Сила, действующая на проводник с током в магнитном поле (сила Ампера). Сила, действующая на проводник с током в магнитном поле

Определение

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера . Ее обозначения: . Сила Ампера векторная величина. Ее направление определяет правило левой руки: следует расположить ладонь левой руки так, чтобы силовые линии магнитного поля входили в нее. Вытянутые четыре пальца указывали направление силы тока. В таком случае отогнутый на большой палец укажет направление силы Ампера (рис.1).

Закон Ампера

Элементарная сила Ампера определена законом (или формулой) Ампера:

где I – сила тока, – малый элемент длины проводника – это вектор, равный по модулю длине проводника, направленный в таком же направлении как вектор плотности тока, – индукция магнитного поля, в которое помещен проводник с током.

Иначе эту формулу для силы Ампера записывают как:

где – вектор плотности тока, dV – элемент объема проводника.

Модуль силы Ампера находят в соответствии с выражением:

где – угол между векторами магнитной индукции и направление течения тока. Из выражения (3) очевидно, что сила Ампера максимальна в случае перпендикулярности линий магнитной индукции поля по отношению к проводнику с током.

Силы, действующие на проводники с током в магнитном поле

Из закона Ампера следует, что на проводник с током, равным I, действует сила равная:

где магнитная индукция, рассматриваемая в пределах малого кусочка проводника dl. Интегрирование в формуле (4) проводят по всей длине проводника (l). Из выражения (4) следует, что на замкнутый контур с током I, в однородном магнитном поле действует сила Ампера равная

Сила Ампера, которая действует на элемент (dl) прямого проводника с током I 1 , помещённый в магнитное поле, которое создает другой прямой проводник, параллельный первому с током I 2 , равна по модулю:

где d – расстояние между проводниками, Гн/м(или Н/А 2) – магнитная постоянная. Проводники с токами одного направления притягиваются. Если направления токов в проводниках различны, то они отталкиваются. Для рассмотренных выше параллельных проводников бесконечной длины сила Амперана единицу длины может быть вычислена по формуле:

Формулу (6) в системе СИ применяют для получения количественного значения магнитной постоянной.

Единицы измерения силы Ампера

Основной единицей измерения силы Ампер (как и любой другой силы) в системе СИ является: =H

В СГС: =дин

Примеры решения задач

Пример

Задание. Прямой проводник длины l с током I находится в однородном магнитном поле B. На проводник действует сила F. Каков угол между направлением течения тока и вектором магнитной индукции?

Решение. На проводник с током, находящийся в магнитном поле действует сила Ампера, модуль которой для прямолинейного проводника с током расположенном в однородном поле можно представить как:

где – искомый угол. Следовательно:

Ответ.

Пример

Задание. Два тонких, длинных проводника с токами лежат в одной плоскости на расстоянии d друг от друга. Ширина правого проводника равна a. По проводникам текут токи I 1 и I 2 (рис.1). Какова, сила Ампера, действующая на проводники в расчете на единицу длины?

Решение. За основу решения задачи примем формулу элементарной силы Ампера:

Будем считать, что проводник с током I 1 создает магнитное поле, а другой проводник в нем находится.Станем искать силу Ампера, действующую на проводник с током I 2 . Выделим в проводнике (2) маленький элемент dx (рис.1), который находится на расстоянии x от первого проводника. Магнитное поле, которое создает проводник 1 (магнитное поле бесконечного прямолинейного проводника с током) в точке нахождения элементаdxпо теореме о циркуляции можно найти как.

Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера .

Формулировка закона: сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником .

Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:

Направление силы Ампера определяется по правилу левой руки.

Правило левой руки : если расположить левую руку так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре пальца были вытянуты по направлению тока в проводнике, то отставленный на 90 °большой палец, укажет направление силы Ампера.

МП движущего заряда. Действие МП на движущийся заряд. Сила Ампера, Лоренца.

Любой проводник с током создает в окружающем пространстве магнитное поле. При этом электрический же ток является упорядоченным движением электрических зарядов. Значит можно считать, что любой движущийся в вакууме или среде заряд порождает вокруг себя магнитное поле . В результате обобщения многочисленных опытных данных был установлен закон, который определяет поле В точечного заряда Q, движущегося с постоянной нерелятивистской скоростью v. Этот закон задается формулой

(1)

где r — радиус-вектор, который проведен от заряда Q к точке наблюдения М (рис. 1). Согласно (1), вектор В направлен перпендикулярно плоскости, в которой находятся векторы v и r: его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r.

Рис.1

Модуль вектора магнитной индукции (1) находится по формуле

(2)

где α — угол между векторами v и r. Сопоставляя закон Био-Савара-Лапласа и (1), мы видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока: Idl = Qv

Действие МП на движущийся заряд.

Из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. Сила, которая действует на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и задается выражением: F = Q где В — индукция магнитного поля, в котором заряд движется.

Чтобы определить направление силы Лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q>0 направления I и v совпадают, для Q На рис. 1 продемонстрирована взаимная ориентация векторов v, В (поле имеет направление на нас, на рисунке показано точками) и F для положительного заряда. Если заряд отрицательный, то сила действует в противоположном направлении.


Э.д.с. электромагнитной индукции в контуре пропорциональна скорости изменения магнитного потока Фm сквозь поверхность, ограниченную этим контуром:

где к - коэффициент пропорциональности. Данная э.д.с. не зависит от того, чем вызвано изменение магнитного потока - либо перемещением контура в постоянном магнитном поле, либо изменением самого поля.

Итак, направление индукционного тока определяется правилом Ленца: При всяком изменении магнитного потока сквозь поверхность, ограниченную замкнутым проводящим контуром, в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению магнитного потока.

Обобщением закона Фарадея и правила Ленца является закон Фарадея - Ленца: Электродвижущая сила электромагнитной индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную контуром:

Величину Ψ = ΣΦm называют потокосцеплением или полным магнитным потоком. Если поток, пронизывающий каждый из витков, одинаков (т.е. Ψ = NΦm), то в этом случае

Немецкий физик Г. Гельмгольц доказал, что закон Фарадея-Ленца является следствием закона сохранения энергии. Пусть замкнутый проводящий контур находится в неоднородном магнитном поле. Если в контуре течет ток I, то под действием сил Ампера незакрепленный контур придет в движение. Элементарная работа dA, совершаемая при перемещении контура за время dt, будет составлять

dA = IdФm,

где dФm - изменение магнитного потока сквозь площадь контура за время dt. Работа тока за время dt по преодолению электрического сопротивления R цепи равна I2Rdt. Полная работа источника тока за это время равна εIdt. По закону сохранения энергии работа источника тока затрачивается на две названные работы, т.е.

εIdt = IdФm + I2Rdt.

Разделив обе части равенства на Idt, получим

Следовательно, при изменении магнитного потока, сцепленного с контуром, в последнем возникает электродвижущая сила индукции

Электромагнитные колебания. Колебательной контур.

Электромагнитные колебания — это колебания таких величин, индуктивность, как сопротивление, ЭДС, заряд, сила тока.

Колебательный контур — это электрическая цепь, которая состоит из последовательно соединенных конденсатора, катушки и резистора. Изменение электрического заряда на обкладке кон- денсатора с течением времени описывается дифференциальным уравнением:

Электромагнитные волны и их свойства.

В колебательном контуре происходит процесс перехода электрической энергии конденсатора в энергию магнитного поля катушки и наоборот. Если в определенные моменты времени компенсировать потери энергии в контуре на сопротивление за счет внешнего источника, то получим незатухающие электрические колебания, которые через антенну могут быть излучены в окружающее пространство.

Процесс распространения электромагнитных колебаний, периодических изменений напряженностей электрического и магнитных полей, в окружающем пространстве называется электромагнитной волной.

Электромагнитные волны охватывают большой спектр длин волн от 105 до 10 м и по частотам от 104 до 1024 Гц. По названию электромагнитные волны разделяются на радиоволны, инфракрасное, видимое и ультрафиолетовое излучения, рентгеновские лучи и -излучение. В зависимости от длины волны или частоты свойства электромагнитных волн меняются, что является убедительным доказательством диалектико-материалистического закона перехода количества в новое качество.

Электромагнитное поле материальное и обладает энергией, количеством движения, массой, перемещается в пространстве: в вакууме со скоростью С, а в среде со скоростью: V= , где = 8,85 ;

Объемная плотность энергии электромагнитного поля. Практическое исполь-зование электромагнитных явлений весьма широкое. Это - системы и средства связи, радиовещания, телевидения, электронно-вычислительная техника, системы управления различного назна-чения, измерительные и медицинские приборы, бытовая электро- и радиоаппаратура и другие, т.е. то, без чего невозможно представить себе современное общество.

Как действует на здоровье людей мощное электромагнитное излучение, точных научных данных почти нет, есть только неподтвержденные гипотезы и, в общем-то, небезосновательные опасение, что все неестественное действует губительно. Доказано, что ультрафиолетовое, рентгеновское и -излучение большой интенсивности во многих случаях наносят реальный вред всему живому.

Геометрическая оптика. Законы ГО.

Геометрическая (лучевая) оптика использует идеализированное представление о световом луче - бесконечно тонком пучке света, распространяющемся прямолинейно в однородной изотропной среде, а также представления о точечном источнике излучения, равномерно светящем во все стороны. λ - длина световой волны, - характерный размер

предмета, находящегося на пути волны. Геометрическая оптика является предельным случаем волновой оптики и ее принципы выполняются при соблюдении условия:

h/D << 1 т. е. геометрическая оптика, строго говоря, применима лишь к бесконечно коротким волнам.

В основе геометрической оптики лежит так же принцип независимости световых лучей: лучи при перемещении не возмущают друг друга. Поэтому перемещения лучей не мешают каждому из них распространяться независимо друг от друга.

Для многих практических задач оптики можно не учитывать волновые свойства света и считать распространение света прямолинейным. При этом картина сводится к рассмотрению геометрии хода световых лучей.

Основные законы геометрической оптики.

Перечислим основные законы оптики, следующие из опытных данных:

1) Прямолинейное распространение.

2) Закон независимости световых лучей, то есть два луча, пересекаясь, никак не мешают друг другу. Этот закон лучше согласуется с волновой теорией, так как частицы в принципе могли бы сталкиваться друг с другом.

3) Закон отражения. луч падающий, луч отраженный и перпендикуляр к поверхности раздела, восстановленный в точке падения луча, лежат в одной плоскости, называемой плоскостью падения; угол падения равен углу

Отражения.

4) Закон преломления света.

Закон преломления : луч падающий, луч преломленный и перпендикуляр к поверхности раздела, восстановленный из точки падения луча, лежат в одной плоскости - плоскости падения. Отношение синуса угла падения к синусу угла отражения равно отношению скоростей света в обеих средах.

Sin i1/ sin i2 = n2/n1 = n21

где - относительный показатель преломления второй среды относительно первой среды. n21

Если вещество 1 - пустота, вакуум, то n12 → n2 - абсолютный показатель преломления вещества 2. Можно легко показать, что n12 = n2 /n1 , в этом равенстве слева относительный показатель преломления двух веществ (например, 1 - воздух, 2 - стекло), а справа - отношение их абсолютных показателей преломления.

5) Закон обратимости света (его можно вывести из закона 4). Если направить свет в обратном направлении, он пройдёт по тому же пути.

Из закона 4) следует, что если n2 > n1 , то Sin i1 > Sin i2 . Пусть теперь у нас n2 < n1 , то есть свет из стекла, например, выходит в воздух, и мы постепенно увеличиваем угол i1.

Тогда можно понять, что при достижении некоторого значения этого угла (i1)пр окажется, что угол i2 окажется равным π /2 (луч 5). Тогда Sin i2 = 1 и n1 Sin (i1)пр = n2 . Итак Sin

Силы, действующие на проводник.

В электрическом поле на поверхность проводника, а именно здесь расположены электрические заряды, действуют со стороны поля определённые силы. Поскольку напряжённость электростатического поля на поверхности проводника имеет только нормальную составляющую, сила, действующая на элемент площади поверхности проводника, является перпендикулярной этому элементу поверхности. Выражение для рассматриваемой силы, отнесённой к величине площади элемента поверхности проводника, имеет вид:

(1)

где - внешняя нормаль к поверхности проводника, - поверхностная плотность электрического заряда на поверхности проводника. Для заряженной тонкой сферической оболочки растягивающие усилия могут вызвать напряжения в материале оболочки, превышающие предел прочности.

Интересно, что подобные соотношения были предметом исследований таких классиков науки как Пуассон и Лаплас в самом начале XIX века. В соотношении (1) недоумение вызывает множитель 2 в знаменателе. Действительно, а почему правильный результат получается делением пополам выражения ? Рассмотрим один частный случай (рис.1): пусть проводящий шар радиуса содержит на своей боковой поверхности электрический заряд . Поверхностную плотность электрического заряда рассчитать легко: Введём сферическую систему координат (), элемент боковой поверхности шара определим как . Заряд элемента поверхности можно вычислить по зависимости: . Суммарный электрический заряд кольца радиуса и шириной определяется выражением: . Расстояние от плоскости рассматриваемого кольца до полюса сферы (боковая поверхность шара) равно . Известно решение задачи об определении составляющей вектора напряжённости электростатического поля на оси кольца (принцип суперпозиции) в точке наблюдения, отстоящей от плоскости кольца на расстояние :

Вычислим суммарное значение напряжённости электростатического поля, создаваемого поверхностными зарядами, исключая элементарный заряд в окрестности полюса сферы:

Вспомним, что около заряженной проводящей сферы напряжённость внешнего электростатического поля равна

Оказывается, сила, действующая на заряд элемента поверхности заряженного проводящего шара, в 2 раза меньше, чем сила, действующая на такой же заряд, расположенный вблизи боковой поверхности шара, но вне его.

Суммарная сила, действующая на проводник, равна

(5)

Помимо силы со стороны электростатического поля, проводник подвергается действию момента сил

(6)

где - радиус-вектор элемента поверхности dS проводника.

На практике часто оказывается более удобным силовое воздействие электростатического поля на проводник рассчитывать путем дифференцирования электрической энергии системы W. Сила, действующая на проводник, в соответствии с определением потенциальной энергии, равна

а величина проекции вектора момента сил на некоторую ось равна

где - угол поворота тела как целого вокруг рассматриваемой оси. Заметим, что приведенные выше формулы справедливы, если электрическая энергия W выражена через заряды проводников (источники поля!), а вычисление производных производится при постоянных значениях электрических зарядов.

Сила Ампера это та сила, с которой магнитное поле действует на проводник, с током помещённый в это поле. Величину этой силы можно определить с помощью закона Ампера. В этом законе определяется бесконечно малая сила для бесконечно малого участка проводника. Что дает возможность применять этот закон для проводников различной формы.

Формула 1 — Закон Ампера

B индукция магнитного поля, в котором находится проводник с током

I сила тока в проводнике

dl бесконечно малый элемент длинны проводника с током

альфа угол между индукцией внешнего магнитного поля и направлением тока в проводнике

Направление силы Ампера находится по правилу левой руки. Формулировка этого правила, звучит так. Когда левая рука расположена таким образом, что лини магнитной индукции внешнего поля входят в ладонь, а четыре вытянутых пальца указывают направление движения тока в проводнике, при этом отогнутый под прямым углом большой палец будет указывать направление силы, которая действует на элемент проводника.

Рисунок 1 — правило левой руки

Некоторые проблемы возникают, при использовании правила левой руки, в случае если угол между индукцией поля и током маленький. Трудно определить, где должна находиться открытая ладонь. Поэтому для простоты применения этого правила, можно ладонь располагать так, чтобы в нее входил не сам вектор магнитной индукции, а его модуль.

Из закона Ампера следует, что сила Ампера будет равна нулю, если угол между линией магнитной индукции поля и током будет равен нулю. То есть проводник будет располагаться вдоль такой линии. И сила Ампера будет иметь максимально возможное значение для этой системы, если угол будут составлять 90 градусов. То есть ток будет перпендикулярен линии магнитной индукции.

С помощью закона Ампера можно найти силу, действующую в системе из двух проводников. Представим себе два бесконечно длинных проводника, которые находятся на расстоянии друг от друга. По этим проводникам протекают токи. Силу, действующую со стороны поля создаваемого проводником с током номер один на проводник номер два можно представить в виде.

Формула 2 — Сила Ампера для двух параллельных проводников.

Сила, действующая со стороны проводника номер один на второй проводник, будет иметь такой же вид. При этом если токи в проводниках текут в одном направлении, то проводнику будут притягиваться. Если же в противоположных, то они будут отталкиваться. Возникает некоторое замешательство, ведь токи текут в одном направлении, так как же они могут притягиваться. Ведь одноименные полюса и заряды всегда отталкивались. Или Ампер решил, что не стоит подражать остальным и придумал что то новое.

На самом деле Ампер ничего не выдумывал, так как если задуматься то поля, создаваемые параллельными проводниками, направлены встречно друг другу. И почему они притягиваются, вопроса уже не возникает. Чтобы определить, в какую сторону направлено поле создаваемое проводником, можно воспользоваться правилом правого винта.

Рисунок 2 — Параллельные проводники с током

Используя параллельные проводники и выражение силы Ампера для них можно определить единицу в один Ампер. Если по бесконечно длинным параллельным проводникам, находящимся на расстоянии в один метр, текут одинаковые токи силой в одни ампер, то силы взаимодействия между ними будет составлять в 2*10-7 Ньютона, на каждый метр длинны. Используя эту зависимость, можно выразить чему будет равен один Ампер.

Данное видео рассказывает о том, как постоянное магнитное поле, созданное подковообразным магнитом, воздействует на проводник с током. Роль проводника с током в данном случае выполняет алюминиевый цилиндр. Этот цилиндр лежит на медных шинах, по которым к нему подводится электрический ток. Сила, воздействующая на проводник с током, находящемся в магнитном поле, называется силой Ампера. Направление действия силы Ампера определяется с помощью правила левой руки.

Французский физик Доминик Франсуа Араго (1786-1853) на заседании Парижской академии наук рассказал об опытах Эрстеда и повторил их. Араго предложил естественное, как всем казалось, объяснение магнитного действия электрического тока: проводник в результате протекания по нему электрического тока превращается в магнит. На демонстрации присутствовал другой академик, математик Андре Мари Ампер. Он предположил, что суть вновь открытого явления - в движении заряда, и решил сам провести необходимые измерения. Ампер был уверен, что замкнутые токи эквивалентны магнитам. 24 сентября 1820 г. он подключил к вольтову столбу две проволочные спирали, которые превратились в магниты.

Т.о. катушка с током создает такое же поле, что и полосовой магнит. Ампер создал прообраз электромагнита , обнаружив, что стальной брусок, помещенный внутрь спирали с током, намагничивается, многократно усиливая магнитное поле . Ампер предположил, что магнит представляет собой некоторую систему внутренних замкнутых токов и показал (и на основе опытов, и помощью расчетов), что малый круговой ток (виток) эквивалентен маленькому магнитику, расположенному в центре витка перпендикулярно его плоскости, т.о. всякий контур с током можно заменить магнитом бесконечно малой толщины.

Гипотеза Ампера, что внутри любого магнита существуют замкнутые токи, наз. гипотезой о молекулярных токах и легла в основу теории взаимодействия токов - электродинамики .

На проводник с током, находящийся в магнитном поле, действует сила, которая определяется только свойствами поля в том месте, где расположен проводник, и не зависит от того, какая система токов или постоянных магнитов создала поле. Магнитное поле оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, испытываемый рамкой, есть результат действия сил на отдельные ее элементы.

Закон Ампера может быть использован для определения модуля вектора магнитной индукции. Модуль вектора индукции в данной точке однородного магнитного поля равен наибольшей силе, которая действует на помещенный в окрестности данной точки проводник единичной длины, по которому протекает ток в единицу силы тока: . Значение достигается при условии, что проводник расположен перпендикулярно к линиям индукции.

Закон Ампера применяется для определения силы взаимодействия двух токов.

Между двумя параллельно расположенными бесконечно длинными проводниками, по которым протекают постоянные токи, возникает сила взаимодействия. Проводники с одинаково направленными токами притягиваются, с противоположно направленными токами - отталкиваются.

Сила взаимодействия , приходящаяся на единицу длины каждого из параллельных проводников, пропорциональна величинам токов и и обратно пропорциональна расстоянию между R между ними. Такое взаимодействие проводников с параллельными токами объясняется правилом левой руки. Модуль силы, действующий на два бесконечных прямолинейных тока и , расстояние между которыми равно R .

Loading...Loading...