Сложение чисел с разными знаками

Дроби — это обычные числа, их тоже можно складывать и вычитать. Но из-за того, что в них присутствует знаменатель, здесь требуются более сложные правила, нежели для целых чисел.

Рассмотрим самый простой случай, когда есть две дроби с одинаковыми знаменателями. Тогда:

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить без изменений.

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель опять же оставить без изменений.

Внутри каждого выражения знаменатели дробей равны. По определению сложения и вычитания дробей получаем:

Как видите, ничего сложного: просто складываем или вычитаем числители — и все.

Но даже в таких простых действиях люди умудряются допускать ошибки. Чаще всего забывают, что знаменатель не меняется. Например, при сложении их тоже начинают складывать, а это в корне неправильно.

Избавиться от вредной привычки складывать знаменатели достаточно просто. Попробуйте сделать то же самое при вычитании. В результате в знаменателе получится ноль, и дробь (внезапно!) потеряет смысл.

Поэтому запомните раз и навсегда: при сложении и вычитании знаменатель не меняется!

Также многие допускают ошибки при сложении нескольких отрицательных дробей. Возникает путаница со знаками: где ставить минус, а где — плюс.

Эта проблема тоже решается очень просто. Достаточно вспомнить, что минус перед знаком дроби всегда можно перенести в числитель — и наоборот. Ну и конечно, не забывайте два простых правила:

  1. Плюс на минус дает минус;
  2. Минус на минус дает плюс.

Разберем все это на конкретных примерах:

Задача. Найдите значение выражения:

В первом случае все просто, а во втором внесем минусы в числители дробей:

Что делать, если знаменатели разные

Напрямую складывать дроби с разными знаменателями нельзя. По крайней мере, мне такой способ неизвестен. Однако исходные дроби всегда можно переписать так, чтобы знаменатели стали одинаковыми.

Существует много способов преобразования дробей. Три из них рассмотрены в уроке «Приведение дробей к общему знаменателю », поэтому здесь мы не будем на них останавливаться. Лучше посмотрим на примеры:

Задача. Найдите значение выражения:

В первом случае приведем дроби к общему знаменателю методом «крест-накрест». Во втором будем искать НОК. Заметим, что 6 = 2 · 3; 9 = 3 · 3. Последние множители в этих разложениях равны, а первые взаимно просты. Следовательно, НОК(6; 9) = 2 · 3 · 3 = 18.

Что делать, если у дроби есть целая часть

Могу вас обрадовать: разные знаменатели у дробей — это еще не самое большое зло. Гораздо больше ошибок возникает тогда, когда в дробях-слагаемых выделена целая часть.

Безусловно, для таких дробей существуют собственные алгоритмы сложения и вычитания, но они довольно сложны и требуют долгого изучения. Лучше используйте простую схему, приведенную ниже:

  1. Перевести все дроби, содержащие целую часть, в неправильные. Получим нормальные слагаемые (пусть даже с разными знаменателями), которые считаются по правилам, рассмотренным выше;
  2. Собственно, вычислить сумму или разность полученных дробей. В результате мы практически найдем ответ;
  3. Если это все, что требовалось в задаче, выполняем обратное преобразование, т.е. избавляемся от неправильной дроби, выделяя в ней целую часть.

Правила перехода к неправильным дробям и выделения целой части подробно описаны в уроке «Что такое числовая дробь ». Если не помните — обязательно повторите. Примеры:

Задача. Найдите значение выражения:

Здесь все просто. Знаменатели внутри каждого выражения равны, поэтому остается перевести все дроби в неправильные и сосчитать. Имеем:

Чтобы упростить выкладки, я пропустил некоторые очевидные шаги в последних примерах.

Небольшое замечание к двум последним примерам, где вычитаются дроби с выделенной целой частью. Минус перед второй дробью означает, что вычитается именно вся дробь, а не только ее целая часть.

Перечитайте это предложение еще раз, взгляните на примеры — и задумайтесь. Именно здесь начинающие допускают огромное количество ошибок. Такие задачи обожают давать на контрольных работах. Вы также неоднократно встретитесь с ними в тестах к этому уроку, которые будут опубликованы в ближайшее время.

Резюме: общая схема вычислений

В заключение приведу общий алгоритм, который поможет найти сумму или разность двух и более дробей:

  1. Если в одной или нескольких дробях выделена целая часть, переведите эти дроби в неправильные;
  2. Приведите все дроби к общему знаменателю любым удобным для вас способом (если, конечно, этого не сделали составители задач);
  3. Сложите или вычтите полученные числа по правилам сложения и вычитания дробей с одинаковыми знаменателями;
  4. Если возможно, сократите полученный результат. Если дробь оказалась неправильной, выделите целую часть.

Помните, что выделять целую часть лучше в самом конце задачи, непосредственно перед записью ответа.

На этом уроке мы узнаем, что такое отрицательное число и какие числа называются противоположными. Также научимся складывать отрицательные и положительные числа (числа с разными знаками) и разберём несколько примеров сложения чисел с разными знаками.

Посмотрите на эту шестеренку (см. рис. 1).

Рис. 1. Шестеренка часов

Это не стрелка, которая непосредственно показывает время и не циферблат (см. рис. 2). Но без этой детали часы не работают.

Рис. 2. Шестеренка внутри часов

А что обозначает буква Ы? Ничего, кроме звука Ы. Но без нее не будут «работать» многие слова. Например, слово «мЫшь». Так и отрицательные числа: они не показывают никакого количества, но без них механизм вычислений был бы существенно труднее.

Мы знаем, что сложение и вычитание равноправные операции, и их можно выполнять в любом порядке. В записи в прямом порядке мы можем посчитать: , а начать с вычитания нет, так как мы не договорились еще, а что же такое .

Понятно, что увеличить число на , а потом уменьшить на означает в итоге уменьшение на три. Почему бы так и не обозначить этот объект и так и считать: прибавить - значит вычесть . Тогда .

Число может означать, например, яблока. Новое число не обозначает никакого реального количества. Само по себе оно ничего не означает, как буква Ы. Это просто новый инструмент для упрощения вычислений.

Назовем новые числа отрицательными . Теперь мы можем вычитать из меньшего числа большее. Технически всё равно нужно вычесть из большего числа меньшего, но в ответе поставить знак минус: .

Рассмотрим ещё один пример: . Можно сделать все действия подряд: .

Однако из первого числа легче вычесть третье, а потом прибавить второе число:

Отрицательные числа можно определить и по-другому.

Для каждого натурального числа, например , введем новое число, которое обозначим , и определим, что оно обладает следующим свойством: сумма числа и равна : .

Число будем называть отрицательным, а числа и - противоположными. Таким образом, мы получили бесконечное количество новых чисел, например:

Противоположное для числа ;

Противоположное числу ;

Противоположное числу ;

Противоположное числу ;

Вычтем из меньшего числа большее: . Прибавим к данному выражению : . Получили ноль. Однако согласно свойству: число, которое в сумме с пятью дает ноль, обозначается минус пять : . Следовательно, выражение можно обозначить как .

У каждого положительного числа существует число-близнец, которое отличается только тем, что перед ним стоит знак минус Такие числа называются противоположными (см. рис. 3).

Рис. 3. Примеры противоположных чисел

Свойства противоположных чисел

1. Сумма противоположных чисел равна нулю: .

2. Если из нуля вычесть положительное число, то результатом будет противоположное отрицательное число: .

1. Оба числа могут быть положительными, и складывать их мы уже умеем: .

2. Оба числа могут быть отрицательными.

Мы уже прошли сложение таких чисел на предыдущем уроке, но убедимся, что понимаем, что с ними делать. Например: .

Чтобы эту сумму найти, складываем противоположные положительные числа и и ставим знак минус.

3. Одно число может быть положительным, а другое - отрицательным.

Прибавление отрицательного числа мы, если это нам удобно, можем заменять на вычитание положительного: .

Ещё один пример: . Опять сумму записываем как разность. Вычесть из меньшего большее число можно, вычитая из большего меньшее, но поставив знак минус.

Слагаемые можем менять местами: .

Ещё один аналогичный пример: .

Во всех случаях в итоге получается вычитание.

Чтобы коротко сформулировать эти правила, давайте вспомним еще один термин. Противоположные числа, конечно, не равны друг другу. Но было бы странно не заметить у них общего. Это общее мы назвали модулем числа . Модуль у противоположных чисел одинаковый: у положительного числа он равен самому числу, а у отрицательного - противоположному, положительному. Например: , .

Чтобы сложить два отрицательных числа, нужно сложить их модули и поставить знак минус:

Чтобы сложить отрицательное и положительное число, нужно из большего модуля вычесть меньший модуль и поставить знак числа с большим модулем:

Оба числа отрицательные, следовательно, складываем их модули и ставим знак минус:

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак минус (знак числа с большим модулем):

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак минус (знак числа с большим модулем): .

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак плюс (знак числа с большим модулем): .

У положительных и отрицательных чисел исторически разная роль.

Сначала мы ввели натуральные числа для счета предметов:

Потом мы ввели другие положительные числа - дроби, для счета нецелых количеств, частей: .

Отрицательные же числа появились как инструмент для упрощения расчетов. Не было такого, чтобы в жизни были какие-то количества, которые нам было не посчитать, и мы изобрели отрицательные числа.

То есть отрицательные числа не возникли из реального мира. Просто они оказались настолько удобными, что кое-где им нашлось применение и в жизни. Например, мы часто слышим про отрицательную температуру. При этом мы никогда не сталкиваемся с отрицательным количеством яблок. В чем же разница?

Разница в том, что в жизни отрицательные величины используют только для сравнения, но не для количеств. Если в гостинице оборудовали подвал и туда пустили лифт, то, чтобы оставить привычную нумерацию обычных этажей, может появиться минус первый этаж. Этот минус первый означает всего лишь на этаж ниже уровня земли (см. рис. 1).

Рис. 4. Минус первый и минус второй этажи

Отрицательная температура отрицательна только по сравнению с нулем, который выбрал автор шкалы Андерс Цельсий. Есть другие шкалы, и та же самая температура уже может не быть там отрицательной.

При этом мы понимаем, что невозможно поменять точку отсчета так, чтобы яблок стало не пять, а шесть. Таким образом, в жизни положительные числа используются для определения количеств ( яблок, торта).

Еще мы их используем вместо имен. Каждому телефону можно было бы дать свое имя, но количество имен ограничено, а чисел нет. Поэтому мы используем номера для телефонов. Также для упорядочивания ( век идет за веком).

Отрицательные числа в жизни используются в последнем смысле (минус первый этаж ниже нулевого и первого этажей)

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. «Гимназия», 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6 классов заочной школы МИФИ. М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. М.: Просвещение, Библиотека учителя математики, 1989.
  1. Math-prosto.ru ().
  2. Youtube ().
  3. School-assistant.ru ().
  4. Allforchildren.ru ().

Домашнее задание

    формирование знаний о правиле сложения чисел с разными знаками, умений применять его в простейших случаях;

    развитие умений сравнивать, выявлять закономерности, обобщать;

    воспитание ответственного отношения к учебному труду.

Оборудование: мультимедийный проектор, экран.

Тип урока: урок изучения нового материала.

ХОД УРОКА

1.Организационный момент.

Ровно встали,

Тихо сели.

Прозвенел сейчас звонок,

Начинаем наш урок.

Ребята! Сегодня к нам на урок пришли гости. Давай повернемся к ним и улыбнемся друг другу. Итак, мы начинаем наш урок.

Слайд 2 - Эпиграф урока: «Кто ничего не замечает, тот ничего не изучает.

Кто ничего не изучает, тот вечно хнычет и скучает.»

Роман Сеф (детский писатель)

Слад 3 - Предлагаю поиграть в игру «Наоборот». Правила игры : нужно разделить слова на две группы: выигрыш, ложь,тепло, отдал, правда, добро, проигрыш, взял, зло, холодно, положительное, отрицательное.

Противоречий в жизни много. С их помощью мы определяем окружающую действительность. Для нашего занятия мне необходимо последнее: положительное – отрицательное.

О чем мы говорим в математике, когда употребляем эти слова? (О числах.)

Великий Пифагор утверждал: «Числа правят миром». Я предлагаю поговорить о самых загадочных числах в науке – о числах с разными знаками. - Отрицательные числа появились в науке, как противоположность к положительным. Их путь в науку был труден, потому что даже многие ученые не поддерживали идей об их существовании.

Какие понятия и величины люди измеряют положительными и отрицательными числами? (заряды элементарных частиц, температуру, убытки, высоту и глубину и т.д.)

Слайд 4- Слова противоположные по значению – антонимы (таблица).

2.Постановка темы урока.

Слайд 5(работа с таблицей) – Какие числа изучали на предыдущих уроках?
– Какие задания, связанные с положительными и отрицательными числами вы умеете выполнять?
– Внимание на экран. (Слайд 5)
– Какие числа представлены в таблице?
– Назовите модули чисел, записанных по горизонтали.
– Укажите наибольшее число, укажите число с наибольшим модулем.
– Ответьте на те же вопросы для чисел, записанных по вертикали.
– Всегда ли наибольшее число и число с наибольшим модулем совпадают?
– Найдите сумму положительных чисел, сумму отрицательных чисел.
– Сформулируйте правило сложения положительных чисел и правило сложения отрицательных чисел.
– Какие числа осталось сложить?
– Умеете ли вы их складывать?
– Знаете ли вы правило сложения чисел с разными знаками?
– Сформулируйте тему урока.
– Какую цель вы перед собой поставите? .Подумайте, что мы будем делать сегодня? (Ответы детей). Сегодня мы продолжаем знакомиться с положительными и отрицательными числами. Тема нашего урока “Сложение чисел с разными знаками.” А наша цель: научиться без ошибок, складывать числа с разными знаками. Записали в тетрадь число и тему урока .

3.Работа по теме урока .

Слайд 6. – Применяя данные понятия, найдите результаты сложения чисел с разными знаками на экране.
– Какие числа являются результатом сложения положительных чисел, отрицательных чисел?
– Какие числа являются результатом сложения чисел с разными знаками?
– От чего зависит знак суммы чисел с разными знаками? (Слайд 5)
– От слагаемого с наибольшим модулем.
– Это как при перетягивании каната. Побеждает сильнейший.

Слайд 7 – Поиграем. Представьте, что вы перетягиваете канат.. Учитель. Соперники обычно встречаются на соревнованиях. И мы сегодня побываем с вами на нескольких турнирах. Первое, что нас ждет – это финал конкурса по перетягиванию каната. Встречаются Иван Минусов под номером -7 и Петр Плюсов под номером +5. Как вы думаете, кто победит? Почему? Итак, победил Иван Минусов, он действительно оказался сильнее соперника, и смог перетащить его на свою отрицательную сторону ровно на два шага.

Слайд 8.- . А теперь побываем на других соревнованиях. Перед вами финал состязания по стрельбе. Лучшими в этом виде оказались Минус Тройкин с тремя воздушными шарами и Плюс Четвериков, имеющий в запасе четыре воздушных шарика. А здесь ребята, как вы думаете, кто станет победителем?

Слайд 9 - Соревнования показали, что в них побеждает сильнейший. Так и при сложении чисел с разными знаками: -7 + 5 = -2 и -3 + 4 = +1. Ребята, как же складываются числа с разными знаками?Учащиеся предлагают свои варианты.

Учитель формулирует правило, приводит примеры.

    10 + 12 = +(12 – 10) = +2

    4 + 3,6 = -(4 – 3,6) = -0,4

Учащиеся в процессе демонстрации могут комментировать решение, появляющееся на слайде.

Слайд 10 - Учитель- поиграем ещё в одну игру «Морской бой». К нашему побережью приближается вражеский корабль, его необходимо подбить и потопить. Для этого у нас есть пушка. Но чтобы попасть в цель необходимо произвести точные расчеты. Какие вы сейчас увидите. Готовы? Тогда вперед! Прошу не отвлекаться, примеры меняются ровно через 3 сек. Все готовы?

Учащиеся по очереди выходят к доске и вычисляют примеры, появляющиеся на слайде. – Назовите этапы выполнения задания.

Слайд 11- Работа по учебнику: стр.180 п.33 , прочитать правило сложения чисел с разными знаками. Комментирует правило.
– В чём отличие правила, предложенного в учебнике, от составленного вами алгоритма? Рассмотреть примеры в учебнике с комментарием.

Слайд 12- Учитель-А теперь ребята давайте проведем эксперимент. Но не химический, а математический! Возьмем числа 6 и 8, знаки плюс и минус и все хорошенько перемешаем. Получим четыре примера-опыта. Проделайте их у себя в тетради.(двое учащихся решают на крыльях доски, затем ответы проверяются). Какие выводы можно сделать из этого эксперимента? (Роль знаков). Проведем ещё 2 эксперимента , но с вашими числами (выходят по1 человеку к доске). Придумаем друг другу числа и проверим результаты эксперимента (взаимопроверка).

Слайд 13 .- На экран выводится правило в стихотворной форме .

4.Закрепление темы урока.

Слайд 14 – Учитель- «Знаки всякие нужны, знаки всякие важны!» Сейчас, ребята, мы поделимся с вами на две команды. Мальчики будут в команде Деда Мороза, а девочки – Солнышка. Ваша задача, не вычисляя примеры, определить в каких из них получатся отрицательные ответы, а в каких - положительные и выписать в тетрадь буквы этих примеров. Мальчики соответственно – отрицательные, а девочки – положительные(выдаются карточки с приложения). Проводится самопроверка.

Молодцы! Чутьё на знаки у вас отличное. Это поможет вам выполнить следующее задание

Слайд 15 - Физкульминутка. -10, 0,15,18,-5,14,0,-8,-5 и т. д.(отрицательные числа- приседают, положительные числа- подтягиваются вверх, подпрыгивают)

Слайд 16 -Решить 9 примеров самостоятельно (задание на карточках в приложении). 1человек у доски. Сделать самопроверку. Ответы выводятся на экран, ошибки учащиеся исправляют в тетради. Поднимите руки, у кого верно. (Отметки выставляются только за хороший и отличный результат)

Слайд 17 -Правильно решать примеры нам помогают правила. Давайте их повторим На экране алгоритм сложения чисел с разными знаками.

5.Организация самостоятельной работы.

Слайд 18 -Ф ронтальная работа через игру «Отгадай слово» (задание на карточках в приложении) .

Слайд 19 - Должна получиться оценка за игру - «пятёрочка»

Слайд 20 -А теперь,внимание. Домашнее задание. Домашнее задание не должно вызвать у вас затруднений.

Слайд 21 - Законы сложения в физических явлениях. Придумайте примеры на сложение чисел с разными знаками и задайте их друг другу. Что нового вы узнали? Достигли ли мы поставленной цели?

Слайд 22 - Вот и кончился урок,подведем сейчас итог. Рефлексия. Учитель комментирует и выставляет оценки за урок.

Слайд 23 - Спасибо за внимание!

Желаю вам, чтобы в вашей жизни было больше положительного и меньше отрицательного, Хочу сказать вам, ребята, спасибо за вашу активную работу. Я думаю, что вы легко сможете применить полученные знания на последующих уроках. Урок окончен. Всем большое спасибо. До свидания!

Задача 1. Игрок записывал выигрыш знаком + и проигрыш знаком –. Найти результат каждой из следующих записей: a) +7 руб. +4 руб.; b) –3 руб. –6 руб.; c) –4 р. +4 р.; d) +8 р. –6 р.; e) –11 р. +7 р.; f) +2 р. +3 р. –5 р.; g) +6 р. –4 р. +3 р. –5 р. +2 р. –6 р.

Запись a) указывает, что игрок сначала выиграл 7 руб. и затем еще выиграл 4 р., – итого выиграл 11 р.; запись c) указывает, что сначала игрок проиграл 4 р. и затем выиграл 4 р., – потому общий результат = 0 (игрок ничего не сделал); запись e) указывает, что игрок сначала проиграл 11 руб., потом выиграл 7 руб., – проигрыш пересиливает выигрыш на 4 руб.; следовательно, в общем, игрок проиграл 4 руб. Итак, имеем право для этих записей записать, что

a) +7 р. +4 р. = +11 р.; c) –4 р. +4 р. = 0; e) –11 р. + 7 р. = –4 руб.

Так же легко разбираются и остальные записи.

По своему смыслу эти задачи сходны с теми, которые в арифметике решаются с помощью действия сложения, поэтому и здесь мы станем считать, что везде приходится для нахождения общего результата игры складывать относительные числа, выражающие результаты отдельных игр, например, в примере c) относительное число –11 руб. складывается с относительным числом +7 руб.

Задача 2. Кассир записывал приход кассы знаком +, а расход знаком –. Найти общий результат каждой из следующих записей: a) +16 р. +24 р.; b) –17 р. –48 р.; c) +26 р. –26 р.; d) –24 р. +56 р.; e) –24 р. +6 р.; f) –3 р. +25 р. –20 р. +35 р.; g) +17 р. –11 р. +14 р. –9 р. –18 р. +7 р.; h) –9 р –7 р. +15 р. –11 р. +4 р.

Разберем, напр., запись f): сосчитаем сперва весь приход кассы: по этой записи было 25 руб. приходу, да еще 35 руб. приходи, итого приходу было 60 руб., а расходу было 3 руб., да еще 20 руб., итого было 23 руб. расходу; приход превышает расход на 37 руб. След.,

– 3 руб. + 25 руб. – 20 руб. + 35 руб. = +37 руб.

Задача 3. Точка колеблется по прямой, начиная от точки A (черт. 2).

Черт. 2.

Перемещение ее вправо обозначаем знаком + и перемещение ее влево знаком –. Где будет находиться точка после нескольких колебаний, записанных одною из следующих записей: a) +2 дм. –3 дм. +4 дм.; b) –1 дм. +2 дм. +3 дм. +4 дм. –5 дм. +3 дм.; c) +10 дм. –1 дм. +8 дм. –2 дм. +6 дм. –3 дм. +4 дм. –5 дм.; d) –4 дм. +1 дм. –6 дм. +3 дм. –8 дм. +5 дм.; e) +5 дм. –6 дм. +8 дм. –11 дм. На чертеже дюймы обозначены отрезками, меньшими настоящих.

Последнюю запись (e) разберем: сначала колеблющаяся точка передвинулась вправо от A на 5 дм., потом передвинулась влево на 6 дм., – в общем, она должна оказаться находящеюся влево от A на 1 дм., потом подвинулась вправо на 8 дюйм., след., теперь она находится вправо от A на 7 дм., а затем подвинулась влево на 11 дм., следовательно, она находится влево от A на 4 дм.

Остальные примеры предоставляем разобрать самим учащимся.

Мы приняли, что во всех разобранных записях приходится складывать записанные относительные числа. Поэтому условимся:

Если несколько относительных чисел написаны рядом (с их знаками), то эти числа надо сложить.

Разберем теперь главные случаи, встречающиеся при сложении, причем возьмем относительные числа без названий (т. е. вместо того, чтобы говорить, напр., 5 руб. выигрышу, да еще 3 руб. проигрышу, или точка переместилась на 5 дм. вправо от A, да потом еще на 3 дм. Влево, станем говорить 5 положительных единиц, да еще 3 отрицательных единиц …).

Здесь надо сложить числа, состоящие из 8 полож. единиц, да еще из 5 полож. единиц, получим число, состоящее из 13 полож. единиц.

Итак, + 8 + 5 = 13

Здесь надо сложить число, состоящее из 6 отрицат. единиц с числом, состоящим из 9 отрицат. единиц, получим 15 отрицат. единиц (сравнить: 6 рублей проигрыша и 9 руб. проигрыша – составят 15 руб. проигрыша). Итак,

– 6 – 9 = – 15.

4 рубля выигрыша да затем 4 руб. проигрыша, в общем, дадут нуль (взаимно уничтожается); также, если точка продвинулась от A сначала вправо на 4 дм., а потом влево на 4 дм., то она окажется опять в точке A и, след., окончательное ее расстояние от A равно нулю, и вообще мы должны считать, что 4 полож. единицы, да еще 4 отрицательных единицы, в общем, дадут нуль, или взаимно уничтожатся. Итак,

4 – 4 = 0, также – 6 + 6 = 0 и т. д.

Два относительных числа, имеющие одинаковую абсолютную величину, но различные знаки, взаимно уничтожаются.

6 отрицат. единиц уничтожатся с 6 положит. единицами, да еще останется 3 полож. единицы. Итак,

– 6 + 9 = + 3.

7 полож. единиц уничтожатся с 7 отрицат. единицами, да еще останется 4 отрицат. единицы. Итак,

7 – 11 = – 4.

Рассматривая 1), 2), 4) и 5) случаи, имеем

8 + 5 = + 13; – 6 – 9 = – 15; – 6 + 9 = + 3 и
+ 7 – 11 = – 4.

Отсюда видим, что надо различать два случая сложения алгебраических чисел: случай, когда слагаемые имеют одинаковые знаки (1-й и 2-й) и случай сложения чисел с разными знаками (4-й и 5-й).

Не трудно теперь увидать, что

при сложении чисел с одинаковыми знаками следует сложить их абсолютные величины и написать их общий знак, а при сложении двух чисел с разными знаками надо вычесть арифметически их абсолютные величины (из большей меньшую) и написать знак того числа, у которого абсолютная величина больше.

Пусть требуется найти сумму

6 – 7 – 3 + 5 – 4 – 8 + 7 + 9.

Мы можем сначала сложить все положительные числа + 6 + 5 + 7 + 9 = + 27, потом все отрицат. – 7 – 3 – 4 – 8 = – 22 и затем полученные результаты между собою + 27 – 22 = + 5.

Можем также воспользоваться здесь тем, что числа + 5 – 4 – 8 + 7 взаимно уничтожаются и тогда остается сложить лишь числа + 6 – 7 – 3 + 9 = + 5.

Другой способ обозначения сложения

Можно каждое слагаемое заключать в скобки и между скобками написать знак сложения. Напр.:

(+7) + (+9); (–3) + (–8); (+7) + (–11); (–4) + (+5);
(–3) + (+5) + (–7) + (+9) + (–11) и т. п.

Мы можем, согласно предыдущему, сразу написать сумму, напр. (–4) + (+5) = +1 (случай сложения чисел с разными знаками: надо из большей абсолютной величины вычесть меньшую и написать знак того числа, у которого абсолютная величина больше), но можем также переписать сначала то же самое без скобок, пользуясь нашим условием, что если числа написаны рядом с их знаками, то эти числа надо сложить; след.,

чтобы раскрыть скобки при сложении положительных и отрицательных чисел, надо слагаемые написать рядом с их знаками (знак сложения и скобки опустить).

Напр.: (+ 7) + (+ 9) = + 7 + 9; (– 3) + (– 8) = – 3 – 8; (+ 7) + (– 11) = + 7 – 11; (– 4) + (+ 5) = – 4 + 5; (– 3) + (+ 5) + (– 7) + (+ 9) + (– 11) = – 3 + 5 – 7 + 9 – 11.

После этого можно полученные числа сложить.

В курсе алгебры следует обратить особенное внимание на уменье раскрывать скобки.

Упражнения.

1) (– 7) + (+ 11) + (– 15) + (+ 8) + (– 1);

СЛОЖЕНИЕ И ВЫЧИТАНИЕ

чисел с разными знаками

Добиться того, чтобы ученик за меньшее, чем прежде, время овладел большим объемом знаний, основательных и действенных - такова одна из главных задач современной педагогики. В этой связи появляется необходимость начинать изучение нового через повторение старого, уже изученного, известного по данной теме материала. Чтобы повторение проходило быстро и для того, чтобы была наиболее наглядной связь нового со старым, надо при объяснении организовать запись изучаемого материала специальным образом.

В качестве примера расскажу о том, как я обучаю учеников сложению и вычитанию чисел с разными знаками с помощью координатной прямой. Перед изучением темы непосредственно и на протяжении уроков в 5-м и 6-м классах уделяю много внимания устройству координатной прямой. До начала изучения темы «Сложение и вычитание чисел с разными знаками» необходимо, чтобы каждый ученик твердо знал и умел ответить на следующие вопросы:

1) Как устроена координатная прямая?

2) Как располагаются на ней числа?

3) Чему равно расстояние от числа 0 до любого числа?

Учащиеся должны понимать, что движение вдоль прямой вправо приводит к увеличению числа, т.е. выполняется действие сложения, а влево - к его уменьшению, т.е. выполняется действие вычитания чисел. Чтобы работа с координатной прямой не вызывала скуки, существует много игровых нестандартных задач. Например, такая.

Вдоль шоссе начерчена прямая. Длина одного единичного отрезка равна 2 м. все двигаются только вдоль прямой. На числе 3 стоят Гена и Чебурашка. Они одновременно пошли в разные стороны и одновременно остановились. Гена прошел в 2 раза большее расстояние, чем Чебурашка, и оказался на числе 11. На каком числе оказался Чебурашка? Сколько Чебурашка прошел метров? Кто из них шел медленнее и во сколько раз? (Нестандартная математика в школе. - М., Лайда, 1993, № 62).

Когда я твердо уверена, что все ученики справляются с движениями вдоль прямой, а это очень важно, перехожу непосредственно к обучению сложению и вычитанию чисел одновременно.

Каждому учащемуся выдается опорный конспект. Разбирая положения конспекта и опираясь на уже имеющиеся геометрические наглядные картинки координатной прямой, учащиеся получают новые знания. (Конспект приведен на рисунке). Изучение темы начинается с записи в тетради вопросов, которые будут рассмотрены.

1 . Как выполнить сложение с помощью координатной прямой? Как найти неизвестное слагаемое? Рассматриваем соответствующую часть конспекта??. Вспоминаем, что к a прибавить b - это значит увеличить a на b и движение вдоль координатной прямой происходит вправо. Вспоминаем, как называются и вычисляются компоненты при сложении и законы сложения, а также свойства нуля при сложении. Это части?? и?? конспекта. Поэтому следующие вопросы, записанные в тетради, таковы:

1). Сложение - это движение вправо.

СЛ. + СЛ. = С; СЛ. = С - СЛ.

2). Законы сложения:

1) переместительный закон: a + b = b + a ;

2) сочетательный закон: (a + b ) + c = a + (b + c ) = (a + c ) + b

3). Свойства нуля при сложении: a + 0= a ; 0+ a = a ; a + (- a ) = 0.

4). Вычитание - это движение влево.

У. - В. = Р.; У. = В. + Р.; В. = У. - Р.

5). Сложение можно заменить вычитанием, а вычитание - сложением.

4 + 3 = - 1 3 - 4 = -1

4 + 3 = 3 + (- 4) = 3 - 4 = - 1

по переместительному закону сложения

6). Так раскрывают скобки:

+ (a + b + c ) = + a + b + c

«джентельмен»

- (a + b + c) = - a - b - c

«разбойник»

2 . Законы сложения.

3 . Перечислите свойства нуля при сложении.

4 . Как выполнить с помощью координатной прямой вычитание чисел? Правила нахождения неизвестных вычитаемого, уменьшаемого.

5 . Как выполняется переход от сложения к вычитанию и от вычитания к сложению?

6 . Как раскрыть скобки, перед которыми стоит: а) знак плюс; б) знак минус?

Теоретический материал довольно объемен, но так как каждая его часть связана и как бы «вытекает» одна из другой, запоминание происходит успешно. Работа с конспектом на этом не заканчивается. С каждой частью конспекта соотносится текст учебника, который прочитывается в классе. Если после этого ученик считает, что разбираемая часть ему полностью понятна, то он слегка закрашивает текст конспекта в соответствующую рамочку, как бы говоря: «Это я понял». Если же есть что-то непонятное, то рамочка не закрашивается до тех пор, пока не станет все ясно. Белая часть конспекта - сигнал «Разберись!»

Цель учителя, которую следует достичь к концу урока, такова: учащиеся, уходя с урока, должны помнить, что сложение - это движение вдоль координатной прямой вправо, а вычитание - влево. Все ученики научились раскрывать скобки. Раскрытию скобок уделяется все оставшееся время урока. Устно и письменно раскрываем скобки в заданиях типа:

); - 20 + (- 7 + (- 5)).

Задание на дом. Ответьте на записанные в тетради вопросы, читая пункты учебника, указанные в конспекте.

На следующем уроке отрабатываем алгоритм сложения и вычитания чисел. У каждого учащегося на столе карта с инструкциями:

1) Спишите пример.

2) Раскройте, если они есть, скобки.

3) Нарисуйте координатную прямую.

4) Отметьте на ней без масштаба первое число.

5) Если за числом стоит знак «+», то двигайтесь вправо, а если знак «-» - то влево на столько единичных отрезков, сколько их содержит второе слагаемое. Нарисуйте это схематически и около числа, которое ищете, поставьте знак?

6) Поставьте вопрос «Где нуль?».

7) Определите знак числа, у которого стоит вопросительный знак, являющегося решением, так: если? стоит справа от 0, то у ответа знак +, а если? стоит слева от 0, то у ответа знак - . Запишите в ответе примера после знака = найденный знак.

8) Отметьте на чертеже три отрезка.

9) Найдите длину отрезка от нуля до знака?

Пример 1. - 35 + (- 9) = - 35 - 9 = - 44.

1. Списываю пример и раскрываю скобки.

2. Рисую картинку и рассуждаю так:

а) отмечаю - 35 и двигаюсь влево на 9 единичных отрезков; у искомого числа ставлю знак?;

б) спрашиваю себя: «Где нуль?». Отвечаю: «Нуль правее - 35 на 35 единичных отрезков, значит, знак у ответа -, так как? левее нуля»;

в) ищу расстояние от 0 до знака?. Для этого вычисляю 35 + 9 = 44 и приписываю полученное число в ответ к знаку - .

Пример 2. - 35 + 9.

Пример 3. 9 - 35.

Эти примеры решаем, проводя аналогичные примеру 1 рассуждения. Других случаев расположения чисел быть не может, и каждая картинка соответствует одному из правил, приведенных в учебнике и требующих запоминания. Проверено (и неоднократно), что данный способ сложения более рационален. Кроме того, он позволяет складывать числа даже тогда, когда ученик думает, что он ни одного правила не помнит. Данный способ работает и при действиях с дробями, нужно лишь привести их к общему знаменателю, а затем рисовать картинку. Например,

«Инструктивной» карточкой каждый пользуется до тех пор, пока в ней есть необходимость.

Такая работа заменяет нудное и однообразное действие счета по правилам живой и активно работающей мысли. Преимуществ множество: не надо зубрить и лихорадочно соображать, какое правило применять; легко запоминается устройство координатной прямой, а это и в алгебре, и в геометрии при вычислении величины отрезка, когда точка на прямой лежит между двумя другими точками. Эта методика эффективна как в классах с углубленным изучением математики, так и в классах возрастной нормы и даже в классах коррекции.

Loading...Loading...