Урок понятие о скорости химической реакции катализаторы. Урок по химии скорость химических реакций. Проведение практической работы в группах

Разделы: Химия

Цель урока

  • обучающая: продолжить формирование понятия«скорость химических реакций», вывести формулы для вычисления скорости гомогенных и гетерогенных реакций, рассмотреть от каких факторов зависит скорость химических реакций;
  • развивающая: учить обрабатывать и анализировать экспериментальные данные; уметь выяснять взаимосвязь между скоростью химических реакций и внешними факторами;
  • воспитательная: продолжитьразвитие коммуникативных умений в ходе парной и коллективной работы; акцентировать внимание учащихся на важности знаний о скорости химической реакции протекающих в быту (коррозия металла, прокисание молока, гниение и др.)

Средства обучения: Д. мультимедийный проектор, компьютер, слайды по основным вопросам урока, CD-диск «Кирилл и Мефодий», таблицы на столах, протоколы лабораторной работы, лабораторное оборудование и реактивы;

Методы обучения: репродуктивный, исследовательский, частично поисковый;

Форма организации занятий: беседа, практическая работа, самостоятельная работа, тестирование;

Форма организации работы учащихся: фронтальная, индивидуальная, групповая, коллективная.

1. Организация класса

Готовность класса к работе.

2. Подготовка к основному этапу усвоения учебного материала. Активизация опорных знаний и умений (Слайд 1, см. презентацию к уроку).

Тема урока «Скорость химических реакций. Факторы, влияющие на скорость химической реакции».

Задача: выяснить, что есть скорость химической реакции, и от каких факторов она зависит. В ходе урока познакомимся с теорией вопроса по вышеназванной теме. На практике подтвердим некоторые наши теоретические предположения.

Прогнозируемая деятельность учеников

Активная работа учащихся показывает их готовность к восприятию темы урока. Нужны знания учащихся о скорости химической реакции из курса 9 класса (внутрипредметная связь).

Обсудим следующие вопросы (фронтально, слайд 2):

  1. Зачем нужны знания о скорости химических реакций?
  2. Какими примерами можно подтвердить то, что химические реакции протекают с различными скоростями?
  3. Как определяют скорость механического движения? Какова единица измерения этой скорости?
  4. Как определяют скорость химической реакции?
  5. Какие условия необходимо создать, чтобы началась химическая реакция?

Рассмотрим два примера (эксперимент проводит учитель).

На столе – две пробирки, в одной раствор щелочи (КOH), в другой – гвоздь; в обе пробирки приливаем раствор CuSO4. Что мы наблюдаем?

Прогнозируемая деятельность учеников

На примерах учащиеся судят о скорости реакций и делают соответствующие выводы. Запись на доске проделанных реакций (двое учащихся).

В первой пробирке реакция произошла мгновенно, во второй – видимых изменений пока нет.

Составим уравнения реакций (два ученика записывают на доске уравнения):

  1. CuSO 4 + 2КOH = Cu(OH) 2 + К 2 SO 4 ; Cu 2+ + 2OH - = Cu(OH) 2
  2. Fe + CuSO 4 = FeSO 4 + Cu ; Fe 0 + Cu 2+ = Fe 2+ + Cu 0

Какой вывод по проведённым реакциям мы можем сделать? Почему одна реакция идёт мгновенно, другая медленно? Для этого необходимо вспомнить, что есть химические реакции, которые протекают во всём объёме реакционного пространства (в газах или растворах), а есть другие, протекающие лишь на поверхности соприкосновения веществ (горение твёрдого тела в газе, взаимодействие металла с кислотой, солью менее активного металла).

Прогнозируемая деятельность учеников

По результатам демонстрированного эксперимента учащиеся делают вывод: реакция 1 – гомогенная, а реакция

2– гетерогенная.

Скорости этих реакций будут математически определяться по-разному.

Учение о скоростях и механизмах химических реакций называется химической кинетикой.

3. Усвоение новых знаний и способов действий (Слайд 3)

Скорость реакции определяется изменением количества вещества в единицу времени

В единице V

(для гомогенной)

На единице поверхности соприкосновения веществ S (для гетерогенной)

Очевидно, что при таком определении величина скорости реакции не зависит от объёма в гомогенной системе и от площади соприкосновения реагентов – в гетерогенной.

Прогнозируемая деятельность учеников

Активные действия учащихся с объектом изучения. Занесение таблицы в тетрадь.

Из этого следуют два важных момента (слайд 4):

2) рассчитанная величина скорости будет зависеть от того, по какому веществу её определяют, а выбор последнего зависит от удобства и лёгкости измерения его количества.

Например, для реакции 2Н 2 +О 2 = 2Н 2 О: υ (по Н 2) = 2 υ (по О 2) = υ (по Н 2 О)

4. Закрепление первичных знаний о скорости химической реакции

Для закрепления рассмотренного материала решим расчетную задачу.

Прогнозируемая деятельность учеников

Первичное осмысление полученных знаний о скорости реакции. Правильность решения задачи.

Задача (слайд 5). Химическая реакция протекает в растворе, согласно уравнению: А+В = С. Исходные концентрации: вещества А – 0,80 моль/л, вещества В – 1,00 моль/л. Через 20 минут концентрация вещества А снизилась до 0, 74 моль/л. Определите: а) среднюю скорость реакции за этот промежуток времени;

б) концентрацию вещества В через 20 мин. Решение (приложение 4 , слайд 6).

5. Усвоение новых знаний и способов действий (проведение лабораторной работы в ходе повторения и изучения нового материала, поэтапно, приложение 2).

Нам известно, что на скорость химической реакции влияют разные факторы. Какие?

Прогнозируемая деятельность учеников

Опора на знания 8-9 классов, запись в тетради по ходу изучения материала. Перечисляют (слайд 7):

Природа реагирующих веществ;

Температура;

Концентрация реагирующих веществ;

Действие катализаторов;

Поверхность соприкосновения реагирующих веществ (в гетерогенных реакциях).

Влияние всех перечисленных факторов на скорость реакции можно объяснить, используя простую теорию – теорию столкновений (слайд 8). Основная идея её такова: реакции происходят при столкновении частиц реагентов, которые обладают определённой энергией.

Отсюда можно сделать выводы:

  1. Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.
  2. К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Но для этого частицы должны обладать достаточной энергией.

Минимальный избыток энергии (над средней энергией частиц в системе), необходимый для эффективного соударения частиц в системе), необходимый для эффективного соударения частиц реагентов, называется энергией активации Е а.

Прогнозируемая деятельность учеников

Осмысливание понятия и запись определения в тетрадь.

Таким образом, на пути всех частиц, вступающих в реакцию, имеется некоторый энергетический барьер, равный энергии активации. Если он маленький, то находится много частиц, которые успешно его преодолевают. При большом энергетическом барьере необходима дополнительная энергия для его преодоления, иногда достаточно хорошего «толчка». Я зажигаю спиртовку – я сообщаю дополнительную энергию Е а, необходимую для преодоления энергетического барьера в реакции взаимодействия молекул спирта с молекулами кислорода.

Рассмотрим факторы , которые влияют на скорость реакции.

1) Природа реагирующих веществ (слайд 9).Под природой реагирующих веществ понимают их состав, строение, взаимное влияние атомов в неорганических и органических веществах.

Величина энергии активации веществ – это фактор, посредством которого сказывается влияние природы реагирующих веществ на скорость реакции.

Инструктаж.

Самостоятельная формулировка выводов (приложение 3 дома)

Ход урока

I. Организация начала занятия.

II. Подготовка к основному этапу занятия.

III. Конкретизация знаний, закрепление способов действий, систематизация знаний о закономерностях, с помощью которых можно управлять химическими реакциями.

IV. Подведение итогов занятия, информация о домашнем задании.

I. Организация начала занятия

Задача этапа: подготовить учащихся к работе на занятии.

Учитель: сегодня мы продолжим изучение темы «Скорость химической реакции» и выясним, может ли человек, обладая определенными знаниями, управлять химической реакцией. Для решения этой проблемы мы отправляемся в виртуальную лабораторию. Чтобы войти в нее, необходимо показать свои знания о скорости химической реакции.

II . Подготовка к основному этапу занятия

Задачи этапа: актуализация опорных знаний и умений, обеспечение мотивации и принятия учащимися цели урока.

Актуализация знаний учащихся

Учитель организует фронтальную беседу:

Вопрос 1: что изучает химическая кинетика?

Предполагаемый ответ: химическая кинетика - наука о закономерностях протекания химических реакций во времени.

Вопрос 2: на какие две группы можно разделить реакции в зависимости от состояния химических веществ?

Предполагаемый ответ: если химические реакции происходят в однородной среде, например в растворе или газовой фазе, их называют гомогенными. А если реакция идет между веществами, находящимися в разных агрегатных состояниях, их называют гетерогенными.

Вопрос 3: как определить скорость гетерогенной реакции?

Предполагаемый ответ: скорость гетерогенной реакции определяется как изменение количества вещества в единицу времени на единице поверхности (учащийся записывает формулу на доске)

Вопрос 4: как определить скорость гомогенной реакции?

Предполагаемый ответ: Скорость гомогенной реакции определяется как изменение концентрации одного из веществ в единицу времени (учащийся записывает формулу на доске).

Учитель: теперь, используя свой жизненный опыт, предположите:

Вопрос 5: что сгорит быстрее: деревянная доска или древесные стружки?

Предполагаемый ответ: древесные стружки сгорят быстрее.

Вопрос 6: где быстрее сгорит уголь: на воздухе или в кислороде?

Предполагаемый ответ: быстрее уголь сгорит в кислороде.

III. Конкретизация знаний, закрепление способов действий, систематизация знаний о закономерностях, с помощью которых можно управлять химическими реакциями.

Задача этапа: обеспечить усвоение знаний и способов действий, организовав активную продуктивную деятельность учащихся.

Вводный рассказ учителя (сопровождается компьютерной презентацией):

Учитель: используя свой жизненный опыт, вы правильно предположили. Действительно, скорость химической реакции зависит от многих факторов. Основными из них являются: природа и концентрация реагирующих веществ, давление, температура, поверхность соприкосновения реагирующих веществ, действие катализаторов.

По мере работы мы также будем использовать информацию учебника.

Учащиеся под руководством учителя решают каждую экспериментальную задачу, и учитель, используя компьютерную презентацию, подводит учащихся к обоснованным заключениям.

Результат работы:


Закрепление материала.

Задача: для реакции были взяты вещества при температуре 40 С, затем их нагрели до 70 С. Как изменится скорость химической реакции, если температурный коэффициент ее равен 2?

Ответ: в 8 раз увеличится скорость химической реакции.

Учитель: итак, какой вывод мы можем сделать: может ли человек управлять скоростью реакций?

Предполагаемый ответ : да, может, если обладает знаниями о химической кинетике.

IV. Подведение итогов занятия, информация о домашнем задании

Задачи этапа: оценить работу на уроке и показать значение проделанной работы для последующего изучения темы.

Учитель: давайте вспомним ход урока, что мы сегодня узнали, чему научились?

Рефлексия. Высказывания учащихся.

Учитель: домашнее задание: параграф 6.1, выучить информацию таблицы. Выполнить упражнения 5, 6, 8 на стр. 108-109.

Технологическая карта занятия «Скорость химических реакций»

Основные пункты технологической карты

Обязательная общая часть

Наименование дисциплины

Тема урока

Скорость химических реакций

Тип и вид занятия

Комбинированный урок

Повторение, лекция

Цели занятия

(как ожидаемые результаты обучения)

В результате проведённого урока учащиеся:

продолжают формирование понятия «скорость химических реакций», выясняют, от каких факторов зависит скорость химических реакций;

продолжают учиться обрабатывать и анализировать экспериментальные данные; выяснять взаимосвязь между скоростью химических реакций и внешними факторами;

продолжают развитие коммуникативных умений в ходе парной и коллективной работы; акцентировать внимание на важности знаний о скорости химической реакции протекающих в быту (коррозия металла, прокисание молока, гниение и др.)

закрепляют умение работать с электронным пособием, таблицами, справочным материалом, дополнительной литературой

Методы обучения

Частично - поисковый (репродуктивный)

Формируемые компетенции (общие компетенции (ОК) и профессиональные компетенции (ПК))

Общие: формулировать свои ценностные ориентиры по отношению к изучаемым дисциплинам и сферам деятельности;

уметь принимать решения, брать на себя ответственность за их последствия;

осуществлять индивидуальную образовательную траекторию с учётом общих требований и норм;

владеть разными видами речевой деятельности.

Профессиональные: владеть навыками работы с различными источниками информации (электронное пособие, Интернет, словари, справочники, книги, учебники);

самостоятельно искать, извлекать, анализировать и отбирать необходимую для решения учебных задач информацию;

ориентироваться в информационных потоках, уметь осознанно воспринимать информацию;

владеть навыками использования информационных устройств (ПК, принтер);

применять для решения учебных задач информационные и телекоммуникационные технологии: аудио и видеозапись, электронную почту, Интернет;

уметь применять на практике полученные знания.

Тезаурусное поле занятия

Химическая кинетика - раздел химии, в котором изучаются скорости и механизмы химических реакций.

Система в химии - рассматриваемое вещество или совокупность веществ.

Фаза - часть системы, которая отделена от других частей поверхностью раздела.

Гомогенная (однородная) система - система, состоящая из одной фазы.

Гетерогенная (неоднородная) система - система, состоящая из двух или нескольких фаз.

Скорость гомогенной химической реакции - количество вещества, вступающего в реакцию или образующегося в результате реакции в единицу времени в единице объёма системы.

Скорость гетерогенной химической реакции - количество вещества, вступающего в реакцию или образующегося в результате реакции в единицу времени на единице поверхности раздела фаз.

Факторы, влияющие на скорость реакции:

Природа реагирующих веществ;

Концентрация реагирующих веществ;

Температура;

Присутствие катализаторов.

Катализатор - вещество, которое изменяет (увеличивают) скорость реакции, но не расходуется в результате реакции.

Ингибитор - вещество, которое изменяет (замедляют) скорость реакции, но не расходуется в результате реакции.

Ферменты (энзимы) - биологические катализаторы.

Закон действующих масс.

Используемые средства, в т.ч. средства ИКТ

Компьютерный терминал, мультимедийный проектор, демонстрационный экран, ноутбук, колонки, 15 персональных компьютеров, диск с презентациями и показом опытов по гидролизу солей; основная и дополнительная литература

Междисциплинарные и межкурсовые связи

Межпредметные: биология (химические реакции в живом организме), физика (понятие о тепловом эффекте реакций, влияние физических факторов на скорость химической реакции)

Образовательные ресурсы (в т. Ч. Интернет)

Система электронного обучения «Академия-Медиа», химические сайты XuMuk.ru , Alhimik.ru , Полезная информация по химии , основная и дополнительная литература

Этапы занятия

Длительность этапа

Результаты

Критерии и способ оценки

Функция преподавателя

Организация деятельности учащихся

Организация начала занятия

Приветствие

Проверка подготовки студентов к занятию

Готовность оборудования

Запуск системы ЭО

Определение отсутствующих студентов

Приветствие

Дежурный называет отсутствующих студентов

Проверка домашнего задания

Выдача карточек с индивидуальным заданием, вывод на экран заданий для всей группы

Выполнение заданий, самопроверка и проверка в паре

Этап подготовки студентов к активному и сознательному усвоению нового материала

Объявление темы урока и определение его задач

Запись темы в тетрадь

Поиск соответствующей темы в системе ЭО

Актуализация знаний, мотивационный этап

Фронтальная беседа

Постановка вопросов

Управление дискуссией

Ответы на вопросы, дополнение ответов друг друга

Этап усвоения новых знаний

Выдача заданий в электронном пособии, консультации

Работа с электронным пособием

Первичная проверка усвоения знаний

Выдача заданий, контроль выполнения

Выполнение заданий

Первичное закрепление знаний

Демонстрация опытов по теме с помощью проектора и экрана

Наблюдение

Составление уравнений реакций

Контроль и самопроверка знаний. Рефлексивно-контролирующий этап

Контроль написания уравнений, оценка, обобщение

Самопроверка, выводы

Подведение итогов занятия

Проведение анализа успешности достижения цели занятия

Оценка перспективы последующей работы

Информация о домашнем задании, инструктаж по его выполнению

Выдача домашнего задания

Проведение инструктажа по его выполнению

Запись домашнего задания, вопросы по его уточнению



О.И. Иванова, учитель химии МБОУ «Напольнокотякская СОШ» Канашского района ЧР

Урок " Факторы, влияющие на скорость химической реакции"

Цель урока: изучение факторов, влияющих на скорость химической реакции

Задачи:

узнать, какие факторы влияют на скорость химических реакций

научить объяснять влияние каждого фактора;

стимулировать познавательную активность учащихся путём создания проблемной ситуации;

формировать компетенции школьников (учебно-познавательную, коммуникативную, здоровьесбережения);

совершенствовать практические умения учащихся.

Тип урока: проблемно-диалогический.

Формы работы: групповая, индивидуальная.

Оборудование и реактивы: набор пробирок, держатель для пробирок, штатив, спиртовка, лучинка, спички, цинк в гранулах, цинк в порошке, оксид меди в порошке, магний, раствор серной кислоты (10 % -ный раствор), пероксид водорода, дихромат калия, сульфат меди, железный гвоздь, гидроксид натрия, мел.

Ход урока:

1-и этап:

Вызов: Здравствуйте, ребята! Сегодня мы с вами представим себя учёными- исследователями. Но прежде, чем мы приступим к изучению нового материала, мне хотелось бы продемонстрировать небольшой эксперимент. Посмотрите, пожалуйста, на доску и сделайте свои предположения по поводу протекания этих реакций:

А)сульфата меди и железа;

Б)раствора сульфата меди и гидроксида калия

Будут ли протекать эти реакции? Выйдите, пожалуйста, к доске и напишите уравнения этих реакций.

Рассмотрим эти примеры (эксперимент проводит учитель).

На столе - две пробирки, в обоих содержится раствор сульфата меди, но в одной пробирке с добавлением хлорида натрия, в обе пробирки опускаем по грануле алюминия. Что мы наблюдаем?

ПРОБЛЕМА: Почему во втором случае мы не видим признаков реакции, неужели наши предположения неверны?

ВЫВОД : Химические реакции протекают с различными скоростями. Одни идут медленно, месяцами, как, например, коррозия железа или ферментация (брожение) виноградного сока, в результате которой получается вино. Другие завершаются за несколько недель или дней, как, например, спиртовое брожение глюкозы. Третьи заканчиваются очень быстро, например осаждение нерастворимых солей, а некоторые протекают мгновенно, например взрывы.

Практически мгновенно, очень быстро идут многие реакции в водных растворах: это ионные реакции, идущие с образованием осадка, газа или реакции нейтрализации.

А теперь вспомним, что вам известно о скорости химических реакций.

Осмысление понятия. Перечисляют определение, формулы, единицу измерения.

ПРОБЛЕМА: Что нужно знать, чтобы уметь управлять скоростью химической реакции? (Знать, какие условия влияют на скорость)

Как называются эти условия, которые вы сейчас перечислили? (Факторы)

Перед вами на столах стоят химические приборы и реактивы. Как вы думаете, с какой целью вы будете проводить опыты? (С целью изучения влияния факторов на скорость реакций)

Теперь мы с вами подошли к теме сегодняшнего урока. Именно изучением факторов мы будем заниматься на этом уроке.

Пишем в тетрадях название темы и дату.

II этап:

ОСМЫСЛЕНИЕ СОДЕРЖАНИЯ.

Какие же факторы влияют на скорость химических реакций?

Учащиеся перечисляют: температура, природа реагирующих веществ, концентрация, поверхность соприкосновения, катализаторы.

Как они могут изменить скорость реакции? (Ученики предлагают свои предположения)

Учитель: Влияние всех перечисленных факторов на скорость химических реакций можно объяснить, используя простую теорию - теорию столкновений. Основная ее идея такова: реакции происходят при столкновении частиц реагентов, которые обладают определенной энергией. Отсюда можно сделать такие выводы:

Чем больше частиц реагентов, тем больше у них шансов столкнуться и прореагировать.

К реакции приводят лишь эффективные соударения, т.е. такие, при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Но для этого частицы должны обладать определенной энергией.

Минимальный избыток энергии, необходимый для эффективного соударения частиц реагентов, называется энергией активации (запись определения в тетрадях).

Таким образом, на пути всех частиц, вступающих в реакцию, имеется некоторый барьер, равный энергии активации. Если он маленький, то находится много частиц, которые его успешно преодолевают. При большом энергетическом барьере необходима дополнительная энергия для его преодоления, иногда достаточно «хорошего толчка».

Обращаемся к высказыванию Леонардо да Винчи (Знания, не проверенные опытом, бесплодны и полны ошибок).

Учитель: Как вы понимаете значение этих слов? (проверять теорию практикой)

Да, действительно, всякую теорию надо проверять еще и на практике. Далее вам самим предстоит изучение различных факторов на скорость реакций. Для этого вы проведете реакции, руководствуясь инструкциями на ваших столах, оформите протокол опыта. После этого одному учащемуся из группы надо будет выйти к доске, объяснить, влияние какого фактора вы рассмотрели, написать уравнения на доске и сделать вывод согласно теории столкновений и теории активации.

Инструктаж по ТБ.

ПРОВЕДЕНИЕ ПРАКТИЧЕСКОЙ РАБОТЫ В ГРУППАХ

Карточка 1.Факторы, влияющие на скорость химической реакции:

1. Природа реагирующих веществ .

В две пробирки налейте немного серной кислоты.

2. В одну опустите небольшое количество магния, а в другую - гранулу цинка.

3. Сравните скорость взаимодействия различных металлов с серной кислотой.

4. В чём, по вашему мнению, причина различной скорости реакций кислоты с данными металлами.

5. Влияние какого фактора вы выяснили при проведении этой работы?

6. Найдите в протоколе лабораторной работы полуреакции, соответствующие вашему опыту, и допишите уравнения реакций.

Карточка 2. Факторы, влияющие на скорость химической реакции:

2.Концентрация реагирующих веществ.

Будьте осторожны при работе с веществами. Помните о правилах техники безопасности.

1. В две пробирки налейте 1-2 мл серной кислоты.

2. В одну из пробирок добавьте такой же объем воды.

3. В каждую из пробирок поместите гранулу цинка.

4. В какой из пробирок выделение водорода началось быстрее?

Карточка 3. Факторы, влияющие на скорость химической реакции:

3.Площадь соприкосновения реагирующих веществ.

Будьте осторожны при работе с веществами. Помните о правилах техники безопасности.

1. Разотрите небольшой кусочек мела в ступке.

2. В две пробирки налейте немного раствора серной кислоты. Будьте очень осторожны, налейте совсем немного кислоты!

3. Одновременно в одну пробирку поместите порошок, а в другую кусочек мела.

4. В какой из пробирок реакция пройдёт быстрее?

5. Влияние какого фактора вы выяснили в этом эксперименте?

6. Как это можно объяснить с точки зрения теории столкновений?

7. Напишите уравнение реакции.

Карточка 4. Факторы, влияющие на скорость химической реакции:

4.Температура.

Будьте осторожны при работе с веществами. Помните о правилах техники безопасности.

1. В обе пробирки налейте раствор серной кислоты и поместите в них по грануле оксида меди.

2. Одну из пробирок осторожно нагрейте. Сначала нагреваем пробирку чуть наклонно, стараясь прогреть ее по всей длине, затем только нижнюю часть, уже выпрямив пробирку. Пробирку держите держалкой.

3. В какой из пробирок реакция протекает более интенсивно?

4. Влияние какого фактора вы выяснили в этом эксперименте?

5. Как это можно объяснить с точки зрения теории столкновений?

6. Напишите уравнение реакции.

Карточка 5. Факторы, влияющие на скорость химической реакции:

5.Наличие специальных веществ- катализаторов , веществ, которые увеличивают скорость химической реакции.

Будьте осторожны при работе с веществами. Помните о правилах техники безопасности.

В два стаканчика налейте перекись водорода.

В одну из пробирок осторожно присыпьте несколько кристалликов дихромата калия. Перемешайте полученный раствор стеклянной палочкой.

Зажгите лучинку, а потом погасите её. Поднесите тлеющую лучинку к растворам в обоих стаканах как можно ближе к раствору, но не касаясь жидкости. Лучинка должна загореться.

В какой из пробирок наблюдается бурное выделение газа? Какой это газ?

Какую роль в этой реакции выполняет дихромат калия?

Влияние какого фактора вы выяснили в этом эксперименте?

Напишите уравнение реакции.

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ.

Для обсуждения из каждой рабочей группы к доске выходит по одному ученику (по очереди)

Составление сводного протокола лабораторной работы на основе ответов к вопросам практикума.

На доске пишут уравнения реакций и делают соответствующие выводы. Все остальные учащиеся заносят полученные выводы и уравнения в протоколы.

Влияние природы реагирующих веществ

Проблема:

Учитель: массы взятых веществ навесок твёрдых веществ, концентрация соляной кислоты, условия проведения реакции одинаковы, но при этом интенсивность проходящих процессов (скорость выделения водорода) различна?

Обсуждение:

Учащиеся: мы брали разные металлы.

Учитель: все вещества состоят из атомов химических элементов. Чем отличаются химические элементы согласно знанию вами Периодического закона и Периодической системы Д. И. Менделеева?

Учащиеся: Порядковым номером, положением в Периодической системе Д. И. Менделеева, то есть они имеют различное электронное строение, а следовательно простые вещества образованные этими атомами имеют различные свойства.

Учитель: то есть эти вещества имеют различную природу. Таким образом, скорость химической реакции будет зависеть от природы того или иного реагирующего вещества, т. к. они имеют различное строение и свойства.

Вывод:

Учащиеся: Скорость химической реакции будет зависеть от природы реагирующих веществ: чем активнее металл (вещество), тем выше скорость химической реакции.

Влияние концентрации

Проблема: природа всех реагирующих веществ, условия проведения опыта одинаковы, однако интенсивность проходящих процессов (скорость выделения водорода) различна?

Обсуждение:

Учитель: почему скорость химической реакции разная, ведь реагируют одинаковые по химической природе вещества?

Учащиеся: При добавлении воды, мы изменили (уменьшили) концентрацию серной кислоты в одной пробирке, при этом интенсивность выделения водорода уменьшалась.

Вывод:

Учащиеся: Скорость химической реакции будет зависеть от концентрации реагирующих веществ: чем больше концентрация реагирующих веществ, тем выше скорость химической реакции.

Пояснение учителя: КОНЦЕНТРАЦИЯ РЕАГИРУЮЩИХ ВЕЩЕСТВ.

Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать. На основе большого экспериментального материала в 1867г. норвежские учёные К.Гульдберг и П.Вааге и независимо от них в 1865 г. русский учёный Н.И.Бекетов сформулировали основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентраций реагирующих веществ:

Скорость реакции пропорциональна произведению концентраций реагирующих веществ, взятых в степенях равных их коэффициентам в уравнении реакции.

Этот закон ещё называют законом действующих масс. Он справедлив только для газообразных и жидких веществ!

2А+3В=А2В3 V=k*CA2*.CB3

Задание 1. Составьте кинетические уравнения для следующих реакций:

Задание 2.

Как изменится скорость реакции, имеющей кинетическое уравнение

v= kCA2CB, если концентрацию вещества А увеличить в 3 раза.

Зависимость от площади поверхности реагирующих веществ

Проблема:

Учитель: все вещества одинаковы по своей химической природе, одинаковы по массе и концентрации, реагируют при одинаковой температуре, однако интенсивность выделения водорода (а следовательно и скорость) разная.

Обсуждение:

Учащиеся: Одинаковые по массе кусочек и порошок мела имеют разные занимаемые объемы в пробирке, разную степень измельчения. Там где эта степень измельчения наибольшая - скорость выделения водорода максимальна.

Учитель: эта характеристика - площадь поверхности соприкосновения реагирующих веществ. В нашем случае различна площадь поверхности соприкосновения карбоната кальция с раствором Н2SO4.

Вывод:

Учащиеся: Скорость химической реакции зависит от площади соприкосновения реагирующих веществ: чем больше площадь соприкосновения реагирующих веществ (степень измельчения), тем больше скорость реакции.

Учитель: такая зависимость наблюдается не всегда: так для некоторых гетерогенных реакций, например, в системе Твердое вещество - Газ, при очень высоких температурах (более 500 0С) сильно измельчённые (до порошка) вещества способны спекаться, тем самым площадь поверхности соприкосновения реагирующих веществ уменьшается.

Влияние температуры

Проблема:

Учитель: взятые для эксперимента вещества имеют одинаковую природу, масса взятого порошка CuO и концентрация серной кислоты также одинаковы, однако скорость реакции разная.

Обсуждение:

Учащиеся: Значит, при изменении температуры реакции мы изменяем и ее скорость.

Учитель: Значит ли это, что при повышении температуры будет увеличиваться скорость всех химических реакций?

Учащиеся: Нет. Некоторые реакции идут при очень низких и даже минусовых температурах.

Вывод:

Учащиеся: Следовательно, любое изменение температуры на несколько градусов будет в разы изменять скорость химической реакции.

Учитель: Практически так звучит закон Вант-Гоффа, который будет здесь действовать: При изменении температуры реакции на каждые 10 ºС скорость химической реакции изменяется (увеличивается или уменьшается) в 2-4 раза.

Пояснение учителя: ТЕМПЕРАТУРА

Чем больше температура, тем больше активных частиц, увеличивается скорость их движения, что приводит к увеличению числа соударений. Скорость реакции возрастает.

Правило Вант-Гоффа:

При увеличении температуры на каждые 10° С общее число столкновений увеличивается только на ~ 1,6 %, а скорость реакции увеличивается в 2-4 раза (на 100-300%).

Число, показывающее, во сколько раз увеличивается скорость реакции при повышении температуры на 10° С, называют температурным коэффициентом.

Правило Вант-Гоффа математически выражается следующей формулой:

где V 1 -скорость реакции при температуре t 2 ,

V 2 - скорость реакции при температуре t 1 ,

y - температурный коэффициент.

Решите задачу:

Определите, как изменится скорость некоторой реакции при повышении температуры от 10 до 500С. Температурный коэффициент реакции равен 3.

Решение:

подставить данные задачи в формулу:

скорость реакции увеличится в 81 раз.

Влияние катализатора

Проблема:

Учитель: вещество в обоих случаях одно и то же, природа одинаковая, при одной и той же температуре, концентрация реагента одинаковая, почему же скорость разная?

Обсуждение:

Учитель: Такие вещества, ускоряющие химические реакции, называются катализаторами. Существуют вещества, замедляющие реакции, называются они ингибиторами.

Вывод:

Ученики: катализаторы увеличивают скорость реакции за счет уменьшения энергии активации. Чем меньше энергия активации, тем быстрее реакция.

Каталитические явления широко распространены в природе: дыхание, усвоение питательных веществ клетками, синтез белков и др.- это процессы, регулируемые биологическими катализаторами - ферментами. Каталитические процессы - основа жизни в той форме, которая существует на земле.

Притча «Восемнадцатый верблюд» (для объяснения роли катализатора)

(очень древняя арабская притча)

Жил когда-то на Востоке человек, который разводил верблюдов. Всю жизнь он работал, а когда состарился, то позвал к себе сыновей и сказал:
«Дети мои! Я стал стар и немощен и скоро умру. После моей смерти разделите оставшихся верблюдов так, как я вам скажу. Ты, старший сын, работал больше всех — возьми себе половину верблюдов. Ты, средний сын, только начал мне помогать — возьми себе третью часть. А ты, младший, возьми девятую часть».
Прошло время, и старик умер. Тогда сыновья решили разделить наследство так, как завещал им отец. Они выгнали стадо на большое поле, пересчитали, и оказалось, что в стаде всего семнадцать верблюдов. И нельзя было разделить их ни на 2, ни на 3, ни на 9! Что было делать — никто не знал. Стали сыновья спорить, и каждый предлагал своё решение. И они уже устали спорить, но так и не пришли к общему решению.
В это время ехал мимо путник на своём верблюде. Услышав крик и спор, он спросил: «Что случилось?»
И сыновья рассказали о своей беде. Путник слез с верблюда, пустил его в стадо и сказал: «А теперь разделите верблюдов, как велел отец».
И так как верблюдов стало 18, то старший сын взял себе половину, то есть 9, средний — треть, то есть 6 верблюдов, а младший девятую часть, то есть двух верблюдов. И когда они разделили таким образом стадо, в поле остался ещё один верблюд, потому что 9+6+2 равно 17.
А путник сел на своего верблюда и поехал дальше.

Лабораторная работа (протокол)

Наблюдения

Зависимость скорости реакции от природы реагирующих веществ

Zn + H2SO4(10%)=

Mg + H2SO4(10%)=

V 1 V 2

Зависимость скорости реакции от концентрации реагирующих веществ

Zn + H2SO4(10%)=

V 1 V 2
Зависимость скорости реакции от площади поверхности реагирующих веществ для гетерогенных реакций

Zn(гранулы)+ H2SO4(10%)=

Zn(порошок)+ H2SO4(10%)=

V 1 V 2
Зависимость скорости реакции от температуры CuO + H 2 SO 4 (10%)= CuO + H 2 SO 4 (10%) нагрев = V 1 V 2
Зависимость скорости реакции от присутствия катализатора

K 2 Cr 2 O 7

V 1 V 2

РЕФЛЕКСИЯ.

Что мы изучили на этом уроке?

Составьте кластер на тему «Факторы, влияющие на скорость ХР».

Для чего нужны знания о факторах, влияющих на скорость химических реакций?

Применяются ли они в быту? Если применяются, назовите области применения.

Тест по теме (на 5 мин).

Тест

1. Скорость химической реакции характеризует:

1) движение молекул или ионов реагирующих веществ относительно друг друга

2) время, за которое заканчивается химическая реакция

3) число структурных единиц вещества, вступивших в химическую реакцию

4) изменение количеств веществ за единицу времени в единице объема

При повышении температуры реагирующих веществ скорость химической реакции:

1) уменьшается

2) увеличивается

3) не изменяется

4) изменяется периодически

При повышении площади поверхности соприкосновения реагирующих веществ скорость химической реакции:

1) уменьшается

2) увеличивается

3) не изменяется

4) изменяется периодически

При повышении концентрации реагирующих веществ скорость химической реакции:

1) уменьшается

2) увеличивается

3) не изменяется

4) изменяется периодически

Для увеличения скорости химической реакции
2CuS(тв.) + 3O 2 (г .) = 2CuO(тв .) + 2SO 2 (г .) + Q необходимо:

1) увеличить концентрацию SО2

2) уменьшить концентрацию SО2

3) уменьшить температуру

4) увеличить степень измельчения CuS

При обычных условиях с наименьшей скоростью происходит взаимодействие между:

3) Zn и HCl (10%-й р-р)

4) Mg и HCl (10%-й р-р)

При увеличении температуры от 10 до 30 °С скорость реакции, температурный коэффициент которой = 3:

1) возрастает в 3 раза

2) возрастает в 9 раз

3) уменьшается в 3 раза

4) уменьшается в 9 раз

Оценка тестовой работы:

Ответы на тест:

Без ошибок - «5»

1-2 ошибки - «4»

3 ошибки - «3»

Домашнее задание:

§13, с. 135-145.

О. С. Габриелян, Г. Г. Лысова. Химия. 11класс. Учебник для общеобразовательных учреждений. 11-е издание, стереотипное. М.: Дрофа, 2009.

Для реакции были взяты вещества при температуре 400С, а затем их нагрели до 700С. Как изменится скорость химической реакции, если температурный коэффициент её равен 2?

Как изменится скорость реакции, протекающей по уравнению 2NO+O2=2NO2, если концентрацию обоих веществ увеличить в 3 раза.

Дата_____________ Класс_______________
Тема: Понятие о скорости химической реакции. Катализаторы. Химическое равновесие
Цели урока: повторить и закрепить знания об обратимых реакциях, химическом равновесии; сформировать представления о катализаторах и катализе.

Ход урока

1. Организационный момент урока. 2. Изучение нового материала Вы знакомы с понятием "скорость" из курса физики. В общем виде скорость - это величина, показывающая как изменяется какая либо характеристика за единицу времени. Скорость химической реакции - это величина, показывающая как изменяются концентрации исходных веществ или продуктов реакции за единицу времени. Для оценки скорости необходимо изменение концентрации одного из веществ. 1. Наибольший интерес представляют реакции, протекающие в однородной (гомогенной) среде. Гомогенные системы (однородные) – газ/газ, жидкость/жидкость – реакции идут во всём объёме. Математически скорость химической гомогенной реакции можно представить с помощью формулы:
2. Для гетерогенной реакции, скорость реакции определяется числом молей веществ, вступивших в или образующихся в результате реакции в единицу времени на единице поверхности: Гетерогенные (неоднородные) системы – твёрдое/жидкость, газ/твёрдое, жидкость/газ – реакции идут на поверхности раздела фаз. Таким образом, скорость химической реакции показывает изменение количества вещества в единицу времени, в единице объёма или на единице поверхности раздела фаз. Зависимость скорости реакций от различных факторов

Условия

Закон действующих масс Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ. При повышении концентрации хотя бы одного из реагирующих веществ скорость химической реакции возрастает в соответствии с кинетическим уравнением.
Рассмотрим общее уравнение реакции:
aA +bB = cC + dD, где A, B, C, D– газы, жидкости Для данной реакции кинетическое уравнение принимает вид:

Причиной повышения скорости является увеличение числа столкновений реагирующих частиц за счёт увеличения частиц в единице объёма.

Химические реакции, протекающие в гомогенных системах (смеси газов, жидкие растворы), осуществляется за счет соударения частиц. Однако, не всякое столкновение частиц реагентов ведет к образованию продуктов. Только частицы, обладающие повышенной энергией - активные частицы, способны осуществить акт химической реакции. С повышением температуры увеличивается кинетическая энергия частиц и число активных частиц возрастает, следовательно, химические реакции при высоких температурах протекают быстрее, чем при низких температурах. Зависимость скорости реакции от температуры определяется правилом Вант - Гоффа: при повышении температуры на каждые 10°С скорость реакции увеличивается в 2-4 раза.

Правило Вант - Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реакции.

Катализаторы - это вещества, которые повышают скорость химической реакции. Они вступают во взаимодействие с реагентами с образованием промежуточного химического соединения и освобождаются в конце реакции.
Влияние, оказываемое катализаторами на химические реакции, называется
катализом . По агрегатному состоянию, в котором находятся катализатор и реагирующие вещества, следует различать:
гомогенный катализ (катализатор образует с реагирующими веществами гомогенную систему, например, газовую смесь);
гетерогенный катализ (катализатор и реагирующие вещества находятся в разных фазах; катализ идет на поверхности раздела фаз).

Вещество, замедляющее скорость реакции

1. Среди всех известных реакций различают реакции обратимые и необратимые. При изучении реакций ионного обмена были перечислены условия, при которых они протекают до конца. ( ). Известны и такие реакции, которые при данных условиях до конца не идут. Так, например, при растворении в воде сернистого газа происходит реакция: SO 2 + H 2 O H 2 SO 3 . Но оказывается, что в водном растворе может образоваться только определенное количество сернистой кислоты. Это объясняется тем, что сернистая кислота непрочная, и происходит обратная реакция, т.е. разложение на оксид серы и воду. Следовательно, данная реакция не идет до конца потому, что одновременно происходит две реакции – прямая (между оксидом серы и водой) и обратная (разложение сернистой кислоты). SO 2 + H 2 O H 2 SO 3 . Химические реакции, протекающие при данных условиях во взаимно противоположных направлениях, называются обратимыми.
2. Поскольку скорость химических реакций зависит от концентрации реагирующих веществ, то вначале скорость прямой реакции ( υпр ) должна быть максимальной, а скорость обратной реакции (υ обр ) равняется нулю. Концентрация реагирующих веществ с течением времени уменьшается, а концентрация продуктов реакции увеличивается. Поэтому скорость прямой реакции уменьшается, а скорость обратной реакции увеличивается. В определенный момент времени скорость прямой и обратной реакций становятся равными:
Во всех обратимых реакциях скорость прямой реакции уменьшается, скорость обратной реакции возрастает до тех пор, пока обе скорости не станут равными и не установится состояние равновесия: υ пр = υ обр Состояние системы, при котором скорость прямой реакции равна скорости обратной реакции, называют химическим равновесием. В состоянии химического равновесия количественное соотношение между реагирующими веществами и продуктами реакции остается постоянным: сколько молекул продукта реакции в единицу времени образуется, столько их и разлагается. Однако состояние химического равновесия сохраняется до тех пор, пока остаются неизменными условия реакции: концентрация, температура и давление. Количественно состояние химического равновесия описывается законом действующих масс. При равновесии отношение произведения концентраций продуктов реакции (в степенях их коэффициентов) к произведению концентраций реагентов (тоже в степенях их коэффициентов) есть величина постоянная, не зависящая от исходных концентраций веществ в реакционной смеси. Эта постоянная величина называется константой равновесия - k Так для реакции: N 2 (Г) + 3 H 2 (Г) 2 NH 3 (Г) + 92,4 кДж константа равновесия выражается так: υ 1 = υ 2 υ 1 (прямой реакции) = k 1 [ N 2 ][ H 2 ] 3 , где – равновесные молярные концентрации, = моль/л υ 2 (обратной реакции) = k 2 [ NH 3 ] 2 k 1 [ N 2 ][ H 2 ] 3 = k 2 [ NH 3 ] 2 K p = k 1 / k 2 = [ NH 3 ] 2 / [ N 2 ][ H 2 ] 3 константа равновесия . Химическое равновесие зависит – от концентрации, давления, температуры. Принцип определяет направление смешения равновесия: Если на систему, находящуюся в равновесии оказали внешнее воздействие, то равновесие в системе сместится в сторону обратную этому воздействию. 1) Влияние концентрации – если увеличить концентрацию исходных веществ, то равновесие смещается в сторону образования продуктов реакции. Например, K p = k 1 / k 2 = [ NH 3 ] 2 / [ N 2 ][ H 2 ] 3 При добавлении в реакционную смесь, например азота, т.е. возрастает концентрация реагента, знаменатель в выражении для К увеличивается, но так как К – константа, то для выполнения этого условия должен увеличиться и числитель. Таким образом, в реакционной смеси возрастает количество продукта реакции. В таком случае говорят о смещении химического равновесия вправо, в сторону продукта. Таким образом, увеличение концентрации реагентов (жидких или газообразных) смещает в сторону продуктов, т.е. в сторону прямой реакции. Увеличение концентрации продуктов (жидких или газообразных) смещает равновесие в сторону реагентов, т.е. в сторону обратной реакции. Изменение массы твердого вещества не изменяет положение равновесия. 2) Влияние температуры – увеличение температуры смещает равновесие в сторону эндотермической реакции. а) N 2 (Г) + 3 H 2 (Г) 2 NH 3 (Г) + 92,4 кДж (экзотермическая – выделение тепла) При повышении температуры равновесие сместится в сторону реакции разложения аммиака ( ) б) N 2 (Г) + O 2 (Г) 2 NO (Г) – 180,8 кДж (эндотермическая - поглощение тепла) При повышении температуры равновесие сместится в сторону реакции образования NO ( ) 3) Влияние давления (только для газообразных веществ) – при увеличении давления, равновесие смещается в сторону образования веществ, занимающих меньший объём. N 2 (Г) + 3 H 2 (Г) 2 NH 3 (Г) 1 V - N 2 3 V - H 2 2 V NH 3 При повышении давления ( P ): до реакции 4 V газообразных веществ после реакции 2 V газообразных веществ, следовательно, равновесие смещается вправо ( ) При увеличении давления, например, в 2 раза, объём газов уменьшается в такое же количество раз, а следовательно, концентрации всех газообразных веществ возрастут в 2 раза. K p = k 1 / k 2 = [ NH 3 ] 2 / [ N 2 ][ H 2 ] 3 В этом случае числитель выражения для К увеличится в 4 раза, а знаменатель в 16раз, т.е. равенство нарушится. Для его восстановления должны возрасти концентрация аммиака и уменьшиться концентрации азота и водорода. Равновесие сместится вправо. Итак, при повышении давления равновесие смещается в сторону уменьшения объема, при понижении давления – в сторону увеличения объёма. Изменение давления практически не сказывается на объёме твердых и жидких веществ, т.е. не изменяет их концентрацию. Следовательно, равновесие реакций, в которых газы не участвуют, практически не зависит от давления. ! На течение химической реакции влияют вещества – катализаторы. Но при использовании катализатора понижается энергия активации как прямой, так и обратной реакции на одну и ту же величину и поэтому равновесие не смещается. 3. Закрепление изученного материала Задача Укажите, как повлияет: а) повышение давления; б) повышение температуры; в) увеличение концентрации кислорода на равновесие системы: 2 CO (г) + O 2 (г) ↔ 2 CO 2 (г) + QРешение: а) Изменение давления смещает равновесие реакций с участием газообразных веществ (г). Определим объёмы газообразных веществ до и после реакции по стехиометрическим коэффициентам: По принципу Ле Шателье, при увеличении давления , равновесие смещается в сторону образования веществ, занимающих меньший объём, следовательно равновесие сместится вправо, т.е. в сторону образования СО 2 , в сторону прямой реакции (→) . б) По принципу Ле Шателье, при повышении температуры , равновесие смещается в сторону эндотермической реакции (- Q), т.е. в сторону обратной реакции – реакции разложения СО 2 (←) , т.к. по закону сохранения энергии: Q- 2 CO(г) + O 2 (г) ↔ 2 CO 2 (г) + Qв) При увеличении концентрации кислорода равновесие системы смещается в сторону получения СО 2 (→) т.к. увеличение концентрации реагентов (жидких или газообразных) смещает в сторону продуктов, т.е. в сторону прямой реакции. 4. Домашнее задание. П.14, Выполнить задание по парам Пример 1. Во сколько раз изменится скорость прямой и обратной реакции в системе: 2 SO 2 (г) + O 2 (г) = 2 SO 3 (г) если объем газовой смеси уменьшить в три раза? В какую сторону сместится равновесие системы? Решение. Обозначим концентрации реагирующих веществ: [ SO 2 ]= a , [О 2 ] = b , [ SO 3 ] = с. Согласно закону действия масс скорости v прямой и обратной реакции до изменения объема: v пр = Ка 2 b v обр = К 1 с 2 . После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: [ SO 2 ] = 3 а , [О 2 ] = 3 b ; [ SO 3 ] = 3 с . При новых концентрациях скорости v прямой и обратной реакции: v пр = К (3 а ) 2 (3 b ) = 27 Ка 2 b v обр = К 1 (3 с ) 2 = 9 К 1 с 2 Отсюда:

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной – только в девять раз. Равновесие системы сместилось в сторону образования SO 3 . Пример 2. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70 о С, если температурный коэффициент реакции равен 2. Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле: Следовательно, скорость реакции νТ 2 при температуре 70 о С больше скорости реакции νТ 1 при температуре 30 о С в 16 раз. Пример 3. Константа равновесия гомогенной системы: СО(г) + Н 2 О(г) = СО 2 (г) + Н 2 (г) при 850 о С равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации: [СО] исх =3 моль/л, [Н 2 О] исх = 2 моль/л. Решение. При равновесии скорости прямой и обратной реакций равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы: v пр = К 1 [СО][Н 2 О] v обр = К 2 [СО 2 ][Н 2 ]
В условии задачи даны исходные концентрации, тогда как в выражение К р входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрации [СО 2 ] р = х моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также х моль/л. По столько же молей (х моль/л) СО и Н 2 О расходуется для образования по х молей СО 2 и Н 2 . Следовательно, равновесные концентрации всех четырех веществ: [СО 2 ] р = [Н 2 ] р = х моль/л; [СО] р = (3 – х ) моль/л; 2 О] р = (2 – х ) моль/л. Зная константу равновесия, находим значение х , а затем исходные концентрации всех веществ:

Таким образом, искомые равновесные концентрации: [СО 2 ] р = 1,2 моль/л; 2 ] р = 1,2 моль/л; [СО] р = 3 – 1,2 = 1,8 моль/л; 2 О] р = 2 – 1,2 = 0,8 моль/л.
Loading...Loading...