В чем заключается гипотеза пуанкаре. Формы пространства

Гипотеза Пуанкаре выдвинута еще в начале XX в. французским математиком Анри Пуанкаре. Чтобы сформулировать ее, дадим

Определение. Топологическое пространство X называется односвязным, если оно линейно связно и всякое непрерывное отображение
X окружности в пространство X можно продолжить до непрерывного отображения
всего круга
. Не трудно видеть, что сфера односвязна при n 2.

Гипотеза Пуанкаре. Всякое замкнутое односвязное трехмерное многообразие гомеоморфно трехмерной сфере.

Аналоги гипотезы Пуанкаре, касающиеся многообразий размерности 4 и больше, доказаны. Более того, получена топологическая классификация вообще всех замкнутых односвязных четырехмерных многообразий.

Это интересно: Почти 100 лет назад Пуанкаре установил, что двумерная сфера односвязна, и предположил, что трехмерная сфера тоже односвязна.

Другими словами, гипотеза Пуанкаре утверждает, что всякое односвязное замкнутое трехмерное многообразие гомеоморфно трехмерной сфере. Гипотеза сформулирована Пуанкаре в 1904 г. Обобщенная гипотеза Пуанкаре утверждает, что для любого n всякое многообразие размерности n гомотопически эквивалентно сфере размерности n тогда и только тогда, когда оно гомеоморфно ей. Для пояснения используют такую картинку: если обмотать яблоко резиновой лентой, то в принципе, стягивая ленту, можно сжать яблоко в точку. Если же обмотать такой же лентой пончик (пирожок с дыркой в середине), то в точку его сжать нельзя без разрыва или пончика, или резины. В таком контексте яблоко называют «односвязной» фигурой, пончик же не односвязен.

Жюль Анри Пуанкаре открыл специальную теорию относительности одновременно с Эйнштейном (1905 г.) и признан одним из величайших математиков за всю историю человечества.

Гипотеза Пуанкаре оставалась недоказанной на протяжении всего двадцатого столетия. В математическом мире она приобрела статус, аналогичный статусу Великой теоремы Ферма.

За доказательство гипотезы Пуанкаре Математический институт им. Клея присудил премию в миллион долларов, что может показаться удивительным: ведь речь идет об очень частном, малоинтересном факте. На самом деле, для математиков важны не столько свойства трехмерной поверхности, сколько факт трудности самого доказательства. В этой задаче в концентрированном виде сформулировано то, что не удавалось доказать с помощью имевшихся ранее идей и методов геометрии и топологии. Она позволяет как бы заглянуть на уровень глубже, в тот пласт задач, который можно будет решить только с помощью идей «нового поколения». Как и в ситуации с теоремой Ферма, выяснилось, что гипотеза Пуанкаре есть частный случай гораздо более общего утверждения о геометрических свойствах произвольных трехмерных поверхностей – гипотезы геометризации Тёрстона (Thurston"s Geometrization Conjecture). Поэтому усилия математиков были направлены не на решение этого частного случая, а на построение нового математического подхода, который способен справляться с такими задачами.

Российский математик Григорий Перельман, сотрудник лаборатории геометрии и топологии Санкт-Петербургского отделения Математического института им. В.А. Стеклова, утверждает, что доказал гипотезу Пуанкаре, то есть решил одну из самых знаменитых нерешенных математических задач. Необычным был способ, который Перельман избрал для обнародования своего доказательства. Вместо того чтобы опубликовать его в солидном научном журнале, что, кстати, было обязательным условием для присуждения приза в миллион долларов, Перельман разместил свою работу на одном из архивов Интернета. Хотя доказательство заняло всего 61 страницу, оно произвело сенсацию в научном мире.

Научный мир рукоплескал гению, обещая золотые горы и почетные титулы. Американский Институт математики Клея был готов присудить ему награду в $1 миллион. Никто не сомневался, что Всемирный конгресс математиков, назовет Перельмана победителем. Кстати, как известно, математики не входят в число учёных, награждаемых Нобелевской премией. Злые языки утверждают, что этот факт не случаен. Ведь, по слухам, именно математик попал в немилость знаменитому шведу Альфреду Нобелю, отбив у него любимую девушку в юности. Между тем российский гений отказался от миллиона, так и не опубликовав свое открытие в специализированных изданиях, уволился из Математического института им. Стеклова РАН, ушел в затворничество и, на церемонии вручения награды, которую вручал король Испании Хуан Карлос I, не появился. Он никак не отреагировал на сообщение о награде и приглашение ее получить, а как говорят знакомые: гений "ушел в леса" по грибы под Санкт-Петербургом.

Ученые считают, что 38-летний российский математик Григорий Перельман предложил верное решение проблемы Пуанкаре. Об этом на научном фестивале в Эксетере (Великобритания) заявил профессор математики Стэнфордского университета Кит Девлин.

Проблема (ее также называют задачей или гипотезой) Пуанкаре относится к числу семи важнейших математических проблем, за решение каждой из которых Математический институт Клэя (Clay Mathematics Institute) назначил премию в один миллион долларов. Именно это и привлекло столь широкое внимание к результатам, полученным Григорием Перельманом, сотрудником лаборатории математической физики Санкт-Петербургского отделения Математического института имени Стеклова .

Ученые всего мира узнали о достижениях Перельмана из двух препринтов (статей, предваряющих полноценную научную публикацию), размещенных автором в ноябре 2002-го и марте 2003 года на сайте архива предварительных работ Лос-Аламосской научной лаборатории .

Согласно правилам, принятым Научным консультативным советом института Клэя, новая гипотеза должна быть опубликована в специализированном журнале, имеющем "международную репутацию". Кроме того, по правилам Института, решение о выплате приза принимает, в конечном счёте, "математическое сообщество": доказательство не должно быть опровергнуто в течение двух лет после публикации. Проверкой каждого доказательства занимаются математики в разных странах мира.

Проблема Пуанкаре

Проблема Пуанкаре относится к области так называемой топологии многообразий - особым образом устроенных пространств, имеющих разную размерность. Двухмерные многообразия можно наглядно представить себе, например, на примере поверхности трехмерных тел − сферы (поверхности шара) или тора (поверхности бублика).

Легко вообразить, что произойдет с воздушным шариком, если его деформировать (изгибать, скручивать, тянуть, сжимать, пережимать, сдувать или надувать). Ясно, что при всех вышеперечисленных деформациях шарик будет изменять свою форму в широких пределах. Однако мы никогда не сможем превратить шарик в бублик (или наоборот) без нарушения непрерывности его поверхности, то есть не разрывая. В этом случае топологи говорят, что сфера (шарик) негомеоморфна тору (бублику). Это означает, что данные поверхности невозможно отобразить одну на другую. Говоря простым языком, сфера и тор различны по своим топологическим свойствам. А поверхность воздушного шарика при всевозможных его деформациях гомеоморфна сфере, равно как поверхность спасательного круга - тору. Иными словами, любая замкнутая двумерная поверхность, не имеющая сквозных отверстий, обладает теми же топологическими свойствами, что и двухмерная сфера.

Проблема Пуанкаре утверждает то же самое для трехмерных многообразий (для двухмерных многообразий, таких как сфера, это положение было доказано еще в XIX веке). Как заметил французский математик, одно из важнейших свойств двухмерной сферы состоит в том, что любая замкнутая петля (например, лассо), лежащая на ней, может быть стянута в одну точку, не покидая при этом поверхности. Для тора это справедливо не всегда: петля, проходящая через его отверстие, стянется в точку либо при разломе тора, либо при разрыве самой петли. В 1904 году Пуанкаре высказал предположение, что если петля может стягиваться в точку на замкнутой трехмерной поверхности, то такая поверхность гомеоморфна трехмерной сфере. Доказательство этой гипотезы оказалось чрезвычайно сложной задачей.

Сразу уточним: упомянутая нами формулировка проблемы Пуанкаре говорит вовсе не о трехмерном шаре, который мы можем представить себе без особого труда, а о трехмерной сфере, то есть о поверхности четырехмерного шара, который представить себе уже гораздо труднее. Но в конце 1950-х годов неожиданно выяснилось, что с многообразиями высоких размерностей работать гораздо легче, чем с трех- и четырехмерными. Очевидно, отсутствие наглядности - далеко не главная трудность, с которой сталкиваются математики в своих исследованиях.

Задача, подобная проблеме Пуанкаре, для размерностей 5 и выше была решена в 1960 году Стивеном Смэйлом (Stephen Smale), Джоном Стэллингсом (John Stallings) и Эндрю Уоллесом (Andrew Wallace). Подходы, использованные этими учеными, оказались, однако, неприменимы к четырехмерным многообразиям. Для них проблема Пуанкаре была доказана лишь в 1981 году Майклом Фридманом (Michael Freedman). Трехмерный же случай оказался самым сложным; его решение и предлагает Григорий Перельман.

Необходимо отметить, что у Перельмана есть соперник. В апреле 2002 года профессор математики британского университета Саутгемптон Мартин Данвуди предложил свой метод решения проблемы Пуанкаре и теперь ожидает вердикт от института Клэя.

Специалисты считают, что решение проблемы Пуанкаре позволит сделать серьезный шаг в математическом описании физических процессов в сложных трехмерных объектах и даст новый импульс развитию компьютерной топологии. Метод, который предлагает Григорий Перельман, приведет к открытию нового направления в геометрии и топологии. Петербургский математик вполне может претендовать на премию Филдса (аналог Нобелевской премии, которую по математике не присуждают).

Между тем, некоторые находят поведение Григория Перельмана странным. Вот что пишет британская газета "Гардиан": "Скорее всего, подход Перельмана к разгадке проблемы Пуанкаре верный. Но не все так просто. Перельман не предоставляет доказательств того, что работа издана в качестве полноценной научной публикации (препринты таковой не считаются). А это необходимо, если человек хочет получить награду от института Клэя. Кроме того, он вообще не проявляет интереса к деньгам".

Видимо, для Григория Перельмана, как для настоящего ученого, деньги - не главное. За решение любой из так называемых "задач тысячелетия" истинный математик продаст душу дьяволу.

ГРИГОРИЙ ПЕРЕЛЬМАН

Родился 13 июня 1966 года в Ленинграде, в семье служащих. Окончил знаменитую среднюю школу № 239 с углубленным изучением математики. В 1982 году в составе команды советских школьников участвовал в Международной математической олимпиаде, проходившей в Будапеште. Был без экзаменов зачислен на матмех Ленинградского государственного университета. Побеждал на факультетских, городских и всесоюзных студенческих математических олимпиадах. Получал Ленинскую стипендию. Окончив университет, Перельман поступил в аспирантуру при Санкт-Петербургском отделении Математического института им.В.А.Стеклова. Кандидат физико-математических наук. Работает в лаборатории математической физики.

Китайские математики опубликовали полное доказательство гипотезы Пуанкаре, сформулированной в 1904 году, передает новостное агентство Xinhua. Гипотеза, касающаяся классификации многомерных поверхностей (а точнее, многообразий), входила в число "проблем тысячелетия", за решение каждой из которых американский Институт Клэя назначил награду в миллион долларов.

Согласно Пуанкаре, любая замкнутая трехмерная "поверхность без дыр" (односвязное многообразие) эквивалентна трехмерной сфере, то есть поверхности четырехмерного шара. Сам Пуанкаре, автор математического аппарата эйнштейновской теории, представил первое обоснование, но позже обнаружил в собственных рассуждениях ошибку. Гипотезу в такой формулировке доказал в 2003 году российский математик Григорий Перельман, 70-страничную работу которого эксперты проверяют до сих пор. Другие случаи (размерности четыре и выше) были рассмотрены ранее.

По словам авторов, новая 300-страничная статья в Asian Journal of Mathematics не является независимой и опирается в первую очередь на результаты Перельмана. Чжу Сипин и Цао Хуайдун утверждают, что теперь ликвидировали ряд трудностей, способы преодоления которых Перельманом были только намечены. Известно, что в работе над доказательством также участвовал Шин-Тунь Яу, топологические труды которого (в частности, теория многообразий Калаби-Яу) считаются ключевыми для современной теории струн. Новая работа, отмечают специалисты, также потребует длительной перепроверки.

Александров А.Д., Нецветаев Н.Ю. Геометрия. М.: Наука, 1990

Приложение к реферату 2:

  • Tutorial

Еще в XIX веке было известно, что если любую замкнутую петлю, лежащую на двумерной поверхности, можно стянуть в одну точку, то такую поверхность легко превратить в сферу. Так, поверхность воздушного шарика удастся трансформировать в сферу, а поверхность бублика – нет (легко вообразить себе петлю, которая в случае с бубликом не стянется в одну точку). Гипотеза, высказанная французским математиком Анри Пуанкаре в 1904 году, гласит, что аналогичное утверждение верно и для трехмерных многообразий.

Доказать гипотезу Пуанкаре удалось только в 2003 году. Доказательство принадлежит нашему соотечественнику Григорию Перельману. Эта лекция проливает свет на объекты, необходимые для формулировки гипотезы, историю поиска доказательства и его основные идеи.

Читают лекцию доценты механико-математического факультета МГУ к. ф-м. н. Александр Жеглов и к. ф.-м. н. Федор Попеленский.

Если не вдаваться в математические подробности, то вопрос, поднимаемый гипотезой Пуанкаре можно следующим образом: как охарактеризовать (трехмерную) сферу? Чтобы правильно понять этот вопрос, нужно познакомиться с одним из важнейших понятий в топологии – гомеоморфизмом. Разобравшись с ним, мы сможем точно сформулировать гипотезу Пуанкаре.

Чтобы совсем уж не залезать в математические подробности формального определения, мы скажем, что две фигуры считаются гомеоморфными, если можно установить такое взаимно-однозначно соответствие между точками этих фигур, при котором близким точкам одной фигуры соответствуют близкие точки другой фигуры и наоборот. Пропущенные нами подробности состоят как раз в адекватной формализации близости точек.

Легко понять, что две фигуры гомеоморфны, если одну из другой можно получить произвольной деформацией, при которой запрещено «портить» поверхности (рвать, сминать области в точку, делать дырки и т.п.).

Например, чтобы получить из диска полусферу, как показано на картинке выше, нам потребуется просто нажать сверху в его центр, придерживая внешний обод. Можно представлять себе, что поверхности сделаны из идеальной резины, так что все фигуры могут сжиматься и растягиваться как угодно. Нельзя делать только две вещи: разрывать и склеивать.

Более точное (но все же не окончательное с точки зрения строгости) представление о гомеоморфных фигурах мы будем иметь, если разрешим еще одну операцию: можно сделать на фигуре разрез, перекрутить, завязать, развязать и т.п., но потом обязательно заклеить разрез как было.

Приведем еще один пример. Представим себе яблоко, в котором червяк прогрыз ход в виде узла и небольшую пещеру.

С точки зрения топологии поверхность этого яблока все равно останется сферой, т.к. если стянуть все это определенным образом, мы получим поверхность яблока в том же виде, как было до того, как червяк начал его есть.

Для закрепления попробуйте классифицировать буквы латинского алфавита с точностью до гомеоморфизма (т.е. выясните, какие буквы гомеоморфны, а какие - нет). Ответ зависит начертания букв (от типа шрифта или от гарнитуры), и для простейшего варианта начертания он приведен на следующем рисунке:

Из 26 букв у нас получается всего 8 классов.

На следующей картинке изображены гиря, кофейная чашка, бублик, сушка и кренделек. С топологической точки зрения поверхности гири, кофейной чашки, бублика и сушки одинаковы, т.е. гомеоморфны. Что касается кренделька, то он приведен здесь для сравнения с поверхностью, которую в топологии часто называют кренделем (он изображен в правом нижнем углу рисунка). Как вы, наверное, уже понимаете, и топологический крендель, и съедобный крендель отличаются от тора.

Формальная постановка вопроса

Пусть M – замкнутое связное многообразие размерности 3. Пусть на нем любая петля может быть стянута в точку. Тогда M гомеоморфно трехмерной сфере.

Наибольшую трудность для неподготовленного человека здесь вызывает понятие «многообразия размерности 3» и свойства, выраженные словами «замкнутое» и «связное». Поэтому мы попробуем разобраться со всеми этими понятиями и свойствами на примере размерности 2, в этом случаем многое кардинально упрощается.

Гипотеза Пуанкаре для поверхностей

Пусть M – замкнутая связная поверхность (многообразие размерности 2). Пусть на ней любая петля может быть стянута в точку. Тогда поверхность M гомеоморфна двумерной сфере.

Сначала определим, что такое поверхность. Возьмем конечный набор многоугольников, разбиваем все их стороны (ребра) на пары (т.е. всего сторон у всех многоугольников должно быть четное число), в каждой паре выбираем, каким из двух возможных способов будем их склеивать. Склеиваем. В результате поучается замкнутая поверхность.

Если полученная поверхность состоит из одного куска, а не из нескольких отдельных, то говорят, что поверхность связна. С формальной точки зрения это значит, что после склейки из любой вершины любого многоугольника можно по ребрам пройти в любую другую вершину.

Формально нужно требовать, чтобы из любой вершины любого многоугольника после склейки можно было пройти в любую вершину любого многоугольника (по ребрам).

Нетрудно сообразить, что связную поверхность можно склеить и из одного многоугольника. На рисунке видна идея, как это обосновывается:

Рассмотрим примеры простейших склеек:

В первом случае у нас получится сфера:

Во втором случае у нас получится тор (поверхность бублика, мы встречались с ним раньше):

В третьем случае получится так называемая бутылка Клейна:

Если склеивать не все стороны многоугольника, то получится поверхность с краем:

Важно отметить, что после склейки «шрамы» от нее носят чисто «косметический характер. Все точки поверхности равноправны: у любой точки имеется окрестность гомеоморфная диску.

Две поверхности считаются гомеоморфными, если схемы склейки каждой из них можно так разрезать на схемы склейки из более мелких многоугольников, что схемы склейки станут одинаковыми.

Разберем это утверждение на примере разбиения поверхности куба на части, из которых можно сложить развертку тетраэдра:

Верен и более общий факт: поверхности всех выпуклых многогранников – это сферы.

Теперь подробнее остановимся на понятии петли. Петял - это замкнутая кривая на рассматриваемой поверхности. Две петли называются гомотопными, если одну из них можно продеформировать в другую без разрывов и склеек, оставаясь на поверхности. Ниже приведен простейший случай стягивания петли на плоскости или сфере:

Даже если петля на плоскости или сфере имеет самопересечения, ее все равно можно стянуть:

На плоскости можно стянуть любую петлю:

А вот какие петли бывают на торе:

Стянуть такие петли невозможно. (К сожалению, доказательство выходит довольно далеко за рамки нашего рассказа.) Более того, показанные петли на торе не гомотопны. Предлагаем слушателям или читателям найти еще одну петлю на торе, не гомотопную этим двум - это очень простой вопрос. После этого попробуйте найти на торе четвертую петлю, не гомотопную этим трем - это будет несколько сложнее.

Эйлерова характеристика

Теперь, когда мы познакомились со всеми основными понятиями из формулировки гипотезы Пуанкаре, попробуем приступить к доказательству двумерного случая (лишний раз отметим, что это многократно проще трехмерного случая). А поможет нам в этом эйлерова характеристика.

Эйлеровой характеристикой поверхности M назовем число B−P+Г. Здесь Г - число многоугольников, Р - это число ребер после склейки (в случае рассматриваемых поверхностей это половина числа сторон всех многоугольников), B - это число вершин, которое получается после склейки после склейки.

Если две схемы склейки задают гомеоморфные поверхности, то у этих схем числа B−P+Г одинаковы, т. е. B−P+Г является инвариантом поверхности.

Если поверхность уже как-то задана, то надо нарисовать на ней какой-нибудь граф, чтобы после разрезания по нему поверхность распалась на куски гомеоморфные дискам (например, кольца запрещены). Затем подсчитываем величину B−P+Г - это и есть эйлерова характеристика поверхности.

Будут ли гомеоморфны поверхности с одинаковыми эйлеровыми характеристиками, мы узнаем позже. Но совершенно точно можно утверждать, что если эйлеровы характеристики у поверхностей разные, то поверхности не гомеоморфны.

Знаменитое соотношение B−P+Г=2 для выпуклых многоугольников (теорема Эйлера) является частным случаем этой теоремы. В данном случае речь идет о конкретной поверхности - о сфере. Замечание Обозначение: Эйлерову характеристику поверхности M будем обозначать через χ(M): χ(M) = B − P + Γ

Если поверхность M связна, то χ(M) ≤ 2, причем χ(M) = 2 тогда и только тогда, когда M гомеоморфна сфере.

Посмотрев лекцию до конца, вы узнаете, как же все-таки доказывается гипотеза Пуанкаре в размерности 2, и как Григорию Перельману удалось доказать ее в размерности 3.

Статья Григория Перельмана, в которой приводилось доказательство гипотезы Пуанкаре.

«Это был беспрецедентный случай. Медали Филдса, столь же престижной в математике, как и Нобелевская премия в других областях науки, удостоено эпохальное достижение - работа, в которой приводится доказательство гипотезы Пуанкаре», - этими словами начинается фильм «Чары гипотезы Пуанкаре», посвященный гипотезе и человеку, ее доказавшему.

Гипотеза была сформулирована французским математиком и физиком Анри Пуанкаре в 1904 году. Она является одной из задач, с которыми работает топология, - раздел математики, в развитии которого основопологающую роль сыграл Пуанкаре. Топология в широком смысле рассматривает явление непрерывности и его свойства. В топологии любые объекты изучаются с точностью до непрерывных деформаций без разрывов. Если рассматривать трехмерное пространство, то любой объект без отверстий (например, лист) топологически эквивалентен сфере, любой объект с одним отверстием (например, кружка) - тору, следующие - тору с двумя отверстиями и так далее. Также важным понятием является ориентируемость. В простейшем случае поверхности это свойство означает невозможность попадания с одной ее стороны на другую при гладком движении вдоль нее. В частности, если свернуть лист бумаги в трубочку, то получает ориентируемая поверхность, а лист Мебиуса является неориентируемой. Аналогично в в случае замкнутых поверхностей: сфера - ориентируема, бутылка Клейна - нет.

Гипотеза звучит так: всякое односвязное компактное трехмерное многообразие без края гомеоморфно трехмерной сфере. Односвязное, то есть такое, любую замкнутую линию в котором можно стянуть в одну точку (условно - сфера, а не тор, так как на торе это помешает сделать «дырка»). Компактность в топологии является обобщением свойства ограниченности и замкнутости в евклидовых пространствах. В простейшем одномерном случае компактным является, например, отрезок, так как при любом растяжении он останется ограничен некоторыми точками. А вот открытый интервал на прямой можно растянуть до бесконечной прямой, то есть он некомпактен. Трехмерное многообразие без края - это такой геометрический объект, в котором каждая точка имеет открытую окрестность в виде трехмерного шара. Примером его может служить «внутренность» тора, полноторие. Однако если добавить к нему поверхность, сам тор, то у граничных точек не будет окружения со всех сторон, а значит такой объект будет многообразием с краем. Гомеоморфизм устанавливает соответствие между объектами одного класса (условно «сфера» или «тор»). Трехмерная сфера - это поверхность четырехмерного шара. Представить его людям, живущим в трехмерном пространстве, конечно, нелегко.

Иллюстрация гипотезы Пуанкаре для двумерной поверхности («обруч» на сфере)

Salix alba/Wikimedia Commons

Чтобы понять гипотезу Пуанкаре, математики предлагают провести мысленный эксперимент, например такой: «Возьмем ракету и привяжем к ней очень длинную веревку и запустим ракету в космос. Ракета с привязанной к хвосту веревкой облетает всю Вселенную и благополучно возвращается на Землю. И теперь у вас в руках оба конца веревки, которую протащили через всю Вселенную. Получилась гигантская петля. Теперь можно вытянуть всю веревку, стягивая петлю. Когда мы вытянем ее всю, что мы сможем сказать о форме Вселенной? Если вы протащите веревку через всю Вселенную и в любом случае сможете стянуть ее до конца, разве вы не признаете, что Вселенная в принципе имеет форму шара?» Таким образом мы бы доказали, что Вселенная представляет собой односвязное многообразие, то есть ее можно стянуть в точку, а, следовательно, и ее появление даже из бесконечно малого «зародыша» не противоречит топологии. Однако если это не удастся, то получается, что Вселенная обладает более сложной топологией, как минимум не проще, чем у тора. Так доказательство гипотезы приобретает мировоззренческое значение.

Человек не может взглянуть на Вселенную со стороны, однако Пуанкаре предположил, что можно математически доказать принадлежность формы Вселенной к тому или иному классу, что и предполагает гипотеза. Первые два доказательства - самого Пуанкаре и человека, обратившего внимание математиков на гипотезу, Джона Уайтхеда, - быстро были опровергнуты самими авторами. Однако интерес к гипотезе нарастал: доказать ее пытались лучшие умы, но безуспешно. Иногда, как в случае математика греческого происхождения Христоса Папакириакопулоса, стремление найти доказательство приобретало характер одержимости, но не приводило к значительным подвижкам. Другому математику, американцу Стивену Смейлу, удалось доказать гипотезу, но только для пространства с большим, чем четыре, числом измерений. Еще один американец, Майкл Фридман, доказал гипотезу для четырехмерного пространства, за что получил медаль Филдса. Однако использовать эти достижения для трехмерного пространства было невозможно.

Найти доказательство гипотезы удалось лишь через 98 лет после ее создания российскому математику Григорию Перельману. Он опубликовал в электронном архиве научных статей и препринтов три статьи, по сути, содержащие это доказательство. По сути - потому что обоснованные в них положения не являются доказательством гипотезы Пуанкаре, но снимают основные проблемы, стоявшие перед математиками. Перельман сделал основную часть работы, оставив приведение доказательства к законченному виду своим коллегам. На это ушло несколько лет: задача осложнялась тем, что в работе использовались не привычные топологам методы, а принципы и понятия дифференциальной геометрии и физики.

Так как заявления о том, что доказательство найдено, звучали уже не раз, неудивительно, что поначалу и к статьям Перельмана отнеслись скептически. Его приглашали в Принстон и другие ведущие университеты с циклом лекций, раскрывающих смысл доказательства. И лишь в 2006 году было вынесено решение - доказательство Перельмана верно, а гипотезу Пуанкаре следуют считать доказанной. За это Перельману присудили премию Филдса, однако принять ее он отказался.

Loading...Loading...