Чем слышат рыбы. Есть ли у рыб слух? Особенности органов чувств у костистых и хрящевых

Орган слуха и его значение для рыбы . Мы не находим у рыбы ни ушных раковин, ни ушных отверстий. Но это еще не значит, что у рыбы нет внутреннего уха, ведь и у нас наружное ухо само не ощущает звуков, а только помогает звуку достигнуть настоящего слухового органа - внутреннего уха, которое помещается в толще височной черепной кости. Соответственные органы у рыбы помещаются также в черепе, по бокам головного мозга.

Каждый из них имеет вид пузырька, наполненного жидкостью. Звук может передаваться такому внутреннему уху через кости черепа, а возможность такой передачи звука мы можем обнаружить и на собственном опыте (плотно заткнув уши, приблизьте к самому лицу карманные или наручные часы - и вы не услышите их тиканья; приложите потом часы к зубам - тиканье часов будет слышно ясно).

Однако едва ли возможно сомневаться, что первоначальной и основной функцией слуховых пузырьков, когда они сформировались у древних предков всех позвоночных, было ощущение вертикального положения и что в первую очередь они являлись для водного животного статическими органами, или органами равновесия, вполне аналогичными статоцистам других свободноплавающих водных животных, начиная уже с медуз. Мы уже знакомились с ними при изучении строения речного рака. Таково же их важное жизненнее значение и для рыбы, которая, согласно закону Архимеда, в водной среде практически оказывается "невесомой" и не может ощущать силы земного притяжения. Но зато каждое изменение в положении тела рыба ощущает слуховыми нервами, идущими к ее внутреннему уху. Ее слуховой пузырек наполнен жидкостью, в которой лежат крошечные, но весомые слуховые косточки: перекатываясь по дну слухового пузырька, они и дают рыбе возможность постоянно чувствовать вертикальное направление и сообразно этому двигаться.

Чувство слуха у рыб . Отсюда естественно возникает вопрос: способен ли этот орган равновесия воспринимать звуковые сигналы и можем ли мы приписывать рыбам также и чувство слуха?

Этот вопрос имеет очень интересную историю, охватывающую несколько десятилетий XX века. В прежние времена наличие у рыб слуха не вызывало сомнений, а в подтверждение приводились рассказы о прудовых карасях и карпах, приученных приплывать к берегу по звуку колокольчика. Однако позднее факты (или их истолкование) были подвергнуты сомнению. Оказалось, что гели человек звонил в колокольчик, прятавшись за каким-либо столбом на истине, то рыбы не подплывали. Отсюда делалось заключение, что внутреннее ухо рыб служит только гидростатическим органом, способным еще воспринимать только резкие колебания, возникающие в водной среде (удары весла, стук от колес парохода и т. п.), что настоящим органом слуха их считать нельзя. Указывалось и на несовершенство строения слухового пузырька рыб по сравнению с органом слуха наземных позвоночных, и на безмолвие водной среды, и на общепризнанную тогда немоту самих рыб, так резко отличающую их от квакающих лягушек голосистых птиц.

Однако позднее опыты проф. Ю. П. Фролова, проведенные со всеми предосторожностями по методу акад. П. Павлова, убедительно показали, го рыбы обладают слухом: они реагируют на звуки электрического колокольца, не сопровождаемые какими-нибудь другими (световыми, механическими) раздражителями.

И наконец, уже сравнительно недавно было установлено, что, вопреки известной поговорке, рыбы вовсе не немы, наоборот, скорее "болтливы" и "то чувство слуха играет важную роль их повседневной жизни.

Как это бывает нередко, новая методика вошла в биологию из совершено другой области - на этот раз из тактики военно-морского дела. Когда в составе вооруженных сил различных государств появились подводные лодки, то в интересах обороны своей страны изобретатели стали разрабатывать методы обнаружения в глубинах приближающихся неприятельских подводных лодок. Новый метод прослушивания не только обнаружил, что рыбы (а также и дельфины) способны издавать различные звуки - то цокающие, то напоминающие голоса ночных птиц или куриное кудахтание, то негромкие удары в барабан, но и дал возможность изучить и "лексикон" отдельных видов рыб. Подобно различным птичьим накрикам, одни из таких звуков служат выражением эмоций, другие оказываются сигналами угрозы, предупреждения об опасности, привлечения и взаимного контакта (у рыб, странствующих стаями, или косяками).

Схематический продольный разрещ сердца рыбы

Голоса многих рыб записаны на магнитофонную ленту. Гидроакустический метод обнаружил, что рыбы способны издавать не только звуки, доступные нашему слуху, но и неслышные для нас ультразвуковые колебания, которые также имеют сигнальное значение.

Все сказанное выше о звуковых сигналах относится почти исключительно к костистым рыбам, т. е. к первичноводным позвоночным, стоящим уже на более высокой ступени организации. У низших позвоночных - круглоротых, имеющих лабиринт более простого строения, наличие слуха пока не обнаружено, и у них слуховой пузырек, по-видимому, служит только статическим органом.

Внутреннее ухо рыбы - слуховые пузырьки - представляет собой хороший пример, иллюстрирующий очень важный в системе учения Дарвина принцип смены функций: орган, возникший у первичноводных позвоночных как орган равновесия, попутно воспринимает и звуковые колебания, хотя эта способность и не имеет в данных условиях важного значения для животного. Однако с выходом позвоночных из "безмолвных" водоемов в наземную среду, полную живых голосов и других звуков, ведущее значение получает уже способность улавливать и различать звуки, и ухо становится общепризнанным органом слуха. Его первоначальная функция отходит на задний план, но в соответствующих условиях проявляется и у наземных позвоночных: лягушка с искусственно разрушенным внутренним ухом, нормально передвигающаяся на суше, попадая в воду, не сохраняет естественного положения тела и плавает либо на боку, либо вверх брюхом.

Чешуя . Тело у рыб большей частью покрыто твердыми и прочными чешуями, которые сидят в складках кожи, как у нас ногти, а свободными концами налегают друг на друга, точно черепица на крыше. Проведите рукой по телу рыбы от головы к хвосту: кожа окажется гладкой и скользкой, потому что все чешуи направлены назад, плотно прижаты друг к другу и, вдобавок, их покрывает еще тонкая слизистая подкожица, которая еще более уменьшает трение. Попробуйте провести пинцетом или кончиком ножа в обратном направлении - от хвоста к голове - и вы почувствуете, как он будет цепляться, и задерживаться на каждой чешуе. Значит, не только форма тела, но и строение кожи помогают рыбе легко разрезать воду и быстро, без трения, скользить вперед. (Проведите также пальцем вдоль жаберных крышек и вдоль плавников спереди назад и обратно. Чувствуется ли разница?) Оторвите пинцетом отдельную чешуйку и рассмотрите ее: она разрасталась вместе с ростом рыбы, и на просвете вы увидите ряд концентрических линий, напоминающих годичные кольца на срезе дерева. У многих рыб, например у карпа, по числу наросших концентрических полос можно определить возраст чешуи, а вместе с тем и возраст самой рыбы.

Боковая линия . По бокам тела с каждой стороны тянется продольная полоска, так называемая боковая линия. Расположенные здесь чешуи пронизаны отверстиями, которые ведут вглубь кожи. Под ними тянется канал; он продолжается и на голове и разветвляется там вокруг глаз и рта. В стенках этого канала были обнаружены окончания нервов, а опыты, произведенные над щукой, показали, что рыба с поврежденными боковыми каналами не реагирует на движение воды, ударяющей в ее тело, т. е. не замечает речного течения, а в темноте натыкается на твердые предметы, которые встречаются ей на пути (нормальная рыба чувствует их близость по давлению воды, отталкивающейся от встреченного препятствия). Такой орган имеет для рыбы значение прежде всего при плавании ночью или при движении в мутной воде, когда рыба не может руководствоваться зрением. При помощи бокового канала рыба, вероятно, может определить силу течений. Если бы она ее не чувствовала и не сопротивлялась ей, то не смогла бы удержаться в проточной воде, и тогда все рыбы из рек и речек были бы снесены течением в море. Рассмотрите в лупу чешуйки боковой линии и сравните их с обыкновенной чешуей.

Что еще можно заметить на теле рыбы? Рассматривая рыбу с брюшной стороны, вы увидите ближе к хвосту более темное (желтое или красноватое) пятнышко, указывающее на место, где находится анальное отверстие, которым оканчивается кишечник. Непосредственно за ним идут еще два отверстия - половое и мочевое; через половое отверстие самки выпускают из тела икру (яйца), а самцы - молоки - семенную жидкость, которой они обливают отложенную самками икру и оплодотворяют ее. Через маленькое мочевое отверстие выбрасываются жидкие отбросы - моча, выделяемая почками.

Литература: Яхонтов А. А. Зоология для учителя: Хордовые/Под ред. А. В. Михеева. - 2-е изд. - М.: Просвещение, 1985. - 448 с., ил.

Рыбы реагируют на звуки: удар грома, выстрел, стук весла лодки по поверхности воды вызывает у рыб определенную реакцию, иногда рыба даже выпрыгивает из воды при этом. Некоторые звуки и привлекают рыбу, что используют в своих методах рыболовы, например, рыбаки Индонезии и Сенегала приманивают рыбок с помощью трещоток из скорлупы кокосовых орехов, имитируя естественный треск кокоса в природе, который приятен для рыб.

Рыбы и сами издают звуки. В этом процессе участвуют следующие органы: плавательный пузырь, лучи грудных плавников в комбинации с костями плечевого пояса, челюстные и глоточные зубы и другие органы. Звуки, издаваемые рыбами, напоминают удары, цоканье, свист, хрюканье, писк, кваканье, рычание, треск, звон, хрип, гудок, крики птиц и стрекотание насекомых.
Звуковые частоты, воспринимаемые рыбами - это от 5 до 25 Гц органами боковой линии, и от 16 до 13000 Гц лабиринтом. У рыб слух развит меньше чем у высших позвоночных, а также его острота различна у разных видов: язь воспринимает колебания, длина волны которых составляет 25. ..5524 Гц, серебряный карась - 25…3840 Гц, угорь - 36…650 Гц. Акулы улавливают колебания, издаваемые другими рыбами на расстоянии 500 м.

Регистрируют рыбы и звуки, идущие из атмосферы. Большую роль в регистрации звуков играет плавательный пузырь , соединенный с лабиринтом и служащий резонатором.

Органы слуха очень важны в жизни рыб. Это и поиск полового партнера (в рыбоводных хозяйствах запрещено движение транспорта возле прудов в период нереста), стайной принадлежности, и информация о нахождении пищи, контроль территории, защита молоди. Глубоководные рыбы, у которых ослаблено или отсутствует зрение, ориентируются в пространстве, а также общаются с сородичами именно с помощью слуха, наряду с боковой линией и обонянием, особенно учитывая тот факт, что звукопроводимость на глубине очень высокая.

«Ты мне тут не шуми, а то всю рыбу распугаешь» - сколько раз мы слышали подобную фразу. И многие рыбаки-новички до сих пор наивно полагают, что такие слова говорятся исключительно из строгости, желания помолчать, суеверий. Думают они примерно так: рыба же плавает в воде, что она там может услышать? Оказывается, очень даже многое, не нужно на этот счет заблуждаться. Чтобы прояснить ситуацию, мы хотим рассказать, какой слух у рыб и почему их можно запросто спугнуть какими-то резкими или громкими звуками.

Глубоко заблуждаются те, кто думает, что карпы, лещи, сазаны и прочие обитатели акваторий практически глухи. У рыб отличный слух - и благодаря развитым органам (внутреннему уху и боковой линии), и за счет того, что вода хорошо проводит звуковые вибрации. Так что шуметь во время фидерной ловли действительно не стоит. Но вот насколько хорошо слышит рыба? Так же, как мы, лучше или хуже? Давайте рассмотрим этот вопрос.

Насколько хорошо слышит рыба

В качестве примера возьмем всеми нами любимого карпа: он слышит звуки в диапазоне 5 Гц - 2 кГц . Это низкие вибрации. Для сравнения: мы, люди, в еще не старом возрасте слышим звуки в диапазоне 20 Гц - 20 кГц. Наш порог восприятия начинается с более высоких частот.

Так что в каком-то смысле рыбы слышат даже лучше нас, но до определенного предела. Например, они замечательно улавливают шорохи, удары, хлопки, поэтому важно не шуметь.

Рыб по слуху можно условно разделить на 2 группы:

    отлично слышат - это осторожные карповые, линь, плотва

    хорошо слышат - это более смелые окуни и щуки

Как видите, глухих нет. Так что хлопать дверцей автомобиля, включать музыку, громко переговариваться с соседями у места ловли категорически противопоказано. Этот и подобный ему шум может свести к нулю даже хороший клев.

Какие органы слуха есть у рыб

    В задней части головы у рыбы расположена пара внутренних ушей , отвечающих за слух и чувство равновесия. Обратите внимание, выхода наружу у этих органов нет.

    По корпусу рыбы, с обеих сторон, проходят боковые линии - своеобразные улавливатели движения воды и звуков низкой частоты. Подобные вибрации фиксируются жировыми сенсорами.

Как работают органы слуха у рыб

Боковыми линиями рыба определяет направление звука, внутренними ушами - частоту. После чего передает все эти внешние вибрации с помощью жировых сенсоров, расположенных под боковыми линиями, - по нейронам в мозг. Как видите, работа органов слуха организована до смешного просто.

При этом внутреннее ухо у не хищных рыб соединено со своего рода резонатором - с плавательным пузырем. Он первым принимает все внешние вибрации и усиливает их. И уже эти, повышенной мощности, звуки поступают ко внутреннему уху, а от него и к мозгу. За счет такого резонатора карповые и слышат вибрации частотой до 2 кГц.

А вот у хищных рыб внутренние уши не связаны с плавательным пузырем. Поэтому щуки, судаки, окуни слышат звуки примерно до 500 Гц. Впрочем, даже такой частоты им хватает, тем более что у них лучше развито зрение, чем у не хищных рыб.

В заключение хотим сказать, что к постоянно повторяющимся звукам обитатели акватории привыкают. Так что даже шум лодочного мотора, в принципе, может и не напугать рыбу, если по водоему часто плавают. Другое дело - незнакомые, новые звуки, тем более резкие, громкие, продолжительные. Из-за них рыба даже может перестать кормиться, даже если вы смогли подобрать хорошую прикормку, или нереститься, и как показывает практика, чем острее у нее слух, тем скорее и раньше это произойдет.

Вывод один и он прост: на рыбалке не шумите, о чем мы уже неоднократно писали в этой статье. Если не пренебрегать этим правилом и соблюдать тишину, шансы на хороший клев останутся максимальными.


Вопрос о том, слышат ли рыбы, долго дискутировался. В настоящее время установлено, что рыбы слышат и сами издают звуки. Звук представляет собой цепочку регулярно повторяющихся волн сжатия газообразной, жидкой или твердой среды, т. е. в водной среде звуковые сигналы так же естественны, как и на суше. Волны сжатия водной среды могут распространяться с различной частотой. Низкочастотные колебания (вибрация или инфразвук) до 16Гц воспринимаются не всеми рыбами. Однако у некоторых видов инфразвуковая рецепция доведена до совершенства (акулы). Спектр звуковых частот, воспринимаемый большинством рыб, лежит в диапазоне 50-3000 Гц. Способность к восприятию рыбами ультразвуковых волн (свыше 20 000 Гц) до настоящего времени убедительно не доказана.

Скорость распространения звука в воде в 4,5 раза больше, чем в воздушной среде. Поэтому звуковые сигналы с берега доходят до рыб в искаженном виде. Острота слуха у рыб не так развита, как у наземных животных. Тем не менее у некоторых видов рыб в экспериментах наблюдаются довольно приличные музыкальные способности. Например, гольян при 400-800 Гц различает 1/2 тона. Возможности других видов рыб скромнее. Так, гуппи и угорь дифференцируют два различающихся на 1/2-1/4 октавы. Есть и совершенно бездарные в музыкальном отношении виды (беспузырные и лабиринтовые рыбы).

Рис. 2.18. Связь плавательного пузыря с внутренним ухом у разных видов рыб: а- сельдь атлантическая; б -треска; в - карп; 1 - выросты плавательного пузыря; 2- внутреннее ухо; 3 - головной мозг: 4 и 5-косточки Веберова аппарата; общий эндолимфатический проток

Острота слуха определяется морфологией акустико-латеральной системы, к которой помимо боковой линии и ее производных относят внутреннее ухо плавательный пузырь и Веберов аппарат (рис. 2.18).

И в лабиринте, и в боковой линии чувствительными клетками выступают так называемые волосатые клетки. Смещение волоска чувствительной клетки как в лабиринте, так и в боковой линии приводит к одинаковому результату-генерации нервного импульса, поступающего в один и тот же акустико-латеральный центр продолговатого мозга. Однако эти органы рецептируют и другие сигналы (гравитационное поле, электромагнитные и гидродинамические поля, а также механические и химические раздражители).

Слуховой аппарат рыб представлен лабиринтом, плавательным пузырем (у пузырных рыб), Веберовым аппаратом и системой боковой линии. Лабиринт. Парное образование - лабиринт, или внутреннее ухо рыб (рис. 2.19), выполняет функцию органа равновесия и слуха. Слуховые рецепторы в большом количестве присутствуют в двух нижних камерах лабиринта - лагене и утрикулюсе. Волоски слуховых рецепторов очень чувствительны к перемещению эндолимфы в лабиринте. Изменение положения тела рыбы в любой плоскости приводит к перемещению эндолимфы, по крайней мере, в одном из полукружных каналов, что раздражает волоски.

В эндолимфе саккулы, утрикулюса и лагены находятся отолиты (камешки), которые повышают чувствительность внутреннего уха.


Рис. 2.19. Лабиринт рыбы: 1-круглый мешочек (лагена); 2-ампула (утрикулюс); 3-саккула; 4-каналы лабиринта; 5- расположение отолитов

Их общее количество по три с каждой стороны. Они различаются не только расположением, но и размерами. Самый крупный отолит (камешек) находится в круглом мешочке - лагене.

На отолитах рыб хорошо заметны годовые кольца, по которым v некоторых видов рыб определяют возраст. Они также обеспечивают оценку эффективности маневра рыбы. При продольном, вертикальном, боковом и вращательном движениях тела рыбы происходят некоторое смещение отолитов и раздражение ими чувствительных волосков, что, в свою очередь, создает соответствующий афферентный поток. На них же (отолиты) ложатся и рецепция гравитационного поля, оценка степени ускорения рыбы при бросках.

От лабиринта отходит эндолимфатический проток (см. рис. 2.18,6), который у костистых рыб закрыт, а у хрящевых открыт и сообщается с внешней средой. Веберов аппарат. Он представлен тремя парами подвижно соединенных косточек, которые называются стапесом (контактирует с лабиринтом), инкусом и малеусом (эта кость соединена с плавательным пузырем). Кости Веберова аппарата являются результатом эволюционной трансформации первых туловищных позвонков (рис. 2.20, 2.21).

При помощи Веберова аппарата лабиринт контактирует с плавательным пузырем у всех пузырных рыб. Другими словами, Веберов аппарат обеспечивает связь центральных структур сенсорной системы с воспринимающей звук периферией.


Рис.2.20. Строение Веберова аппарата:

1- перилимфатический проток; 2, 4, 6, 8- связки; 3 - стапес; 5- инкус; 7- малеус; 8 - плавательный пузырь (римскими цифрами обозначены позвонки)

Рис. 2.21. Общая схема строения органа слуха у рыбы:

1 - головной мозг; 2 - утрикулюс; 3 - саккула; 4- объединительный канал; 5 - лагена; 6- перилимфатический проток; 7-стапес; 8- инкус; 9-малеус; 10- плавательный пузырь

Плавательный пузырь. Он является хорошим резонирующим устройством, своеобразным усилителем средне- и низкочастотных колебаний среды. Звуковая волна извне приводит к колебаниям стенки плавательного пузыря, которые, в свою очередь, приводят к смещению цепочки косточек Веберова аппарата. Первая пара косточек Веберова аппарата давит на мембрану лабиринта, вызывая смещения эндолимфы и отолитов. Таким образом, если проводить аналогию с высшими наземными животными, Веберов аппарат у рыб выполняет функцию среднего уха.

Однако не у всех рыб есть плавательный пузырь и Веберов аппарат. В этом случае рыбы проявляют низкую чувствительность к звуку. У беспузырных рыб слуховую функцию плавательного пузыря частично компенсируют воздушные полости, связанные с лабиринтом, и высокая чувствительность органов боковой линии к звуковым стимулам (волнам сжатия воды).

Боковая линия. Она является очень древним сенсорным образованием, которое и у эволюционно молодых групп рыб выполняет одновременно несколько функций. Принимая во внимание исключительное значение этого органа для рыб, позволим себе более подробно остановиться на его морфофункциональной характеристике. Разные экологические типы рыб демонстрируют различные варианты латеральной системы. Расположение боковой линии на теле рыб часто является видоспецифичным признаком. Есть виды рыб, у которых более чем одна боковая линия. Например, терпуг имеет по четыре боковых линии с каждой стороны, отсюда
происходит его второе название - "восьмилинейный хир". У большинства костистых рыб боковая линия тянется вдоль туловища (не прерываясь или прерываясь в отдельных местах), достигает головы, образуя сложную систему каналов. Каналы боковой линии расположены или внутри кожи (рис. 2.22), или открыто на ее поверхности.

Примером открытого поверхностного расположения невромастов - структурных единиц латеральной линии - является боковая линия у гольяна. Несмотря на очевидное разнообразие морфологии латеральной системы, следует подчеркнуть, что наблюдаемые различия касаются только макростроения этого сенсорного образования. Собственно рецепторный аппарат органа (цепочка невромастов) на удивление одинаков у всех рыб как и морфологическом, так и функциональном отношении.

Система боковой линии реагирует на волны сжатия водной среды, обтекающие потоки, химические раздражители и электромагнитные поля при помощи невромастов - структур, объединяющих несколько волосковых клеток (рис. 2.23).


Рис. 2.22. Канал боковой линии рыбы

Невромаст состоит из слизисто-студенистой части - капулы, в которую погружены волоски чувствительных клеток. Закрытые невромасты сообщаются с внешней средой небольшими прободающими чешую отверстиями.

Открытые невромасты характерны для каналов латеральной системы, заходящих на голову рыбы (см. рис. 2.23, а).

Канальные невромасты тянутся от головы до хвоста по бокам тела, как правило, в один ряд (у рыб семейства Hexagramidae шесть рядов и бол ее). Термин "боковая линия" в обиходе относится именно к канальным невромастам. Однако у рыб описаны и невромасты, отделенные от канальной части и имеющие вид самостоятельных органов.

Канальные и свободные невромасты, расположенные в разных частях тела рыбы, и лабиринт не дублируют, а функционально дополняют друг друга. Считается, что саккулюс и лагена внутреннего уха обеспечивают звуковую чувствительность рыб с большого расстояния, а латеральная система позволяет локализовать источник звука (правда уже вблизи источника звука).

Рис. 2.23. Строение невромастарыбы: а - открытый; б - канальный

Экспериментально доказано, что боковая линия воспринимает низкочастотные колебания, как звуковые, так и связанные с движением других рыб, т. е. низкочастотные колебания, возникающие от удара рыбы хвостом по воде, воспринимаются другой рыбой как низкочастотные звуки.

Таким образом, звуковой фон водоема довольно разнообразен и рыбы располагают совершенной системой органов для восприятия волновых физических явлений под водой.

Заметное влияние на активность рыб и характер их поведения оказывают волны, возникающие на поверхности воды. Причинами данного физического явления служат многие факторы: движение крупных объектов (крупная рыба, птицы, животные), ветер, приливы, землетрясения. Волнение служит важным каналом информирования водных животных о событиях как в самом водоеме, так и за его пределами. Причем волнение водоема воспринимается и пелагическими, и донными рыбами. Реакция на поверхностные волны со стороны рыбы бывает двух типов: рыба опускается на большую глубину или перемешается на другой участок водоема. Стимулом, действующим на тело рыбы в период волнения водоема, является движение воды относительно тела рыбы. Перемещение воды при ее волнении рецептируется акустико-латеральной системой, причем чувствительность боковой линии к волнам чрезвычайно высока. Так, для возникновения афферентации от боковой линии достаточно смешения купулы на 0,1 мкм. При этом рыба способна очень точно локализовать как источник волнообразования, так и направление распространения волны. Пространственная диаграмма чувствительности рыб видоспецифична (рис. 2.26).

В экспериментах использовали искусственный волнообразователь как очень сильный раздражитель. При изменении его местоположения рыбы безошибочно находили очаг возмущения. Реакция на источник волн состоит из двух фаз.

Первая фаза - фаза замирания - является результатом ориентировочной реакции (врожденного исследовательского рефлекса). Продолжительность этой фазы определяется многими факторами, наиболее существенными из которых являются высота волны и глубина погружения рыбы. Для карповых рыб (карп, карась, плотва) при высоте волны 2-12 мм и погружении рыб на 20-140 мм ориентировочный рефлекс занимал 200-250 мс.

Вторая фаза - фаза движения - условно-рефлекторная реакция вырабатывается у рыб довольно быстро. Для интактных рыб достаточно от двух до шести подкреплений для ее возникновений у ослепленных рыб после шести сочетаний волнообразования пищевого подкрепления вырабатывался устойчивый поисковый пищедобывающий рефлекс.

Большей чувствительностью к поверхностной волне отличаются Мелкие пелагические планктонофаги, меньшей - крупные донные рыбы. Так, ослепленные верховки при высоте волны всего 1- 3 мм уже после первого предъявления стимула демонстрировали ориентировочную реакцию. Для морских донных рыб характерна чувствительность к сильному волнению на поверхности моря. На глубине 500 м их латеральная линия возбуждается, когда высота волны достигает 3 м и длины 100 м. Как правило, волны на поверхности моря порождают качку Поэтому при волнении в возбуждение приходит не только боковая линия рыбы, но и ее лабиринт. Результаты экспериментов по, казали, что полукружные каналы лабиринта реагируют на вращательные движения, в которые водяные потоки вовлекают тело рыбы. Утрикулюс рецептирует линейное ускорение, возникающее в процессе качки. Во время шторма меняется поведение как одиночных, так и стайных рыб. При слабом шторме пелагические виды в прибрежной зоне опускаются в придонные слои. При сильном волнении рыбы мигрируют в открытое море и уходят на большую глубину, где влияние волнения менее заметно. Очевидно, что сильное волнение оценивается рыбами как неблагоприятный или даже опасный фактор. Он подавляет пищевое поведение и вынуждает рыб совершать миграции. Алогичные изменения в пищевом поведении наблюдаются и у видов рыб, обитающих во внутренних водоемах. Рыболовы знают, что при волнении моря клев рыбы прекращается.

Таким образом, водоем, в котором обитает рыба, является источником разнообразной информации, передаваемой по нескольким каналам. Такая информированность рыбы о колебаниях внешней среды позволяет ей своевременно и адекватно реагировать на них локомоторными реакциями и изменением вегетативных функций.

Сигналы рыб. Очевидно, что рыбы сами являются источником разнообразных сигналов. Они издают звуки в диапазоне частот от 20 Гц до 12 кГц, оставляют химический след (феромоны, кайромоны), имеют собственные электрические и гидродинамические поля. Акустические и гидродинамические поля рыбы создают различными способами.

Издаваемые рыбами звуки довольно разнообразны, однако из-за низкого давления зафиксировать их можно лишь при помощи специальной высокочувствительной техники. Механизм формирования звуковой волны у разных видов рыб может быть различным (табл. 2.5).

2.5. Звуки рыб и механизм их воспроизведения

Звуки рыб видоспецифичны. Кроме того, характер звука зависят от возраста рыбы и ее физиологического состояния. Звуки, исходящие от стаи и от отдельных рыб, также хорошо различимы. Например, звуки, издаваемые лещом, напоминают хрипы. Звуковая картина стаи сельдей ассоциируется с писком. Морской петух Черного моря издает звуки, напоминающие кудахтанье курицы. Пресноводный барабанщик идентифицирует себя барабанной дробью. Плотва, вьюн, щитовка издают писки, доступные для восприятия невооруженным ухом.

Пока трудно однозначно охарактеризовать биологическое значение издаваемых рыбами звуков. Часть из них является шумовым фоном. Внутри популяций, стай, а также между половыми партнерами издаваемые рыбами звуки могут выполнять и коммуникативную функцию.

Шумопеленгация успешно применяется в промышленном рыболовстве. Превышение звукового фона рыб над окружающими шумами составляет не более 15 дБ. Шумовой фон судна может десятикратно превышать рыбный звуковой пейзаж. Поэтому пеленг рыб возможен только с тех судов, которые могут работать в режиме "тишины", т. е. с заглушенными двигателями.

Таким образом, известное выражение "нем, как рыба" явно не соответствует действительности. Все рыбы имеют совершенный аппарат звуковой рецепции. Кроме того, рыбы являются источниками акустических и гидродинамических полей, которыми они активно пользуются для общения внутри стаи, обнаружения жертвы, предупреждения сородичей о возможной опасности и других целей.



На вопрос Слышат ли рыбы? Есть ли у них органы слуха? заданный автором ViTal лучший ответ это Орган слуха рыб представлен только внутренним ухом и состоит из лабиринта, включающего преддверие и три полукружных канала, расположенных в трех перпендикулярных плоскостях. В жидкости, находящейся внутри перепончатого лабиринта, имеются слуховые камешки (отолиты) , колебания которых воспринимаются слуховым нервом.Ни наружного уха, ни барабанной перепонки у рыб нет. Звуковые волны передаются непосредственно через ткани. Лабиринт рыб служит одновременно и органом равновесия. Боковая линия дает возможность рыбе ориентироваться, чувствовать течение воды или приближение в темноте различных предметов. Органы боковой линии расположены в канале, погруженном в кожу, который сообщается с внешней средой при помощи отверстий в чешуе. В канале имеются нервные окончания.Органы слуха рыб тоже воспринимают колебания водной среды, но только более высокочастотные, гармонические или звуковые. Устроены они у них более просто, чем у других животных. Нет у рыб ни наружного, ни среднего уха: они обходятся без них в силу более высокой проницаемости воды для звука. Есть лишь перепончатый лабиринт, или внутреннее ухо, заключенное в костной стенке черепа.Рыбы слышат, и притом отлично, так что рыболову во время уженья надо соблюдать полную тишину. Между прочим, это стало известно совсем недавно. Каких-нибудь 35-40 лет назад думали, что рыбы глухи.По чувствительности на первый план зимой выступают слух и боковая линия. Здесь надо отметить, что внешние звуковые колебания и шумы сквозь ледяной и снежный покров в гораздо меньшей степени проникают в среду обитания рыб. В воде подо льдом устанавливается почти абсолютная тишина. И в таких условиях рыба в большей степени полагается на свой слух. Орган слуха и боковая линия помогают рыбе определять места скопления мотыля в донном грунте по колебаниям этих личинок. Если учесть также, что звуковые колебания затухают в воде в 3,5 тысячи раз медленнее, чем в воздухе, то становится ясно, что рыбы способны улавливать движения мотыля в донном грунте на значительном расстоянии. Зарывшись в слой ила, личинки укрепляют стенки ходов затвердевающими выделениями слюнных желез и совершают в них волнообразные колебательные движения своим телом (рис.) , продувая и очищая свое жилище. От этого в окружающее пространство излучаются акустические волны, они-то и воспринимаются боковой линией и слухом рыб. Таким образом, чем больше мотыля находится в донном грунте, тем больше исходит от него акустических волн и тем легче рыбе обнаружить самих личинок.

Ответ от Александр Водяник [новичек]
кожей.. кожей они слышат... у меня вот знакомый в Латвии был.. так тот тоже говорил: я кожей чувствую! "


Ответ от Пользователь удален [гуру]
Корейцы в Японском море ловят минтая. Они промышляют эту рыбу крючками, без всякой насадки, но над крючками обязательно вешают побрякушки (металлические пластинки, гвозди и тому подобное). Рыбак, сидя в лодке, подергивает такую снасть, и минтаи собираются к побрякушкам. Ловля рыбы без побрякушек не приносит удачи.
Крик, стук, выстрелы над водой тревожат рыб, но это справедливее объяснять не столько восприятиями слухового аппарата, сколько способностью рыбы воспринимать колебательные движения воды с помощью боковой линии, хотя способ ловли сома "на клок", на звук, производимый особой (выдолбленной) лопаткой и напоминающий кваканье лягушки, многие склонны считать доказательством слуха у рыб. Сомы подходят на такой звук и берут крючок рыболова.
В непревзойденной по увлекательности классической книге Л. П. Сабанеева "Рыбы России" способу лова сома на звук отведены яркие страницы. Автор не дает объяснения, почему этот звук подманивает сома, но приводит мнение рыбаков о том, что он похож на голос сомих, которые будто бы на заре клохчут, призывая самцов, или на кваканье лягушек, которыми сомы любят полакомиться. Во всяком случае есть основание предполагать, что сом слышит.
В Амуре водится промысловая рыба толстолоб, известная тем, что держится стадно и при шуме выпрыгивает из воды. Выедешь на лодке в те места, где держится толстолоб, ударишь посильней веслом по воде или по борту лодки, и толстолоб не замедлит отозваться: сразу же несколько рыб с шумом выпрыгнут из реки, поднявшись на 1–2 метра над ее поверхностью. Ударишь еще, и снова толстолоб выпрыгнет из воды. Рассказывают, что бывают случаи, когда выпрыгнувшие из воды толстолобы топят маленькие лодки нанайцев. Однажды в нашем катере выпрыгнувший из воды толстолоб выбил стекло. Таково действие звука на толстолоба, видимо, очень неспокойную (нервную) рыбу. Эту рыбу, длиной почти в метр, можно добывать без ловушки.

Loading...Loading...