Лекарственный препарат содержащий фенольный гидроксил. Реакция окисления спиртов до альдегидов. Гидроксильные производные аренов

Функциональный анализ органических лекарственных веществ

Подавляющую часть применяемых в медицинской практике лекарственных веществ составляют соединения органической природы. В отличие от анализа неорганических веществ, в котором используются свойства образующих их ионов, основу анализа органических лекарственных веществ составляют свойства функциональных групп.

Функциональные группы - это связанные с углеводородным радикалом отдельные атомы или группы атомов, которые вследствие своих характерных свойств могут быть использованы для целей идентификации и количественного определения лекарственных веществ.

Наличие нескольких функциональных групп оказывает влияние на эффекты некоторых общих реакций и на свойства продуктов, образующихся в результате их протекания.

Классификация функциональных групп

1. Кислородсодержащие функциональные группы:

ОН - гидроксильная (спиртовая или фенольная);

С=О; -С=О - карбонильная (кетонная или альдегидная);

СООН - карбоксильная;

C-О- - сложноэфирная группа;

CH-(CH 2) n -C=O – лактонная группа.

NH 2 - первичная аминогруппа алифатическая или ароматическая;

NO 2 - ароматическая нитрогруппа;

NH- - вторичная аминогруппа;

N- - третичный атом азота;

C-NH- - амидная группа;

CH-(CH 2) n -C=O – лактамная группа;

С-NH-C- - имидная группа;

SO 2 -NH- - сульфамидная группа;

СН = N- - азометиновая группа;

3. Прочие функциональные группы:

Ароматический (фенильный) радикал;

- пиридиновый цикл;

R―Gal - ковалентно-связанный галоген (Cl, Br, I, F);

R―S― - ковалентно-связанная сера.

Спиртовый гидроксил: Alk - ОН

Спиртовый гидроксил - это гидроксил, связанный с алифатическим углеводородным радикалом. Его содержат спирты, карбоновые кислоты и их соли, терпены, производные фенилалкиламинов, соединения стероидного строения, антибиотики ароматического ряда и некоторых другие лекарственные вещества.

Идентификация

1. Реакция этерификации с кислотами или их ангидридами в присутствии водоотнимающих средств. Основана на свойстве спиртов образовывать сложные эфиры. В случае низкомолекулярных соединений эфиры обнаруживают по запаху, а при анализе высокомолекулярных веществ - по температуре плавления.

С 2 Н 5 ОН + СН 3 СООН + Н 2 SО 4 к. → СН 3 -С = О + Н 2 О

спирт этиловый этилацетат (фруктовый запах)


2. Реакция окисления. Основана на свойстве спиртов окисляться до альдегидов, которые обнаруживают по запаху. В качестве реагентов используют различные окислители: калия перманганат, калия бихромат, калия гексацианоферрат (III) и др. Наибольшую аналитическую ценность имеет калия перманганат, который, восстанавливаясь, меняет степень окисления от

7 до +2 и обесцвечивается, т.е. делает реакцию наиболее эффектной.

С 2 Н 5 ОН + [О] → СН 3 -С=О + Н 2 О

спирт этиловый ацетальдегид (запах яблок)

Окислению могут сопутствовать побочные химические реакции. Например, в случае эфедрина - гидраминное разложение, в случае молочной кислоты – декарбоксилирование.

3. Реакция комплексообразования , основанная на свойстве многоатомных спиртов образовывать комплексные соединения с сульфатом меди (II) в щелочной среде.

CuSO 4 + 2 NaOH → Cu(OH) 2 + Na 2 SO 4

глицерин синего цвета комплекс

Аналогичную цветную реакцию дают аминоспитры (эфедрин, мезатон и др.). В комплексообразовании принимают участие спиртовый гидроксил и вторичная аминогруппа. Полученные окрашенные комплексы имеют структуру:

В случае эфедрина образующийся комплекс при извлечении в эфир окрашивает его в фиолетово-красный цвет, а водный слой сохраняет синее окрашивание.

Количественное определение

1. Метод ацетилирования: алкалиметрия, вариант нейтрализации, способ косвенного титрования. Основан на свойстве спиртов образовывать нерастворимые сложные эфиры. Ацетилирование проводят избытком уксусного ангидрида при нагревании в присутствии пиридина. В процессе титрования выделяется эквивалентное количество уксусной кислоты, которую оттитровывают натрия гидроксидом с индикатором фенолфталеин.

СН 2 -ОН СН 2 -О-COCH 3

СН -ОH + 3 (СH 3 CO) 2 O → СН -О-COCH 3 + 3 CH 3 COOH

СН 2 -ОН СН 2 -О-COCH 3

Одновременно будет титроваться также кислота, образованная при гидролизе избытка уксусного ангидрида, взятого для ацетилирования, поэтому необходим контрольный опыт.

(СH 3 CO) 2 O + H 2 O → 2 СH 3 COOH

СH 3 COOH + NaOH → СH 3 COONa + H 2 O Э=М/3

2. Бихроматометрия . Метод основан на окислении спиртов избытком бихромата калия в кислой среде. При этом спирт этиловый окисляется до уксусной кислоты, глицерин – до углекислоты и воды. Окислении проходит во времени и поэтому используют способ обратного титрования.

3 C 2 H 5 OH + 2 K 2 Cr 2 O 7 + 16 HNO 3 → 3 CH 3 COОН + 4 Cr(NO 3) 3 + 4 KNO 3 + 11 H 2 O

Избыток бихромата калия определяют йодометрически с индикатором – крахмал:

K 2 Cr 2 O 7 + 6 KJ + 14 HNO 3 → 3 J 2 + 2 Cr(NO 3) 3 + 8 KNO 3 + 7 H 2 O

J 2 + 2 Na 2 S 2 O 3 → 2 NaJ + Na 2 S 4 O 6 Э=М/4

3. Куприметрия . Метод основан на свойстве спиртов образовывать устойчивые комплексные соединения с сульфатом меди в щелочной среде. Прямое титрование. Титрант – сульфат меди. Индикатор – мурексид. Метод используется во внутриаптечном контроле качества лекарственных форм с левомицетином.

Фенольный гидроксил: А r - ОН

Это гидроксил, связанный с ароматическим радикалом. Его содержат лекарственные вещества группы фенолов, фенолокислот и их производных, производные фенантренизохинолина, синэстрол, адреналин и др.

Идентификация

1. Реакция комплексообразования фенольного гидроксила с ионами железа (III). Основана на свойствах фенольного гидроксила образовывать растворимые комплексные соединения, окрашенные чаще в синий цвет (фенол) или фиолетовый (резорцин, кислота салициловая), реже в красный (ПАС-натрий) и зеленый цвета (хинозол).

Состав комплексов, а, следовательно, и их окраска обусловлены количеством фенольных гидроксилов: синий (фенол) или фиолетовый (резорцин), влиянием других функциональных групп (кислотата салициловая, ПАС-натрий, хинозол), реакцией среды (резорцин).

кислота салициловая

2. Реакция бромирования ароматического кольца. Основана на электрофильном замещении водорода в о- и п- положениях на бром с образованием нерастворимого бромпроизводного белого цвета. При избытке бромной воды образуется продукт окисления и галогенирования (тетрабромциклогексадиен-2,5-он) в виде осадка желтого цвета.

Фенольный гидроксил – это гидроксил, связанный с ароматическим радикалом. Его содержат ЛВ группы фенолов (фенол, резорцин); фенолокислот и их производных (кислота салициловая, фенилсалицилат, салициламид, оксафенамид); производные фенантренизохинолина (морфина гидрохлорид, апоморфин); синэстрол, адреналин и др.

Химические свойства соединений, содержащих фенольный гидроксил, обусловлены взаимодействием электронной пары с π-электронами ароматического кольца. Это взаимодействие приводит к смещению электронной плотности с ОН-группы на кольцо, нарушению в нём равномерности распределения электронов, созданию избыточного отрицательного заряда в орто (о )- и пара (п )-положениях. Атом водорода гидроксигруппы ионизирует и придаёт фенолам слабые кислотные свойства (рКа фенола = 10,0; рКа резорцина = 9,44). Поэтому, в отличие от спиртов, они образуют соли со щелочами (при рН 12-13), растворимые комплексные соединения с хлоридом железа (III) (в нейтральных, слабощелочных и кислых растворах).

Фенолы проявляют сильные восстановительные свойства, очень легко окисляются даже слабыми окислителями. Образуют окрашенные соединения хиноидной структуры.

Наибольшее значение имеют реакции электрофильного замещения водородов в о - и п -положениях ароматического кольца – галогенирование (бромирование), конденсация с альдегидами, нитрование, сочетание с солями диазония.

На основе свойств фенольного гидроксила и активированного им ароматического кольца в анализе ЛВ используются следующие реакции:

1 – комплексообразования;

2 – галогенирования (бромирования);

3 – азосочетания;

4 – окисления;

5 – образования индофенолового красителя;

6 – конденсации с альдегидами.

Идентификация

2.1. Реакция комплексообразования с ионами железа (III )

Основана на свойствах фенольного гидроксила образовывать растворимые комплексные соединения, окрашенные чаще в синий (фенол) или фиолетовый цвет (резорцин, кислота салициловая) реже в красный (ПАСК – натрия) и зелёный (хинозол, адреналин).

Состав комплексов, а, следовательно, и их окраска обусловлены количеством фенольных гидроксилов, влиянием других функциональных групп, реакцией среды.

При избытке фенола:

Предположительный состав конечного продукта в реакции с фенолом:

2.2. Реакция бромирования ароматического кольца

Основана на электрофильном замещении водорода в о- и п- положениях на бром с образованием нерастворимого бромпроизводного (белый осадок).

Основные правила бромирования:

Бром замещает водород в о- и п- положениях по отношению к фенольному гидроксилу (наиболее реакционноспособное – п- положение):

При наличии в о- или п- положениях ароматического кольца заместителей, в реакцию вступает меньше атомов брома;

Если в о- или п- положениях находится карбоксильная группа, то при наличии избытка брома происходит декарбоксилирование и образование трибромпроизводного:

Если заместитель находится в м- положении, то он не препятствует образованию трибромпроизводного:

Если в соединении содержится два фенольных гидроксила в м- положении, то в результате их согласованной ориентации образуется трибромпроизводное:

Если две гидроксильные группы расположены в о- или п- положениях друг к другу, то они действуют несогласованно: бромирование количественно не проходит:

Если кроме фенольных гидроксилов соединение содержит амидную или сложно-эфирную группу (салициламид, фенилсалицилат) для их количественной оценки методом броматометрии необходимо провести предварительный гидролиз.

2.3. Реакция азосочетания

Сочетание идет также в о- и п- положениях, в этом случае также, как и при бромировании, предпочтительным является п- положение. Диазореактив – соль диазония (диазотированная сульфаниловая кислота). Среда – щелочная. Продукт реакции – азокраситель.

2.4. Реакция окисления

Фенолы могут окисляться до различных соединений, но чаще всего до о - или п -хинонов (циклических дикетонов),окрашенных в розовый или реже в жёлтый цвет.

2.5. Реакция образования индофенолового красителя

Основана на окислении фенолов до хинонов, которые при конденсации с аммиаком или аминопроизводным и избытком фенола образуют индофеноловый краситель, окрашенный в фиолетовый цвет.

Разновидностью данной реакции является нитрозореакция Либермана, она характерна для фенолов, не имеющих заместителей в о- и п- положениях.

При действии нитрита натрия в кислой среде образуется п -нитрозофенол, изомеризующийся в п- хиноидоксим, который, реагируя с избытком фенола в кислой среде, образует индофенол:

2.6. Образование нитрозосоединений

При взаимодействии с разведенной азотной кислотой фенолы могут нитроваться при комнатной температуре, образуя о- и п- нитропроизводные. Образующееся нитропроизводное содержит в п- положении подвижный атом водорода гидроксильной группы, образуется таутомерная аци-форма с хиноидной структурой, она обычно окрашена в желтый цвет. Добавление щелочи усиливает окраску, вследствие образования хорошо диссоциируемой соли:

2.7. Реакция конденсации с альдегидами или ангидридами кислот

С формальдегидом в присутствии концентрированной серной кислоты с образованием ауринового (арилметанового) красителя окрашенного в красный цвет.

Реакция является фармакопейной для кислоты салициловой. Концентрированная серная кислота на первой стадии реакции играет роль водоотнимающего средства, на второй – является окислителем.

С фталевым ангидридом (сплавление и последующее растворение плава в щёлочи) рекомендована фармакопеей для идентификации фенола и резорцина.

Количественное определение

2.8. Броматометрия

Метод основан на электрофильном замещении атомов водорода ароматического кольца на бром, выделенный в реакции бромата калия с бромидом калия в кислой среде.

KBrO 3 + 5KBr + 6 HCl → 3Br 2 + 6KCl + 3H 2 O

Используют способы прямого и обратного титрования. В прямом – титруют броматом калия в присутствии бромида калия с индикатором метиловым оранжевым или метиловым красным от розовой окраски до обесцвечивания. В точке эквивалентности избыточная капля бромата калия выделяет бром, который окисляет индикатор и раствор обесцвечивается. При обратном титровании вводят избыток бромата калия, добавляют калия бромид, создают кислую среду, выдерживают нужное для бромирования время и после чего избыток брома определяют йодометрически (индикатор – крахмал).

Br 2 + 2KI → I 2 + 2KBr

I 2 + 2Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2NaI

Способом прямого титрования определяют по ГФ Х тимол, обратного – фенол, резорцин, кислоту салициловую, синэстрол и другие ЛВ.

М.э. = ¼ М.м. (тимол)

М.э. = 1/6 М.м. (фенол, резорцин, кислота салициловая)

М.э. = 1/8 М.м. (синэстрол)

2.9. Йодометрия

Основана на электрофильном замещении атомов водорода ароматического кольца на йод.

Для связывания йодоводородной кислоты, смещающей равновесие в обратную сторону, добавляют ацетат или гидрокарбонат натрия.

HI + NaHCO 3 → NaI + H 2 O + CO 2

HI + CH 3 COONa → NaI + CH 3 COOH

Используют способы прямого и обратного титрования. В последнем – избыток йода оттитровывают тиосульфатом натрия.

I 2 + 2NaS 2 O 3 → 2NaI + Na 2 S 4 O 6

М.э. = 1/6 М.м. (фенол)

2.10. Йодхлорметрия

Метод основан на электрофильном замещении атомов водорода ароматического кольца на йод, входящий в состав йодмонохлорида.

Используют способ обратного титрования – избыток йодмонохлорида определяют йодометрически.

ICl + KI → I 2 + KCl

I 2 + 2Na 2 S 2 O 6 → 2NaI + Na 2 S 4 O 6

М.э. = 1/6 М.м. (фенол)

2.11. Метод ацетилирования

Используют по ГФ Х для количественной оценки синэстрола.

М.э. = ½ М.м.

2.12. Алкалиметрический метод нейтрализации в среде протофильного растворителя диметилформамида (ДМФА).

ЛВ группы фенолов проявляют очень слабые кислотные свойства, их определение алкалиметрическим методом нейтрализации в водных или смешанных средах невозможно, поэтому используют титрование в среде неводных растворителей, в частности, ДМФА. Метод основан на солеобразовании определяемой слабой кислоты (фенола) с титрантом (метилатом натрия) в среде протофильного растворителя, усиливающего кислотные свойства.

Суммарно:

2.13. Фотоколориметрия (ФЭК) и спектрофотометрия (СФМ)

Основана на свойстве окрашенных растворов поглощать немонохроматический (ФЭК) или монохроматический (СФМ) свет в видимой области спектра.

Получение окрашенных растворов;

Измерение оптической плотности (D), характеризующей поглощение электромагнитного излучения раствором, содержащим анализируемое вещество;

Проведение расчётов на основе основного закона светопоглощения с использованием калибровочного графика, удельного коэффициента поглощения, раствора стандартного образца.

При определении этими методами ЛВ, содержащих фенольный гидроксил, получают окрашенные соединения на основе реакций комплексообразования с ионами железа (III), азосочетания с солями диазония и образования индофенолового красителя.

РЕАКЦИИ по ОН - группе 2. РЕАКЦИИ по ароматическому кольцу

- кислотные свойства (+ Na, NaOH; феноксиды – слабые кислоты, + Н 2 СО 3) - электрофильное замещение

-нуклеофильное замещение - бромирование

Взаимодействие с галогеноалканами → простые эфиры - нитрование см. тему «Аромати

Взаимодействие с галоенангидридами → сложные эфиры - сульфирование ческие УВ»

Алкилирование

3. ОКИСЛЕНИЕ. Окисляются легко, кислородом воздуха (сравни с бензолом?).

ФЕНОЛ → п-ХИНОН → ядро разрушается.

Двухатомные фенолы окисляются еще легче: РЕЗОРЦИН → м-ХИНОН→ п –ХИНОН

ПИРОКАТЕХИН → о-ХИНОН → п-ХИНОН сравни – какой из фенолов окисляется

ГИДРОХИНОН → п -ХИНОН быстрей?

Все фенолы дают с раствором FеС1 3 окрашенные соединения:

Одноатомные фенолы → фиолетовый цвет;

Многоатомные →окраска различных оттенков (резорцин→фиолетовый, пирокатехин →зеленый, гидрохинон→грязно-зеленое, переходящее в желтый цвет).

ПРИМЕНЕНИЕ:

ФЕНОЛ (карболовая кислота) – для дезинфекции инструмента, белья, предметов ухода за больными, помещений; для консервирования лекарственных веществ и сывороток. Иногда при кожных заболеваниях в составе мазей. ПИКРИНОВАЯ КИСЛОТА - при лечении ожогов, реактив в аналитической химии (на Na +). ТИМОЛ – антисептическое средство при заболеваниях ЖКТ, противоглистное, в стоматологии как обезболивающее, как консервант фарм. препаратов. РЕЗОРЦИН – наружно при кожных заболеваниях (экзема, микозы). АДРЕНАЛИН – повышает АД; при бронхиальной астме, аллергических реакциях, при шоке, глаукоме и т.д.

ОПОРНЫЙ КОНСПЕКТ К ТЕМЕ «ПРОСТЫЕ ЭФИРЫ»

ПРОСТЫЕ ЭФИРЫ – продукты замещения атома водорода в гидроксильной группе спирта или фенола на УВ радикал.

Общая формула R 1 - О – R 2 .

НОМЕНКЛАТУРА: по радикально – функциональной номенклатуре перечисляют радикалы в алфавитном порядке, добавляя название класса «эфир».

ИЗОМЕРИЯ: структурная (изомерия радикалов – прямая и разветвленная цепь); межклассовая ИЗОМЕРИЯ (простым эфирам изомерны спирты).

ХИМИЧЕСКИЕ СВОЙСТВА (мало реакционноспособны):

- основные свойства (с разб. НС1) → оксониевые соли (не устойчивы).

- расщепление простых эфиров (конц. Н 2 SO 4) → спирт + алкилсерная кислота

(конц. НI) → спирт + галогеноалкан

(изб. конц. НI) → 2 галогеноалкана

- окисление: простой эфир → пероксид → гидропероксид → альдегид (раздражает дыхательные пути)

(взрывоопасны)

Формула пероксида R – О – О – R, формула гидропероксида R – О – ОН.

ПРОВЕРКА ПЕРЕКИСНЫХ СОЕДИНЕНИЙ В РАСТВОРЕ ЭФИРА:


К раствору эфира добавляют КI в сернокислой среде. Если в растворе эфира есть перекисные соединения, то КI (восстановитель) окисляется до свободного I 2 , который обнаруживают по посинению крахмала. Если в растворе нет пероксидных соединений, то раствор крахмала не посинеет.

ПРИМЕНЕНИЕ:

ДИЭТИЛОВЫЙ ЭФИР (этоксиэтан) – наружно в составе мазей и линиментов, для изготовления настоек и экстрактов в фарм. промышленности. В хирургии для ингаляционного наркоза.

БУТИЛВИНИЛОВЫЙ ЭФИР (винил→ винилен, или бальзам Шостаковского) – для лечения фурункулов, трофических язв, ожогов.

ДЕМИДРОЛ – противогистаминное (противоаллергическое), легкое снотворное.

КАЧЕСТВЕННАЯ РЕАКЦИЯ НА ДИМЕДРОЛ:

Димедрол + конц. Н 2 SО 4 → димедролоксония гидросульфат (окрашивание от желтого до кирпично-красного цвета), при добавлении воды окрашивание разрушается, => соль разрушается.

ОПОРНЫЙ КОНСПЕКТ К ТЕМЕ «АЛЬДЕГИДЫ И КЕТОНЫ».

АЛЬДЕГИДЫ – карбонильные соединения, которые содержат в своем составе альдегидную группу. //

Общая формула R – С

КЕТОНЫ – карбонильные соединения, которые в своем составе содержат кетогруппу. Общая формула R – С - R

НОМЕНКЛАТУРА: альдегиды – называют алкан + аль , кетоны - называют алкан + он .

ХИМИЧЕСКИЕ СВОЙСТВА:

1.РЕАКЦИИ ПО КАРБОНИЛЬНОЙ ГРУППЕ – НУКЛЕОФИЛЬНОЕ ПРИСОЕДИНЕНИЕ

Гидрирование → образование одноатомного спирта

Гидратация (кетоны не взаимодействуют с Н 2 О) → образование двухатомного спирта

Присоединение НСN, ее солей → образование гидроксинитрила

Присоединение NaHSO 3 → образование гидросульфитного соединения

Присоединение спиртов (кетоны не взаимодействуют) → образование полуацеталей (с 1 молекулой спирта), ацеталей (с 2 молекулами - спирта)

Полимеризация: 1) циклическая (следы минеральных кислот – Н 2 SО 4 , НС1 и т.д.) → паральдегид

2) линейная (Т, Н +) → незамкнутые цепи молекул различной длины

(кетоны не полимеризуются)

Альдольная конденсация (в щелочной среде) → альдоль (гидроксиальдегиды)

(кетоны в реакцию конденсации не вступают).

2. РЕАКЦИИ ЗАМЕЩЕНИЯ НА АТОМ «О» В КАРБОНИЛЬНОЙ ГРУППЕ – реакции характерны одинаково для альдегидов и кетонов

Замещение на галоген (с РС1 5) → галогеноалканы

Взаимодействие с NН 3 и его производными (аминами, NН 2 – NН 2 , NН 2 ОН, NН 2 – NНС 6 Н 5)→ основания Шиффа (имин, замещенный имин, гидразон, оксим, фенилгидразон).

3. РЕАКЦИИ ОКИСЛЕНИЯ (легче окисляется альдегид, кетон окисляется сильными окислителями с расщеплением углеродной цепи)

Реакция «серебряного зеркала» с реактивом Толленса - (Ag(NH 3) 2)OH→серебристый налет на стенках пробирки

С реактивом Несслера - К 2 НgI 4 в КОН → черный осадок Нg

Со свежеприготовленным раствором Сu(ОН) 2 → кирпично-красный осадок Сu 2 О.

4. РЕАКЦИИ УГЛЕВОДОРОДНОГО РАДИКАЛА

Для предельных альдегидов – реакции свободнорадикального замещения (см. тему АЛКАНЫ)

Для ароматических альдегидов – реакции электрофильного замещения (см. тему АРЕНЫ)

ПРИМЕНЕНИЕ: ФОРМАЛЬДЕГИД (формалин) – дезинфецирующее, дезодорирующее средство для мытья рук, обмывания кожи при повышенной потливости, для консервации анатомических и биологических объектов; МЕТЕНАМИН (уротропин, гексаметиленамин) – днзинфецирующее средство при заболеваниях мочевого пузыря, как противоподагрическое, при ревматизме. Входит в состав противогриппозного препарата «Кальцекс»; ХЛОРАЛГИДРАТ – снотворное, успокаивающее, противосудорожное.

ОПОРНЫЙ КОНСПЕКТ К ТЕМЕ «ОДНООСНОВНЫЕ КАРБОНОВЫЕ КИСЛОТЫ»

КАРБОНОВЫЕ КИСЛОТЫ – это органические соединения, содержащие карбоксильную группу (- СООН).

КЛАССИФИКАЦИЯ

по числу карбоксильных групп по характеру углеводородного радикала

(одноосновные – одна – СООН, двухосновные – две – СООН) (предельные, непредельные, ароматические)

НОМЕНКЛАТУРА: алкан + овая кислота

ХИМИЧЕСКИЕ СВОЙСТВА:

1.КИСЛОТНЫЕ СВОЙСТВА – диссоциация (индикаторы меняют окраску в водных растворах карбоновых кислот)

Реакция нейтрализации (взаимодействие с щелочными и щелочноземельными металлами, их оксидами и основаниями).

2. РЕАКЦИИ НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ - реакция этерификации (образование сложного эфира)

Взаимодействие с РС1 5 (образование галогенангидрида)

Взаимодействие с карбоновой кислотой (образование ангидрида)

Взаимодействие с аммиаком (образование амидов)

3.РЕАКЦИИ ПО УГЛЕВОДОРОДНОМУ РАДИКАЛУ

Свободнорадикальное замещение для предельных карбоновых кислот (см. тему АЛКАНЫ)

Электрофильное присоединение для непредельных карбоновых кислот (см. тему АЛКЕНЫ, реакция идет против правила Марковникова),

Электрофильное замещение для ароматических кислот (см. тему АРЕНЫ).

ПРИМЕНЕНИЕ:

МУРАВЬИНАЯ КИСЛОТА – спиртовый раствор кислоты «муравьиный спирт» при невралгиях как раздражающее средство.

УКСУСНАЯ КИСЛОТА – консервант и приправа, для синтеза лекарственных препаратов.

БЕНЗОЙНАЯ КИСЛОТА – наружно как противомикробное и противогрибковое средство.

БЕНЗОАТ НАТРИЯ - отхаркивающее.

КАЧЕСТВЕННЫЕ РЕАКЦИИ:

Муравьиная кислота (восстановитель) + реактив Толленса → серебристый налет на стенках пробирки

Уксусная кислота + р-р FеС1 3 → красно-бурый раствор ацетата железа (111)

Бензойная кислота + р-р FеС1 3 в слабощелочной среде → осадок оранжево-розового цвета основной бензоат железа (111).

ОПОРНЫЙ КОНСПЕКТ К ТЕМЕ «ДВУХОСНОВНЫЕ КАРБОНОВЫЕ КИСЛОТЫ»

ДВУХОСНОВНЫЕ КАРБОНОВЫЕ КИСЛОТЫ – это производные УВ, в молекулах которых два атома водорода замещены на две – СООН.

ОБЩАЯ ФОРМУЛА О О

КЛАССИФИКАЦИЯ – по характеру углеводородного радикала (предельные, непредельные, ароматические)

НОМЕНКЛАТУРА: алкан + диовая кислота

ХИМИЧЕСКИЕ СВОЙСТВА:

1.КИСЛОТНЫЕ СВОЙСТВА

Диссоциация два ряда солей – кислые и средние

Реакция нейтрализации

2.РЕАКЦИИ НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ

Образование сложных эфиров

- образование амидов полных и неполных

Образование галогенангидридов

3.СПЕЦИФИЧЕСКИЕ РЕАКЦИИ (отношение к нагреванию)

- декарбоксилирование (характерно для щавелевой и малоновой кислот) → одноосновная карбоновая кислота + СО 2

- дегидратация (характерна для остальных гомологов двухосновных карбоновых кислот) → ангидрид соответсвующей кислоты + Н 2 О

(пяти- и шестичленные циклы)

ПРИМЕНЕНИЕ:

ЩАВЕЛЕВАЯ КИСЛОТА – реагент в аналитической химии на Са 2+

КАЧЕСТВЕННАЯ РЕАКЦИЯ

НООС – СООН + СаС1 2 → СаС 2 О 4 ↓ + 2НС1

белый осадок

ОПОРНЫЙ КОНСПЕКТ К ТЕМЕ «АМИДЫ КИСЛОТ»

АМИДЫ КАРБОНОВЫХ КИСЛОТ – производные карбоновых кислот, в молекулах которых ОН - группа замещена на NН 2 – группу.

ОБЩАЯ ФОРМУЛА АМИДА О ФОРМУЛА МОЧЕВИНЫ

// NH 2 – C – NH 2

ХИМИЧЕСКИЕ СВОЙСТВА АМИДОВ КАРБОНОВЫХ КИСЛОТ:

1.кислотные свойства (очень слабые) с НgО → амид карбоновой кислоты ртути (11)

2. основные свойства (слабые) с НС1 → гидрохлорид амида карбоновой кислоты

3. гидролиз → карбоновая кислота и аммиак

ХИМИЧЕСКИЕ СВОЙСТВА МОЧЕВИНЫ (карбамида):

1.основные свойства (+ НNО 3 , или + Н 2 С 2 О 4) → нитрат мочевины↓, или гидрооскалат мочевины↓

2. гидролиз: а) щелочной

б) кислотный

3. образование уреидов (+ галогенангидрид карбоновой кислоты) → уреид карбоновой кислоты

4. образование уреидокислоты (+ α-хлоркарбоновая кислота) → уреидокарбоновая кислота

5. образование биурета.

КАЧЕСТВЕННАЯ РЕАКЦИЯ НА БИУРЕТ (на амидную связь) + Сu(ОН) 2 +NаОН → хелатный комплекс красно-фиолетового цвета (сине-фиолетового цвета).

ПРИМЕНЕНИЕ:

МОЧЕВИНА – для синтеза многих лекарственных препаратов (например, барбитуратов),

БРОМИЗОВАЛ (α- бромизовалериановая кислота) – успокаивающее,

УРЕТАН (этилкарбамат) – снотворное средство.

ОПОРНЫЙ КОНСПЕКТ К ТЕМЕ «СЛОЖНЫЕ ЭФИРЫ. ТРИАЦИЛГЛИЦЕРИНЫ – ЖИРЫ».

СЛОЖНЫЕ ЭФИРЫ - продукт взаимодействия карбоновых кислот и спирта. Общая формула сложного эфира R – COOR 1 .

ЖИРЫ – сложные эфиры высших карбоновых кислот и многоатомного спирта – глицерина. СН 2 - СН - СН 2

COR 1 COR 2 COR 3

КЛАССИФИКАЦИЯ ЖИРОВ:

По происхождению (животные, растительные)

По консистенции (твердые, жидкие)

В зависимости от состава карбоновых кислот (простые, сложные).

В СОСТАВ ЖИРОВ ВХОДЯТ: пальмитиновая кислота С 15 Н 31 – СООН предельные карбоновые кислоты

стеариновая кислота С 17 Н 35 – СООН

олеиновая кислота С 17 Н 33 – СООН

Линолевая кислота С 17 Н 31 – СООН непредельные карбоновые кислоты

линоленовая кислота С 17 Н 29 – СООН

ХИМИЧЕСКИЕ СВОЙСТВА СЛОЖНЫХ ЭФИРОВ ХИМИЧЕСКИЕ СВОЙСТВА ЖИРОВ:

Гидролиз: 1) в кислой среде – обратимый, - гидролиз 1) в кислой среде - обратимый

2) в щелочной среде – необратимый. 2) в щелочной среде - необратимый

Восстановление → образование 2-х молекул СП 3) ферментативный – под действием липаз

Образование амида кислоты (взаимодействие с аммиаком) - гидрогенизация (восстановление) → получение твердого жира

Окисление (прогоркание) → смесь карбоновых кислот.

ПРИМЕНЕНИЕ:

МАСЛО КАКАО – суппозиторная основа,

МАСЛО КАСТОРОВОЕ – внутрь, как слабительное,

МАСЛО ЛЬНЯНОЕ – наружно при поражениях кожи,

РАСТИТЕЛЬНЫЕ ЖИРЫ (персиковое и др.) – растворители,

ЛИНЕТОЛ - наружно при ожогах и лучевых поражениях кожи, внутрь для профилактики и лечении атероскероза.

ОПОРНЫЙ КОНСПЕКТ К ТЕМЕ «АМИНЫ»

АМИНЫ – производные NH 3 , в котором атомы водорода частично или полностью замещены углеводородными радикалами (жирного, ароматического рядов или смешанные).

КЛАССИФИКАЦИЯ: первичные R – NH 2, вторичные R – NH – R, третичные N(R) 3 . НОМЕНКЛАТУРА: радикалы в алфавитном

порядке + амин

1. Кислотные свойства. Фенолы - слабые кислоты, они слабее, чем угольная и карбоновые кислоты, со щелочами дают феноляты и воду:

но из растворов фенолятов фенолы вытесняются углекислым газом:


Приведенными реакциями пользуются при выделении фенолов из смеси с другими соединениями.

Фенолы, как и спирты, не изменяют окраски индикаторов, но кислотные свойства у них выражены хотя и слабо, но сильнее чем у воды и спиртов: С 6 Н 5 ОН > Н 2 0 > С 2 Н 5 ОН. У фенолов р-электроны кислорода входят в сопряжении с π-электронами ядра (энергия ~2 ккал/моль), увеличивая электронную плотность в орто- и пара-положениях. Это приводит к активации ядра в электрофильных реакциях замещения и к поляризации связи О←Н.

Кислотные свойства фенола усиливаются, если имеются электроноакцепторные группы, связанные с ядром, такие, как -N0 2 , -SO 3 H и др.

Например, в этом ряду пикриновая кислота (2,4,6-тринитрофенол) является самой сильной, по константе диссоциации приближается к минеральным кислотам.

89.

а) м-крезол + едкий калий; б) п-крезолят натрия + углекислота; в) тимол + едкий натр; г) пикриновая кислота + поташ; д) фенолят калия + углекислота; е) 2,4-динитрофенол + сода: ж) тимолят натрия + углекислота; з) п-крезол + едкий натр.

Качественная реакция на фенолы. Для открытия фенолов и енолов (енольных форм некоторых альдегидов и кетонов) используют цветную реакцию с водным раствором хлорного железа. Обычно появление окрашивания от синего до фиолетового указывает на присутствие фенолов, от кроваво-красного до василькового - алифатических енолов. В отличие от енолов фенолы лучше дают реакцию в присутствии воды:

90. Для фенолов, приведенных в упражнении 87, напишите уравнения цветной реакции с хлорным железом.

2. Реакция образования простых и сложных эфиров. Фенолы в отличие от спиртов труднее образуют простые и сложные эфиры. Простые эфиры фенолов получаются при действии на феноляты галогенпроизводных, в присутствии медного порошка:



Фенолы непосредственно карбоновыми кислотами не этерифицируются. Сложные эфиры фенолов и карбоновых кислот могут быть приготовлены действием ангидридов или галогенангидридов кислот на феноляты или на растворы фенолов в пиридине.

91. Напишите уравнения реакций и назовите продукты.

а) фенолят калия + метилбромид;

б) фенолят натрия + изопропилхлорид;

в) о-крезолят натрия + трет-бутилхлорид;

г) м-крезолят калия + уксусный ангидрид;

д) фенол (в пиридине) +уксусный ангидрид;

е) п-крезолят натрия + ацетилхлорид;

ж) п-крезол (в пиридине) + уксусный ангидрид;

з) п-крезолят натрия + уксусный ангидрид;

и) п-крезолят натрия + метилйодид;

к) м-крезолят натрия + метилбромид.

3. Реакция замещения гидроксила на галоген у фенолов идет труднее, чем у спиртов, ибо связь С-ОН у фенолов более прочная. Галогеноводороды на фенолы не действуют, a PCl 5 с небольшим выходом образует хлорбензол. Процесс осложняется побочными реакциями.

4. Восстановление фенолов в арены происходит при перегонке фенолов с цинковой пылью;

С 6 Н 5 - ОН + Zn → С 6 Н 5 + ZnO

92. Для фенолов, приведенных в упражнении 87, напишите уравнения реакций восстановления цинковой пылью. Назовите продукты реакции.

В результате взаимодействия с альдегидами образуются олигомеры и , строение которых зависит от:

  • функциональности использованного фенола,
  • типа альдегида,
  • мольного соотношения реагентов,
  • рН реакционной среды.

При этом образуются либо линейные (или слабо разветвленные) продукты, которые называются новолаками , либо сильно разветвленные термореактивные олигомеры, названные резолами .
В фенолах реакционноспособными являются водорода, находящиеся в орто- и пара- положениях к гидроксильной группе. Поэтому из одноатомных фенолов трифункциональными являются фенол , и , а из двухатомных- резорцин :
К бифункциональным относятся фенолы с заместителем в орто- или пара- положении- о- и п- крезолы 2,3- , 2,5- и 3,4- ксиленолы :
2,6- и 2,4- ксиленолы - монофункциональны.

При и фурфурола с трифункциональными фенолами могут получаться как , так и олигомеры. Бифункциональные фенолы образуют только термопластичные олигомеры.
Из альдегидов лишь формальдегид и фурфурол способны образовывать термореактивные олигомеры при поликонденсации с трифункциональными фенолами. Другие альдегиды (уксусный, масляный и т. д.) вследствие пониженной химической активности и пространственных затруднений не образуют термореактивных олигомеров.

Термопластичные (новолачные) олигомеры образуются в следующих случаях:

  • при избытке фенола (соотношение фенол: формальдегид 1: 0,78-0,86 ) в присутствии кислотных катализаторов; при отсутствии избытка фенола образуются резольные олигомеры;
  • при большом избытке формальдегида (соотношение фенол: формальдегид 1: 2-2,5 ) в присутствии сильных кислот в качестве катализатора; получаемые в этом случае олигомеры не отверждаются при нагревании, но при добавлении к ним небольшого количества оснований переходят в неплавкое и нерастворимое состояние.

Термореактивные (резольные) олигомеры образуются в следующих случаях:

  • при поликонденсации избытка трифункционального фенола с формальдегидом в присутствии основных катализаторов (в щелочной среде термореактивные олигомеры получаются даже при очень большом избытке фенола, который в этом случае остается растворенным в продукте реакции);
  • при небольшом избытке формальдегида в присутствии как основных, так и кислотных катализаторов.
    Особенностью взаимодействия фенолов с формальдегидом является использование формальдегида главным образом в виде водных растворов. Такой раствор имеет сложный состав вследствие протекания следующих :

СН 2 О + Н 2 О <=> НОСН 2 ОН
НО(СН 2 О) n Н + НОСН 2 ОН <=> НО(СН 2 О) n+1 Н + Н 2 0
НО(СН 2 О) n Н + СН 3 ОН <=> СН 3 О(СН 2 О) n Н + Н 2 0

В реакции с фенолом участвует наиболее реакционноспособный свободный формальдегид , концентрация которого в растворе мала. По мере расходования формальдегида происходит смещение равновесия влево . При этом скорость образования формальдегида выше скорости его расходования на реакцию с фенолом. Поэтому в процессе взаимодействия фенола с формальдегидом стадии дегидратаций метиленгликоля , деполимеризации олигооксиметиленгликолей и разложения полуацеталей не являются лимитирующими.
Кинетика и механизм процесса образования фенолоформальдегидных олигомеров определяются типом используемого катализатора. В присутствии кислот реакция протекает следующим образом:
Вначале эти соединения образуются примерно в равных количествах, затем вследствие более высокой реакционной способности доля пара-изомера становится меньше. Суммарное содержание моногидроксиметилфенолов в реакционной среде вначале возрастает, достигая 6-8% , а затем начинает снижаться, поскольку скорость реакций присоединения почти на порядок ниже скорости реакций конденсации.

По мере протекания конденсации образуются 4,4′- и 2,4′ -дигидроксидифенилметаны , а затем в меньшем количестве 2,2′ -дигидроксидифенилметан :
В продуктах реакции на начальной стадии конденсации обнаружены также 1,3-бензодиоксан и полуацетальные производные гидроксиметилфенолов . При этом в продуктах поликонденсации почти отсутствуют ди- и тригидроксиметилфенолы и . Последние образуются при взаимодействии гидроксиметильных производных фенола друг с другом:
Малая концентрация этих соединений в реакционной массе объясняется их низкой стойкостью. Дигидроксидибензиловые эфиры разлагаются с выделением формальдегида:

Кроме того возможен фенолиз дигидроксидибензиловых эфиров (К=2·10 10 при 25 °С), в результате которого образуется смесь продуктов, содержащая о- гидроксиметилфенол , 2,2′- и 2,4′- дигидроксидифенилметаны , а также трех- и четырехядерные с метиленовыми связями. Ниже приведены данные о константах равновесия этих реакций:

Реакция Константа равновесия
при 25 °С при 100 °С
Образование гидроксиметилфенолов 8·10 3 10 2
Образование дигидроксидифенилметанов 10 9 3·10 6
Образование дигидроксидибензиловых эфиров 8·10 -2 9·10 -3
Разрушение диметиленэфирной связи 2·10 6 5·10 6

Как видно из значений констант равновесия, образование метиленового мостика между фенильными ядрами термодинамически намного выгоднее, чем мостика -СН 2 ОСН 2 - (соответствующие константы равновесия различаются на 8-9 порядков). В обычных условиях синтеза фенолоформальдегидных олигомеров, при использовании формальдегида в виде водных растворов, образование дигидроксидибензиловых эфиров практически невозможно.

При использовании орто-замещенных производных фенола соответствующие орточизомеры дополнительно стабилизируются за счет образования внутримолекулярной водородной связи:
На последующих стадиях химического процесса происходит взаимодействие моногидроксиметильных производных фенола с дигидроксидифенилметанами . Реакции присоединения и конденсации, протекающие в кислой среде, имеют первый порядок по каждому из реагентов, в константы скорости - прямо пропорциональны активности водорода. Энергии активации реакций присоединения 78,6-134,0 кДж/моль , реакции конденсации фенола с о- гидроксиметилфенолом 77,5-95,8 кДж/моль и n- гидроксиметилфенолом 57,4-79,2 кДж/моль .

Скорость реакций присоединения и конденсации по незамещенным орто- положениям новолачного олигомера мало зависит от , т. е. все свободные орто- положения имеют равную реакционную способность.

Увеличение конверсии мономеров приводит к разделению реакционной массы на два слоя: водный и олигомерный, после чего реакция продолжается в гетерогенной системе. Взаимодействие на границе раздела фаз практически не имеет значения ввиду относительно медленного протекания рассматриваемых реакций.

Наличие в феноле трех реакционноспособных групп создает предпосылки для изомерии фенолоформальдегидных олигомеров . Их изомерный состав определяется соотношением скоростей реакций по о- и п – положениям фенольных ядер. Реакционная способность этих положений зависит от природы катализатора, pH среды и температуры.

В условиях, обычных для получения новолачных (катализатор – кислота, pH=0-2 , 37%-ный раствор форалина, температура около 100 °С) незамещенные пара- положения фенольных звеньев и пара- гидроксиметильные группы значительно активнее соответствующих орто- положений и орто- гидроксиметильных групп. Это различие особенно значительно в случае реакции конденсации, что видно из данных, приведенных ниже:

Реакции Константа скорости,

k·10 5 с -1

Энергия активации,

КДж/моль

Фенол -> о-гидроксиметилфенол 1,5 93,5
Фенол -> п -гидроксиметилфенол 1,8 79,6
о-Гидроксиметилфенол ->

2,2′-дигидроксидифенилметан

5,9 96,0
п-Гидроксиметилфенол ->

2,4′-дигидроксидифенилметан

35,6 79,3
о-Гидроксиметилфенол ->

2,4′-дигидроксидифенилметан

14,8 78,0
п-Гидроксиметилфенол ->

4,4′-дигидроксидифенилметан

83,9 72,5

Скорость реакций по орто- положениям возрастает с увеличением рН и температуры. Изомерный состав продуктов поликонденсации в водном растворе мало зависит от природы кислоты. В случае проведения поликонденсации в органических растворителях (этиловый спирт, толуол, тетрахлорэтан) доля орто- замещения снижается в ряду кислот: уксусная >щавелевая >бензолсульфокислота> соляная.
В обычных новолаках содержится 50-60% орто- , пара- метиленовых связей, 10- 25% орто- , орто- и 25-30% пара- , пара- метиленовых связей.
В процессе получения фенольных олигомеров образуются линейные и разветвленные продукты. Однако степень разветвленности невелика, так как доля тризамещенных фенольных звеньев составляет 10-15% . Малая степень разветвленности объясняется тем, что исходная смесь изомеров содержит избыток фенола.

Поликонденсация в кислой среде

При кислотном катализе реакция протекает по следующему механизму. Сначала происходит
Далее возникший карбониевый ион атакует фенол, образуя :
В кислой среде гидроксиметилфенолы образуют сравнительно устойчивые и долгоживущие карбониевые ионы, которые реагируют как электрофильные агенты с фенолом или его гидроксиметильными производными :
В общем виде процесс получения новолака может быть представлен схемой:Уменьшение избытка фенола в исходной смеси сопровождается возрастанием молекулярной массы образующегося новолака , и при соотношении, близком к эквимольному, можно получить полимер пространственного строения.

В новолаков, полученных из трифункционального фенола или смеси фенолов, содержащей хотя бы один трифункциональный фенол , еще остаются активные водорода в орто- и пара – положениях к фенольным гидроксилам. Поэтому при обработке их формальдегидом заменив кислотный катализатор основным, можно получить резол непосредственно неплавкий и нерастворимый полимер резит .

Резит получается также при действии на новолак полимеров формальдегида (параформ , α -полиоксиметилен , β- полиоксиметилен ) или гексаметилентетрамина. В последнем случае, по-видимому, в процессе отверждения участвуют ди- и триметиламины , образующиеся при разложении гексаметилентетрамина, а выделяющийся аммиак играет роль катализатора.

Новолаки, полученные из бифункциональных фенолов (о- и п- крезолов), при обработке формальдегидом не переходят в неплавкое и нерастворимое состояние. Однако если такие олигомеры нагревать выше 180 °С , они способны переходить, хотя и медленно, в неплавкое и нерастворимое состояние.

Аналогичная картина наблюдается при 250-280 °С и для новолаков, получаемых поликонденсацией 1 моль фенола с 0,8 моль формальдегида , что можно объяснить активацией атомов водорода в мета- положении к фенольным гидроксилам или взаимодействием последних с образованием эфирных связей.

Поликонденсация в щелочной среде

При взаимодействии фенола, с формальдегидом в щелочной среде так же, как и в случае кислотного катализа, сначала образуются о- и п- гидроксиметилфенолы , затем 2,4- и 2,6- дигидроксиметилфенолы и, наконец, тригидроксиметилфенолы . В поликонденсании, преимущественно участвуют пара- гидроксиметильные группы и незамещенные пара- положения фенольных ядер.

Из гидроксиметильных производных наиболее реакционноспособным является 2,6- дигидрокоимеилфенол , который быстро реагирует с формальдегидом с образованием тригидроксиметилфенола . Образующиеся в щелочной среде гидроксиметилфенолы (в отличие от кислой) весьма устойчивы. Поэтому при температуре реакции не выше 60 °С гидрокеиметилфенолы остаются практически единственными продуктами реакции.

С повышением температуры гидроксиметилпроизводные начинают взаимодействовать как между собой, так и с фенолом. Основным продуктом при гомоконденсации п- гидроксиметилфенола является 5- гидроксиметил-2,4′- дигидроксидифенилметан:
При этом по аналогии с кислотным катализом также происходит образование 4,4′- дигидроксидифенилметана . Однако, поскольку это соединение обнаружено и в отсутствие фенола, реакция, по-видимому протекает через промежуточное образование неустойчивого дигидроксидибензилового эфира:

Следует отметить, что в щелочной среде вообще устойчивые соединения с диметиленэфирной связью

-СН 2 ОСН 2 -

в заметных количествах не образуются. Соотношение паpa- и орто- замещенных гидроксиметилфенолов зависит от с уменьшением рН доля пара- замещённых продуктов уменьшается (при рН=13 оно составляет 0,38, при рН=8,7 оно равно 1,1).
В зависимости от использованного щелочного катализатора в ряду катионов это соотношение увеличивается в следующей последовательности:
Mg

При рН≤9 реакции присоединения имеют первый порядок по фенолу и формальдегиду, скорость их прямо пропорциональна концентрации ОН – -ионов. Для катализа NaOH при 57 °С и рН≈8,3 получены следующие значения констант скорости и энергии активации:

Реакции Константа скорости, k·10 5 , л·моль/с Энергия активации, кДж/моль
Фенол -> о-гидроксиметилфенол 1,45 68,55
Фенол -> п -гидроксиметилфенол 0,78 65,20
о-Гидроксиметилфенол ->

2,6′-дигидроксиметилфенол

1,35 67,71
о-Гидроксиметилфенол ->

2,4′-дигидроксиметилфенол

1,02 60,61
п -Гидроксиметилфенол ->

2,4′-дигидроксиметилфенол

1,35 77,23
п-Гидроксиметилфенол ->

4,4′-дигидроксиметилфенол

83,9 72,5
2,6-Дигидроксиметилфенол ->

2,4,6-тригидроксиметилфенол

2,13 58,40
2,4-Дигидроксиметилфенол ->

2,4,6-тригидроксиметилфенол

0,84 60,19

Таким образом, взаимодействие гидроксиметильных производных между собой происходит быстрее, чем их реакции с фенолом.
Механизм взаимодействия фенола с формальдегидом в условиях основного катализа включает образованание анионов псевдокислоты с высокой нуклеофильностью:
Локализация отрицательного заряда в орто- и пара- положениях псевдокислоты делает их высокореакционноспособными по отношению к электрофильным агентам, в частности к формальдегиду:
Отрицательный заряд в фенолят-ионе смещается к кольцу за счет индуктивного влияния и эффекта сопряжения. При этом электронная плотность в орто- и пара- положениях повышается в большей степени, чем на кислороде гадроксиметильной группы, так как передача заряда через π-связи более эффективна, чем через δ-связи . Поэтому орто- и пара- положения ядра обладают большей нуклеофильностью, чем гидроксиметильная группа.

Следствием этого является атака электрофильного агента по кольцу, что сопровождается образованием метиленовой связи (а не диметиленэфирной). Скорость реакции максимальна при рН=рК а реагентов и минимальна при рН=4-6 . При этих значениях рН резольные олигомеры наиболее стабильны.
Некоторую специфику имеет реакция фенола с формальдегидом при использовании в качестве катализатора аммиака . Аммиак легко количественно реагирует с формальдегидом с образованием гексаметилентетрамина :
Поэтому, наряду с взаимодействием фенола с формальдегидом может протекать реакция фенола с гексаметилентетраамином. Естественно, что вероятность этой реакции зависит от соотношения СН 2 О: NH 3 . Чем оно меньше, тем больше вероятность протекания второй реакции, следствием которой является присутствие в продуктах реакции, наряду с гидроксиметилфенолами, 2- гидроксибензиламина , 2,2′- дигидроксидибензиламина , а также производного бензокоазина строения:
Применение в качестве катализаторов солей, оксидов или гидроксидов металлов приводит в ряде случаев к существенному увеличению доли олигомеров, содержащих орто- замещенные фенольные ядра. Орто-ориентирующим влиянием обладают Zn, Cd, Mg, Са, Sr, Ва, Мn, Со, Ni, Fe, Pb. Орто-ориентирующее влияние указанных катализаторов проявляется особенно заметно при рН = 4-7, когда каталитическое действие ионов Н + и ОН – минимально. Поэтому в качестве катализаторов чаще всего используют соли слабых карбоновых кислот, например, ацетаты .

Образование гидроксиметилфенолов при катализе гидроксидами металлов можно представить следующим образом:
Таким путем можно получать как новолаки, так и резолы. Орто-изомеры преимущественно образуются и в случае некаталитической реакции, для которой предложен механизм, согласно которому реакция идет через Н-комплекс фенол-формальдегид :
Резолы представляют собой смесь линейных и разветвленных продуктов общей формулы:
H-[-C 6 H 2 (ОH) (CH 2 OH)CH 2 ] m -[-C 6 H 3 (OH)CH 2 -] n -OH
где n =2,5 , m =4-10 .
Молекулярная масса резолов (от 400 до 800-1000) ниже, чем новолачных олигомеров, поскольку для предотвращения гелеобразования поликонденсацию проводят очень быстро. При нагревании резолы постепенно отверждаются, то есть превращаются в полимеры пространственного строения.

В процессе отверждения резольных олигомеров различают три стадии:

  • В стадии А , называемой также резольной , олигомер по своим физическим свойствам аналогичен новолачному олигомеру, поскольку так же, как и новолак, он плавится и растворяется в щелочах, спирте и ацетоне. Но в отличие от новолака резол представляет собой нестойкий продукт, который при нагревании переходит в неплавкое и нерастворимое состояние.
  • В стадии В полимер, называемый резитолом , лишь частично растворяется в спирте и ацетоне, не плавится, но еще сохраняет способность размягчаться (при нагревании переходить в высокоэластическое, каучукоподобное состояние) и набухать в растворителях.
  • В стадии С - конечной стадии отверждения - полимер, называемый резитом , представляет собой неплавкий и нерастворимый продукт, не размягчающийся при нагревании и не набухающий в растворителях.

В стадии резита полимер имеет высокую разнозвенность и очень сложное пространственное строение:



Эта формула показывает лишь содержание определенных групп и группировок, но не отражает их количественного соотношения. В настоящее время считается, что фенолоформальдегидные полимеры являются довольно редко сшитыми (небольшое число узлов в трехмерной сетке). Степень завершенности реакции на последней стадии отверждения невелика. Обычно расходуется до 25% функциональных групп, образующих связи в трехмерной сетке.

Список литературы:
Кузнецов Е. В., Прохорова И. П. Альбом технологических схем производства полимеров и пластических масс на их основе. Изд. 2-е. М., Химия, 1975. 74 с.
Кноп А., Шейб В. Фенольные смолы и материалы на их основе. М., Химия, 1983. 279 с.
Бахман А., Мюллер К. Фенопласты. М., Химия, 1978. 288 с.
Николаев А. Ф. Технология пластических масс, Л., Химия, 1977. 366 с.

Loading...Loading...