифференцирование - это просто математическая операция над функцией. Берём любую функцию и, по определённым правилам, преобразовываем её. В результате получится новая функция. Вот эта новая функция и называется: производная.

Дифференцирование - действие над функцией.

Производная - результат этого действия.

Так же, как, например, сумма - результат сложения. Или частное - результат деления.

Зная термины, можно, как минимум, понимать задания.) Формулировки бывают такие: найти производную функции; взять производную; продифференцировать функцию; вычислить производную и т.п. Это всё одно и то же. Разумеется, бывают и более сложные задания, где нахождение производной (дифференцирование) будет всего лишь одним из шагов решения задания.

Обозначается производная с помощью штришка вверху справа над функцией. Вот так: y" или f"(x) или S"(t) и так далее.

Читается игрек штрих, эф штрих от икс, эс штрих от тэ, ну вы поняли...)

Штрих также может обозначать производную конкретной функции, например: (2х+3)" , (x 3 )" , (sinx)" и т.д. Часто производная обозначается с помощью дифференциалов, но такое обозначение в этом уроке мы рассматривать не будем.

Предположим, что понимать задания мы научились. Осталось всего ничего - научиться их решать.) Напомню ещё раз: нахождение производной - это преобразование функции по определённым правилам. Этих правил, на удивление, совсем немного.

Чтобы найти производную функции, надо знать всего три вещи. Три кита, на которых стоит всё дифференцирование. Вот они эти три кита:

1. Таблица производных (формулы дифференцирования).

3. Производная сложной функции.

Начнём по порядку. В этом уроке рассмотрим таблицу производных.

Таблица производных.

В мире - бесконечное множество функций. Среди этого множества есть функции, которые наиболее важны для практического применения. Эти функции сидят во всех законах природы. Из этих функций, как из кирпичиков, можно сконструировать все остальные. Этот класс функций называется элементарные функции. Именно эти функции и изучаются в школе - линейная, квадратичная, гипербола и т.п.

Дифференцирование функций "с нуля", т.е. исходя из определения производной и теории пределов - штука достаточно трудоёмкая. А математики - тоже люди, да-да!) Вот и упростили себе (и нам) жизнь. Они вычислили производные элементарных функций до нас. Получилась таблица производных, где всё уже готово.)

Вот она, эта табличка для самых популярных функций. Слева - элементарная функция, справа - её производная.

Функция
y
Производная функции y
y"
1 C (постоянная величина) C" = 0
2 x x" = 1
3 x n (n - любое число) (x n)" = nx n-1
x 2 (n = 2) (x 2)" = 2x
4 sin x (sin x)" = cosx
cos x (cos x)" = - sin x
tg x
ctg x
5 arcsin x
arccos x
arctg x
arcctg x
4 a x
e x
5 log a x
ln x (a = e )

Рекомендую обратить внимание на третью группу функций в этой таблице производных. Производная степенной функции - одна из самых употребительных формул, если только не самая употребительная! Намёк понятен?) Да, таблицу производных желательно знать наизусть. Кстати, это не так трудно, как может показаться. Попробуйте решать побольше примеров, таблица сама и запомнится!)

Найти табличное значение производной, как вы понимаете, задание не самое трудное. Поэтому очень часто в подобных заданиях встречаются дополнительные фишки. Либо в формулировке задания, либо в исходной функции, которой в таблице - вроде и нету...

Рассмотрим несколько примеров:

1. Найти производную функции y = x 3

Такой функции в таблице нет. Но есть производная степенной функции в общем виде (третья группа). В нашем случае n=3. Вот и подставляем тройку вместо n и аккуратно записываем результат:

(x 3) " = 3·x 3-1 = 3x 2

Вот и все дела.

Ответ: y" = 3x 2

2. Найти значение производной функции y = sinx в точке х = 0.

Это задание означает, что надо сначала найти производную от синуса, а затем подставить значение х = 0 в эту самую производную. Именно в таком порядке! А то, бывает, сразу подставляют ноль в исходную функцию... Нас же просят найти не значение исходной функции, а значение её производной. Производная, напомню - это уже новая функция.

По табличке находим синус и соответствующую производную:

y" = (sin x)" = cosx

Подставляем ноль в производную:

y"(0) = cos 0 = 1

Это и будет ответ.

3. Продифференцировать функцию:

Что, внушает?) Такой функции в таблице производных и близко нет.

Напомню, что продифференцировать функцию - это просто найти производную этой функции. Если забыть элементарную тригонометрию, искать производную нашей функции достаточно хлопотно. Таблица не помогает...

Но если увидеть, что наша функция - это косинус двойного угла , то всё сразу налаживается!

Да-да! Запомните, что преобразование исходной функции до дифференцирования вполне допускается! И, случается, здорово облегчает жизнь. По формуле косинуса двойного угла:

Т.е. наша хитрая функция есть не что иное, как y = cosx . А это - табличная функция. Сразу получаем:

Ответ: y" = - sin x .

Пример для продвинутых выпускников и студентов:

4. Найти производную функции:

Такой функции в таблице производных нет, разумеется. Но если вспомнить элементарную математику, действия со степенями... То вполне можно упростить эту функцию. Вот так:

А икс в степени одна десятая - это уже табличная функция! Третья группа, n=1/10. Прямо по формуле и записываем:

Вот и всё. Это будет ответ.

Надеюсь, что с первым китом дифференцирования - таблицей производных - всё ясно. Осталось разобраться с двумя оставшимися китами. В следующем уроке освоим правила дифференцирования.

Составить отношение и вычислить предел .

Откуда появилась таблица производных и правила дифференцирования ? Благодаря единственному пределу . Кажется волшебством, но в действительности – ловкость рук и никакого мошенничества. На уроке Что такое производная? я начал рассматривать конкретные примеры, где с помощью определения нашёл производные линейной и квадратичной функции. В целях познавательной разминки продолжим тревожить таблицу производных , оттачивая алгоритм и технические приёмы решения:

Пример 1

По сути, требуется доказать частный случай производной степенной функции, который обычно фигурирует в таблице: .

Решение технически оформляется двумя способами. Начнём с первого, уже знакомого подхода: лесенка начинается с дощечки, а производная функция – с производной в точке.

Рассмотрим некоторую (конкретную) точку , принадлежащую области определения функции , в которой существует производная. Зададим в данной точке приращение (разумеется, не выходящее за рамки о/о -я) и составим соответствующее приращение функции:

Вычислим предел:

Неопределённость 0:0 устраняется стандартным приёмом, рассмотренным ещё в первом веке до нашей эры. Домножим числитель и знаменатель на сопряженное выражение :

Техника решения такого предела подробно рассмотрена на вводном уроке о пределах функций .

Поскольку в качестве можно выбрать ЛЮБУЮ точку интервала , то, осуществив замену , получаем:

Ответ

В который раз порадуемся логарифмам:

Пример 2

Найти производную функции , пользуясь определением производной

Решение : рассмотрим другой подход к раскрутке той же задачи. Он точно такой же, но более рационален с точки зрения оформления. Идея состоит в том, чтобы в начале решения избавиться от подстрочного индекса и вместо буквы использовать букву .

Рассмотрим произвольную точку , принадлежащую области определения функции (интервалу ), и зададим в ней приращение . А вот здесь, кстати, как и в большинстве случаев, можно обойтись без всяких оговорок, поскольку логарифмическая функция дифференцируема в любой точке области определения.

Тогда соответствующее приращение функции:

Найдём производную:

Простота оформления уравновешивается путаницей, которая может возникнуть у начинающих (да и не только). Ведь мы привыкли, что в пределе изменяется буква «икс»! Но тут всё по-другому: – античная статуя, а – живой посетитель, бодро шагающий по коридору музея. То есть «икс» – это «как бы константа».

Устранение неопределённости закомментирую пошагово:

(1) Используем свойство логарифма .

(2) В скобках почленно делим числитель на знаменатель.

(3) В знаменателе искусственно домножаем и делим на «икс» чтобы воспользоваться замечательным пределом , при этом в качестве бесконечно малой величины выступает .

Ответ : по определению производной:

Или сокращённо:

Предлагаю самостоятельно сконструировать ещё две табличные формулы:

Пример 3

В данном случае составленное приращение сразу же удобно привести к общему знаменателю. Примерный образец оформления задания в конце урока (первый способ).

Пример 3: Решение : рассмотрим некоторую точку , принадлежащую области определения функции . Зададим в данной точке приращение и составим соответствующее приращение функции:

Найдём производную в точке :


Так как в качестве можно выбрать любую точку области определения функции , то и
Ответ : по определению производной

Пример 4

Найти производную по определению

А тут всё необходимо свести к замечательному пределу . Решение оформлено вторым способом.

Аналогично выводится ряд других табличных производных . Полный список можно найти в школьном учебнике, или, например, 1-м томе Фихтенгольца. Не вижу особого смысла переписывать из книг и доказательства правил дифференцирования – они тоже порождены формулой .

Пример 4: Решение , принадлежащую , и зададим в ней приращение

Найдём производную:

Используем замечательный предел

Ответ : по определению

Пример 5

Найти производную функции , используя определение производной

Решение : используем первый стиль оформления. Рассмотрим некоторую точку , принадлежащую , изададим в ней приращение аргумента . Тогда соответствующее приращение функции:

Возможно, некоторые читатели ещё не до конца поняли принцип, по которому нужно составлять приращение . Берём точку (число) и находим в ней значение функции: , то есть в функцию вместо «икса» следует подставить . Теперь берём тоже вполне конкретное число и так же подставляем его в функцию вместо «икса»: . Записываем разность , при этом необходимо полностью взять в скобки .

Составленное приращение функции бывает выгодно сразу же упростить . Зачем? Облегчить и укоротить решение дальнейшего предела.

Используем формулы , раскрываем скобки и сокращаем всё, что можно сократить:

Индейка выпотрошена, с жаркое никаких проблем:

В итоге:

Поскольку в качестве можно выбрать любое действительное число, то проведём замену и получим .

Ответ : по определению.

В целях проверки найдём производную с помощью правил дифференцирования и таблицы :

Всегда полезно и приятно знать правильный ответ заранее, поэтому лучше мысленно либо на черновике продифференцировать предложенную функцию «быстрым» способом в самом начале решения.

Пример 6

Найти производную функции по определению производной

Это пример для самостоятельного решения. Результат лежит на поверхности:

Пример 6: Решение : рассмотрим некоторую точку , принадлежащую , и зададим в ней приращение аргумента . Тогда соответствующее приращение функции:


Вычислим производную:


Таким образом:
Поскольку в качестве можно выбрать любое действительное число, то и
Ответ : по определению.

Вернёмся к стилю №2:

Пример 7


Давайте немедленно узнаем, что должно получиться. По правилу дифференцирования сложной функции :

Решение : рассмотрим произвольную точку , принадлежащую , зададим в ней приращение аргумента и составим приращение функции:

Найдём производную:


(1) Используем тригонометрическую формулу .

(2) Под синусом раскрываем скобки, под косинусом приводим подобные слагаемые.

(3) Под синусом сокращаем слагаемые, под косинусом почленно делим числитель на знаменатель.

(4) В силу нечётности синуса выносим «минус». Под косинусом указываем, что слагаемое .

(5) В знаменателе проводим искусственное домножение, чтобы использовать первый замечательный предел . Таким образом, неопределённость устранена, причёсываем результат.

Ответ : по определению

Как видите, основная трудность рассматриваемой задачи упирается в сложность самого предела + небольшое своеобразие упаковки. На практике встречаются и тот и другой способ оформления, поэтому я максимально подробно расписываю оба подхода. Они равноценны, но всё-таки, по моему субъективному впечатлению, чайникам целесообразнее придерживаться 1-го варианта с «икс нулевым».

Пример 8

Пользуясь определением, найти производную функции

Пример 8: Решение : рассмотрим произвольную точку , принадлежащую , зададим в ней приращение и составим приращение функции:

Найдём производную:

Используем тригонометрическую формулу и первый замечательный предел:

Ответ : по определению

Разберём более редкую версию задачи:

Пример 9

Найти производную функции в точке , пользуясь определением производной.

Во-первых, что должно получиться в сухом остатке? Число

Вычислим ответ стандартным способом:

Решение : с точки зрения наглядности это задание значительно проще, так как в формуле вместо рассматривается конкретное значение.

Зададим в точке приращение и составим соответствующее приращение функции:

Вычислим производную в точке:

Используем весьма редкую формулу разности тангенсов и в который раз сведём решение к первому замечательному пределу :

Ответ : по определению производной в точке.

Задачу не так трудно решить и «в общем виде» – достаточно заменить на или просто в зависимости от способа оформления. В этом случае, понятно, получится не число, а производная функция.

Пример 10

Используя определение, найти производную функции в точке (одно из которых может оказаться и бесконечным) , о котором я в общих чертах уже рассказал на теоретическом уроке о производной .

Некоторые кусочно-заданные функции дифференцируемы и в точках «стыка» графика, например, котопёс обладает общей производной и общей касательной (ось абсцисс) в точке . Кривой, да дифференцируемый на ! Желающие могут убедиться в этом самостоятельно по образцу только что решённого примера.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11

Loading...Loading...