Амины первичные вторичные третичные. Амины. Взаимодействие с галогеналканами

Белков человеческий организм вырабатывает очень много, они разнообразны по составу и выполняемой работе, однако белок плазмы крови играет важнейшую роль во множестве процессов, без которых жизнь человека станет невозможной.

Белки плазмы крови очень разнообразны. У человека насчитывается около ста типов белков. При ОАК (общий анализ крови) количество белка плазмы крови сигнализирует о том, как осуществляется в организме синтез аминокислот.

Обменные процессы, проходящие с помощью белков, указывают на то, насколько хорошо организм способен справиться с различными недугами: от проникновения инфекции до разрыва капилляров стенок сосудов.

В основном белки плазмы крови производятся в печени, но некоторые синтезируются в тканях костного мозга и лимфатических узлах.

Функции белков плазмы крови огромны и зависят от спецификации того или иного вида белка. В основном их функции заключаются в поддержании нужного коллоидно-осмотического давления крови в сосудах, однако у белков есть и множество других задач.

Вот некоторые из них:

  • количество белков прямо пропорционально способности крови к сворачиванию;
  • белки обеспечивают кислотно-щелочное равновесие внутренней среды организма, являясь буферной кровяной системой;
  • плазменный белок альбумин и некоторые другие белки осуществляют транспорт к внутренним органам холестерина, билирубина и медикаментозных средств;
  • система комплемента и глобулины обеспечивают баланс гуморального иммунитета организма;
  • защищают от повреждения клетки крови и стенки сосудов;
  • деятельность белков по созданию нужного запаса аминокислот в русле крови обеспечивает организму нормальное функционирование в период недостатка питательных веществ;
  • отдельные виды белков способны расширять сосуды, снижая при этом артериальное давление, другие – наоборот, сужают сосуды в случае необходимости, и таким образом АД увеличивается.

Чтобы определить количество белков кровяной плазмы, делают биохимический анализ образца крови.

Отклонение от нормы количества белков того или иного вида, нарушения в их строении являются признаками различных недугов.

Однако ориентироваться при постановке диагноза только на белковый состав крови было бы неверно – ведь при всем своем многообразии белки кровяной плазмы составляют всего лишь около 7-8 % от числа всех белковых клеток организма.

Поэтому врачи оперируют совокупностью всех данных анализов и обследований пациента при диагностике и определении терапевтического курса лечения.

В зависимости от такого качества белковых молекул, как водо- растворимость или нерастворимость, белки могут называться простыми или сложными.

К простым белковым молекулам относится такой тип растворимого белка плазмы крови, как альбумин. Грубо говоря, все остальные белки относятся к сложным белковым структурам.

Как называется тот или иной нерастворимый белок плазмы крови, можно узнать, разделяя белки на фракции.

Это делается разными методами, но наиболее распространенным способом разделения по фракциям белков плазмы крови считается электрофорез.

Электрофорезный метод распределения белковых молекул по фракциям заключается в том, что разные белки под действием тока по-разному движутся на носителе.

В качестве последнего берут ацетатцеллюлозную пленку, на которую наносят сыворотку крови.

Пленку помещают на специальную рамку таким образом, чтобы ее края находились в емкостях с электролитом.

После пропускания электрического тока белки малого размера, обладающие наибольшим зарядом (альбумины), перемещаются быстрее остальных.

Глобулины, как наиболее крупные и электронейтральные молекулы, практически не двигаются по пленке.

Белковые фракции

Существуют способы, используя которые, можно выделить более 20 фракций белков, однако в обычных лабораторных условиях чаще всего используют электрофорезный метод фракционирования.

При помощи электрофореза выделяют пять белковых фракций:

  • альбумины;
  • α 1 — глобулины;
  • α 2 -глобулины;
  • β-глобулины;
  • γ-глобулины.

Альбуминов в плазме крови больше всего. Они производятся печенью в большом количестве.

Срок жизни альбуминов очень мал – за сутки этих белковых молекул синтезируется и распадается порядка 11 — 15 г.

Именно их функцией является поддержка нужного давления в осмосе крови, поскольку альбумины – это растворимые белки, обладают наименьшей массой среди всех остальных белковых молекул.

Альбумины влияют на степень свертываемости крови, кислотно-щелочной баланс, осуществляют доставку длинноцепочечных кислот, билирубина, гормонов, лекарств к внутренним органам.

Альбумин нейтрализует ионы Ca₂+ и Mg₂+. Кроме всего этого, альбумины создают в плазме крови резервные запасы нужных аминокислот.

Глобулины фракции α 1 производятся тканями костного мозга. Это нерастворимые белковые структуры с небольшой массой.

Тем не менее, α 1 — глобулины гидрофильны, что позволяет им осуществлять транспортировку жиров.

Такие α 1 — глобулины, как протромбин, участвуют в процессе свертываемости крови, оказывают угнетающее действие на некоторые ферменты.

В большинстве своем α 2 -глобулины синтезирует печень, однако примерно 25 % их производят ткани костного мозга.

Это биполимерные структуры, основной функцией которых является регуляторная деятельность.

Макроглобулин отвечает за острую фазу воспалительных явлений в организме, гаптоглобин в комплексе с гемоглобином предотвращает анемии, а при помощи церулоплазмина в тканях поддерживается баланс меди.

β-глобулины наполовину производятся в печени, наполовину – в костном мозге.

К ним относятся:

  • фибриноген, участвующий в образовании фибриновых нитей на месте порыва сосуда или капилляра;
  • липопротеиновые белковые структуры низкой плотности;
  • транскобаламин, ответственный за синтез витамина B₁₂;
  • трансферин, осуществляющий доставку железа к тканям;
  • белковые структуры, составляющие систему комплемента;
  • β-липопротеиды, переносящие фосфолипиды и холестерин.

Производство γ— глобулинов в основном происходит при помощи В-лимфоцитов, но 1/10 часть их синтезируется куперовскими парными клетками.

В эту фракцию плазменных белков входят иммуноглобулины, которые защищают организм от проникновения чужеродных клеток путем выработки антител к ним.

Что такое диспротеинемия?

Нормальные концентрации белковых фракций в плазме крови у здорового человека представлены в таблице ниже.

Биохимические исследования белковых фракций при помощи электрофореза позволяют определить отклонения концентраций белковых структур от нормального состояния.

Такого рода патология называется диспротеинемией, которая бывает двух видов:

  • гиперпротеинемия;
  • гипопротеинемия.

Гиперпротеинемия, или увеличение количества белков в плазме крови, может иметь относительный или абсолютный характер.

Относительная гиперпротеинемия считается состоянием организма, которое при должной терапии причин патологии само придет в норму.

Бывает при травмах, порезах, ожогах, обезвоживании от рвоты. Абсолютная гиперпротеинемия возникает при увеличении в крови концентрации γ-глобулинов.

Ее часто называют γ— глобулинемией. Причиной такого состояния чаще всего бывают воспалительные процессы в хронической или острой фазе.

Однако и значительная концентрация α 1 — глобулина тоже может иметь причины инфекционных поражений организма, полостных операций, травм, болезней печени.

Гипопротеинемия чаще всего возникает в случае недостатка в плазме крови альбуминов.

Такое состояние возникает при следующих патологиях:

  • из-за недостатка производства альбуминов печенью вследствие снижения функциональных способностей этого органа;
  • при значительной утилизации белков при обширных ожогах;
  • при злокачественных опухолях;
  • в результате тяжелого септического состояния;
  • при нефротическом синдроме;
  • вследствие длительного голодания;
  • при обильной кровопотере.

Однако чаще всего диспротеинемия сопровождается уменьшением количества белков одной фракции и увеличением другой.

Электрофорез позволяет отличить острую стадию воспалительных процессов от хронической.

При острой стадии концентрация альбуминов в плазме крови низкая, зато увеличивается число глобулинов α 1 — и α 2 — фракций.

При хронической стадии воспалительного процесса в плазме крови возрастает концентрация -глобулинов.

Заболевания печени характеризуются снижением альбуминов и увеличением количества β-глобулинов.

Тем не менее, существуют состояния организма человека, при которых диспротеинемия считается физиологическим явлением.

К примеру, у новорожденных детей количество белков всех фракций снижено, и только к двум-трем годам жизни постепенно показатели протеинограммы у них приходят в норму.

У беременных женщин при гестозе концентрация белков в плазме крови тоже может быть понижена.

Несмотря на то что биохимический анализ крови с определением концентраций белков по фракциям может предоставлять врачам много нужной и полезной информации, ориентироваться только на протеинограмму при постановке диагноза никто не будет, потому что некоторые болезни могут давать одни и те же варианты изменения концентрации белков в плазме крови.

К примеру, при нефротическом синдроме происходит уменьшение концентрации альбуминов, α 1 — и γ-глобулинов и увеличивается число α 2 — и β-глобулинов.

Диспротеинемия такого же рода может отмечаться и при других недугах, сопровождающихся изменением количества белков разных фракций.

Амины вошли в нашу жизнь совершенно неожиданно. Еще недавно это были ядовитые вещества, столкновение с которыми могло привести к смерти. И вот, спустя полтора столетия, мы активно пользуемся синтетическими волокнами, тканями, строительными материалами, красителями, в основе которых лежат амины. Нет, они не стали безопаснее, просто люди смогли их "приручить" и подчинить, извлекая для себя определенную пользу. О том, какую именно, и поговорим далее.

Определение

Для качественного и количественного определение анилина в растворах или соединениях используется реакция с в конце которой на дно пробирки выпадает белый осадок в виде 2,4,6-триброманилина.

Амины в природе

Амины встречаются в природе повсеместно в виде витаминов, гормонов, промежуточных продуктов обмена, есть они и в организме животных и в растениях. Кроме того, при гниении живых организмов также получаются средние амины, которые в жидком состоянии распространяют неприятный запах селедочного рассола. Широко описанный в литературе «трупный яд» появился именно благодаря специфическому амбре аминов.

Длительное время рассматриваемые нами вещества путали с аммиаком из-за похожего запаха. Но в середине девятнадцатого века французский химик Вюрц смог синтезировать метиламин и этиламин и доказать, что при сгорании они выделяют углеводород. Это было принципиальным отличием упомянутых соединений от аммиака.

Получение аминов в промышленных условиях

Так как атом азота в аминах находится в низшей степени окисления, то восстановление азотосодержащих соединений является наиболее простым и доступным способом их получения. Именно он широко распространен в промышленной практике из-за своей дешевизны.

Первый метод представляет собой восстановление нитросоединений. Реакция, во время которой образуется анилин, носит название ученого Зинина и была проведена в первый раз в середине девятнадцатого века. Второй способ заключается в восстановлении амидов при помощи алюмогидрида лития. Из нитрилов тоже можно восстановить первичные амины. Третий вариант - реакции алкилирования, то есть введение алкильных групп в молекулы аммиака.

Применение аминов

Сами по себе, в виде чистых веществ, амины используются мало. Один из редких примеров - полиэтиленполиамин (ПЭПА), который в бытовых условиях облегчает затвердение эпоксидной смолы. В основном первичный, третичный или вторичный амин - это промежуточный продукт в производстве различных органических веществ. Самым востребованным является анилин. Он - основа большой палитры анилиновых красителей. Цвет, который получится в конце, зависит непосредственно от выбранного сырья. Чистый анилин дает синий цвет, а смесь анилина, орто- и пара-толуидина будет красной.

Алифатические амины нужны для получения полиамидов, таких как нейлон и другие Они применяются в машиностроении, а также в производстве канатов, тканей и пленок. Кроме того, алифатические диизоцинаты используются в изготовлении полиуретанов. Из-за своих исключительных свойств (легкость, прочность, эластичность и способность прикрепляться к любым поверхностям) они востребованы в строительстве (монтажная пена, клей) и в обувной промышленности (противоскользящая подошва).

Медицина - еще одна сфера, где применяются амины. Химия помогает синтезировать из них антибиотики группы сульфаниламидов, которые успешно применяют в качестве препаратов второй линии, то есть резервной. На случай, если у бактерий разовьется устойчивость к основным лекарствам.

Вредное воздействие на организм человека

Известно, что амины - это весьма токсичные вещества. Вред здоровью может нанести любое взаимодействие с ними: вдыхание паров, контакт с открытой кожей или попадание соединений внутрь организма. Смерть наступает от нехватки кислорода, так как амины (в частности, анилин) связываются с гемоглобином крови и не дают ему захватывать молекулы кислорода. Тревожными симптомами являются одышка, посинение носогубного треугольника и кончиков пальцев, тахипноэ (учащенное дыхание), тахикардия, потеря сознания.

В случае попадания этих веществ на оголенные участки тела необходимо быстро убрать их ватой, предварительно смоченной в спирте. Делать это надо максимально аккуратно, чтобы не увеличить площадь загрязнения. Если появятся симптомы отравления - обязательно нужно обратиться к врачу.

Алифатические амины - это яд для нервной и сердечно-сосудистой систем. Они могут вызвать угнетение функций печени, ее дистрофию и даже онкологические заболевания мочевого пузыря.

Ароматическими аминами называют производные ароматических углеводородов, в которых один или несколько атомов водорода бензольного кольца замещены на аминогруппы ( NH 2 ).

Ароматические амины можно также рассматривать как производные аммиака, в молекуле которого один или несколько атомов водорода замещены ароматическими радикалами.

Как и в алифатическом (жирном) ряду, ароматические амины могут быть первичными, вторичными и третичными.

В зависимости от того, какие радикалы (только ароматические или ароматические и алифатические) связаны с атомом азота, различают чисто ароматические и жирноароматические.

Аминогруппа может быть непосредственно связана с ядром или находиться в боковой цепи.

Анилин является родоначальником класса ароматических аминов, в которых аминогруппа непосредственно связана с бензольным кольцом:

анилин (фениламин, аминобензол)

Номенклатура ароматических аминов

Для названия ароматических аминов обычно используют тривиальную номенклатуру.

Например, анилин, толуидин.

По систематической (заместительной) номенклатуре названия аминов образуют из названий радикалов с добавлением окончания –амин или приставки амино-

Тривиальная: орто-толуидин мета-толуидин пара-толуидин

Заместительная: орто-толиламин мета-толиламин пара-толиламин

орто-аминотолуол мета-аминотолуол пара-аминотоуол

(2-аминотоуол) (3-аминотолуол) (4-аминотолуол)

В ароматическом кольце может быть две и более аминогрупп.

Названия соединений с двумя аминогруппами (диамины) образуют из названия двухвалентного углеродного остатка и окончания –диамин или приставки диамино- и названия соответствующего углеводорода:

о-фенилендиамин м-фенилендиамин п-фенилендиамин

о-диаминобензол м-диаминобензод п-диаминобензол

(1,2-диаминобензол) (1,3-диаминобензол) (1,4-диаминобензол)

В зависимости от числа радикалов, связанных с атомом азота, различают также вторичные и третичные ароматические амины.

Названия вторичных и третичных аминов чаще всего образуют по принципам рациональной номенклатуры, перечисляя имеющиеся в соединении радикалы и добавляя окончание –амин:

дифениламин (вторичный амин)

трифениламин (третичный амин)

Если в молекуле амина с атомом азота связаны одновременно и ароматические и алифатические радикалы, то такие амины называют жирноароматическими.

В случае жирноароматических аминов за основу названия берется слово «анилин» и, чтобы показать, что радикал расположен у атома азота, а не в бензольном кольце, перед названием радикала ставится буква N :

N-метиланилин N,N-диметиланилин

Рациональная: метилфениламин диметилфениламин

Заместительная: N-метиламинобензол N,N-диметиламинобензол

Амины с аминогруппой в боковой цепи:

бензиламин

α-аминотолуол

Ароматические амины с аминогруппой в боковой цепи обладают свойствами алифатических аминов.

Амины - органические производные аммиака, в молекуле которого один, два или все три атома водорода замещены углеродным остатком.

Обычно выделяют три типа аминов :

Амины, в которых аминогруппа связана непо­средственно с ароматическим кольцом, называют­ся ароматическими аминами .

Простейшим представителем этих соединений является аминобензол, или анилин:

Основной отличительной чертой электронного строения аминов является наличие у атома азота, входящего в функциональную группу, неподелен­ной электронной пары . Это приводит к тому, что амины проявляют свойства оснований.

Существуют ионы, которые являются продук­том формального замещения на углеводородный радикал всех атомов водорода в ионе аммония:

Эти ионы входят в состав солей, похожих на соли аммония. Они называются четвертичными аммонийными солями.

Изомерия и номенклатура

1. Для аминов характерна структурная изомерия :

а) изомерия углеродного скелета :

б) изомерия положения функциональной группы :

2. Первичные, вторичные и третичные амины изомерны друг другу (межклассовая изомерия ):

Как видно из приведенных примеров, для то­го чтобы назвать амин, перечисляют заместители, связанные с атомом азота (по порядку старшин­ства), и добавляют суффикс -амин .

Физические свойства аминов

Простейшие амины (метиламин, диметиламин, триметиламин) - газообразные вещества. Осталь­ные низшие амины - жид­кости, которые хорошо рас­творяются в воде. Имеют характерный запах, напоми­нающий запах аммиака.

Первичные и вторичные амины способны образовывать водородные связи . Это приво­дит к заметному повышению их температур кипения по сравнению с соединениями, имеющими ту же молекулярную массу, но не способными образовывать водородные связи.

Анилин - маслянистая жидкость, ограничен­но растворимая в воде, кипящая при температуре 184 °С.

Анилин

Химические свойства аминов определяются в основном наличием у атома азота неподеленной электронной пары .

Амины как основания. Атом азота аминогруппы, подобно атому азота в молекуле аммиака, за счет не­поделенной пары электронов может образовывать ковалентную связь по донорно-акцепторному меха­низму, выступая в роли донора . В связи с этим ами­ны, как и аммиак, способны присоединять катион водорода, т. е. выступать в роли основания:

1. Реакция амионов с водой приводит к образо­ванию гидроксид-ионов:

Раствор амина в воде имеет щелочную реакцию.

2. Реакция с кислотами. Аммиак, реагируя с кислотами, образует соли аммония. Амины так­же способны вступать в реакцию с кислотами:

Основные свойства алифатических аминов вы­ражены сильнее, чем у аммиака. Это связано с на­личием одного и более донорных алкильных за­местителей, положительный индуктивный эффект которых повышает электронную плотность на атоме азота. Повышение электронной плотности превра­щает азот в более сильного донора пары электронов, что повышает его основные свойства:

Горение амионов. Амины горят на воздухе с об­разованием углекислого газа, воды и азота:

Химические свойства аминов - конспект

Применение аминов

Амины широко применяются для получения лекарств , полимерных материалов . Анилин - важнейшее соединение данного класса, которое используют для производства анилиновых краси­телей, лекарств (сульфаниламидных препаратов), полимерных материалов (анилинформальдегидных смол).

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Амины - это органические соединения, в которых атом водорода (может и не один) замещен на углеводородный радикал. Все амины делят на:

  • первичные амины ;
  • вторичные амины ;
  • третичные амины .

Есть еще аналоги солей аммония - четвертичные соли типа [R 4 N ] + Cl - .

В зависимости от типа радикала амины могут быть:

  • алифатические амины;
  • ароматические (смешанные) амины.

Алифатические предельные амины.

Общая формула C n H 2 n +3 N .

Строение аминов.

Атом азота находится в sp 3 -гибридизации. На 4-ой негибридной орбитали находится неподеленная пара электронов, которая обуславливает основные свойства аминов:

Элекронодонорные заместители повышают электронную плотность на атоме азота и усиливают основные свойства аминов, по этой причин вторичные амины являются более сильными основаниями, чем первичные, т.к. 2 радикала у атома азота создают большую электронную плотность, чем 1.

В третичных атомах играет важную роль пространственный фактор: т.к. 3 радикала заслоняют неподеленную пару азота, к которой сложно «подступиться» другим реагентам, основность таких аминов меньше, чем первичных или вторичных.

Изомерия аминов.

Для аминов свойственна изомерия углеродного скелета, изомерия положения аминогруппы:

Как называть амины?

В названии обычно перечисляют углеводородные радикалы (в алфавитном порядке) и добавляют окончание -амин:

Физические свойства аминов.

Первые 3 амина - газы, средние члены алифатического ряда - жидкости, а высшие - твердые вещества. Температура кипения у аминов выше, чем у соответствующих углеводородов, т.к. в жидкой фазе в молекуле образуются водородные связи.

Амины хорошо растворимы в воде, по мере роста углеводородного радикала растворимость падает.

Получение аминов.

1. Алкилирование аммиака (основной способ), который происходит при нагревании алкилгалогенида с аммиаком:

Если алкилгалогенид в избытке, то первичный амин может вступать в реакцию алкилирования, превращаясь во вторичный или третичный амин:

2. Восстановление нитросоединений:

Используют сульфид аммония (реакция Зинина ), цинк или железо в кислой среде, алюминий в щелочной среде или водород в газовой фазе.

3. Восстановление нитрилов. Используют LiAlH 4 :

4. Ферментатичное декарбоксилирование аминокислот:

Химические свойства аминов.

Все амины - сильные основания, причем алифатические более сильные, чем аммиак.

Водные растворы имеют щелочной характер.

Loading...Loading...