Hvordan endre basen til en logaritme. Egenskaper til logaritmer og eksempler på deres løsninger. The Comprehensive Guide (2019)

Følger av dens definisjon. Og så logaritmen til tallet b basert på EN er definert som eksponenten som et tall må heves til en for å få nummeret b(logaritme eksisterer bare for positive tall).

Av denne formuleringen følger det at beregningen x=log a b, tilsvarer å løse ligningen a x =b. For eksempel, log 2 8 = 3 fordi 8 = 2 3 . Formuleringen av logaritmen gjør det mulig å rettferdiggjøre at if b=a c, deretter logaritmen til tallet b basert på en er lik Med. Det er også klart at temaet logaritmer er nært knyttet til emnet potenser av et tall.

Med logaritmer, som med alle tall, kan du gjøre operasjoner med addisjon, subtraksjon og transformere på alle mulige måter. Men på grunn av at logaritmer ikke er helt vanlige tall, gjelder her egne spesielle regler, som kalles hovedegenskaper.

Legge til og subtrahere logaritmer.

La oss ta to logaritmer med samme base: logg en x Og logg et y. Da er det mulig å utføre addisjons- og subtraksjonsoperasjoner:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

logg a(x 1 . x 2 . x 3 ... x k) = logg en x 1 + logg en x 2 + logg en x 3 + ... + logg a x k.

Fra logaritmekvotientsetning En annen egenskap for logaritmen kan oppnås. Det er alminnelig kjent at logg en 1= 0, derfor

Logg en 1 /b= logg en 1 - logg a b= - logg a b.

Dette betyr at det er en likhet:

log a 1 / b = - log a b.

Logaritmer av to gjensidige tall av samme grunn vil avvike fra hverandre utelukkende ved tegn. Så:

Logg 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.

De grunnleggende egenskapene til den naturlige logaritmen, grafen, definisjonsdomene, verdisett, grunnleggende formler, derivert, integral, potensserieutvidelse og representasjon av funksjonen ln x ved bruk av komplekse tall er gitt.

Definisjon

Naturlig logaritme er funksjonen y = ln x, den inverse av eksponentialen, x = e y, og er logaritmen til grunntallet for tallet e: ln x = log e x.

Den naturlige logaritmen er mye brukt i matematikk fordi dens deriverte har den enkleste formen: (ln x)′ = 1/ x.

Basert definisjoner, er basisen til den naturlige logaritmen tallet e:
e ≅ 2,718281828459045...;
.

Graf for funksjonen y = ln x.

Graf av naturlig logaritme (funksjoner y = ln x) er hentet fra den eksponentielle grafen ved speilrefleksjon i forhold til den rette linjen y = x.

Den naturlige logaritmen er definert for positive verdier av variabelen x. Den øker monotont i sitt definisjonsdomene.

Ved x → 0 grensen for den naturlige logaritmen er minus uendelig (-∞).

Som x → + ∞ er grensen for den naturlige logaritmen pluss uendelig (+ ∞). For stor x øker logaritmen ganske sakte. Enhver potensfunksjon x a med en positiv eksponent a vokser raskere enn logaritmen.

Egenskaper til den naturlige logaritmen

Definisjonsdomene, sett med verdier, ekstrema, økning, reduksjon

Den naturlige logaritmen er en monotont økende funksjon, så den har ingen ekstrema. Hovedegenskapene til den naturlige logaritmen er presentert i tabellen.

ln x verdier

ln 1 = 0

Grunnleggende formler for naturlige logaritmer

Formler som følger av definisjonen av den inverse funksjonen:

Hovedegenskapen til logaritmer og dens konsekvenser

Formel for baseerstatning

Enhver logaritme kan uttrykkes i form av naturlige logaritmer ved å bruke basesubstitusjonsformelen:

Bevis på disse formlene er presentert i delen "Logaritme".

Invers funksjon

Den inverse av den naturlige logaritmen er eksponenten.

Hvis da

Hvis da.

Derivat ln x

Derivert av den naturlige logaritmen:
.
Derivert av den naturlige logaritmen til modul x:
.
Derivert av n-te orden:
.
Utlede formler > > >

Integral

Integralet beregnes ved integrasjon av deler:
.
Så,

Uttrykk som bruker komplekse tall

Tenk på funksjonen til den komplekse variabelen z:
.
La oss uttrykke den komplekse variabelen z via modul r og argumentasjon φ :
.
Ved å bruke egenskapene til logaritmen har vi:
.
Eller
.
Argumentet φ er ikke unikt definert. Hvis du setter
, hvor n er et heltall,
det vil være det samme tallet for forskjellige n.

Derfor er den naturlige logaritmen, som funksjon av en kompleks variabel, ikke en funksjon med én verdi.

Power serie utvidelse

Når utvidelsen finner sted:

Referanser:
I. Bronstein, K.A. Semendyaev, Håndbok i matematikk for ingeniører og studenter, "Lan", 2009.


Vi fortsetter å studere logaritmer. I denne artikkelen vil vi snakke om beregne logaritmer, kalles denne prosessen logaritme. Først vil vi forstå beregningen av logaritmer per definisjon. Deretter, la oss se på hvordan verdiene til logaritmer blir funnet ved å bruke egenskapene deres. Etter dette vil vi fokusere på å beregne logaritmer gjennom de opprinnelig spesifiserte verdiene til andre logaritmer. Til slutt, la oss lære hvordan du bruker logaritmetabeller. Hele teorien er forsynt med eksempler med detaljerte løsninger.

Sidenavigering.

Beregning av logaritmer per definisjon

I de enkleste tilfellene er det mulig å utføre ganske raskt og enkelt finne logaritmen per definisjon. La oss se nærmere på hvordan denne prosessen skjer.

Dens essens er å representere tallet b i formen a c, hvorfra, ved definisjonen av en logaritme, tallet c er verdien av logaritmen. Det vil si, per definisjon, tilsvarer følgende kjede av likheter å finne logaritmen: log a b=log a a c =c.

Så, å beregne en logaritme per definisjon kommer ned til å finne et tall c slik at a c = b, og tallet c i seg selv er den ønskede verdien av logaritmen.

Når du tar i betraktning informasjonen i de foregående avsnittene, når tallet under logaritmetegnet er gitt av en viss potens av logaritmebasen, kan du umiddelbart indikere hva logaritmen er lik - den er lik eksponenten. La oss vise løsninger på eksempler.

Eksempel.

Finn log 2 2 −3, og beregn også den naturlige logaritmen til tallet e 5,3.

Løsning.

Definisjonen av logaritmen lar oss umiddelbart si at log 2 2 −3 =−3. Faktisk er tallet under logaritmetegnet lik base 2 til −3 potens.

På samme måte finner vi den andre logaritmen: lne 5.3 =5.3.

Svar:

log 2 2 −3 =−3 og lne 5,3 =5,3.

Hvis tallet b under logaritmetegnet ikke er spesifisert som en potens av basen til logaritmen, må du se nøye etter om det er mulig å komme opp med en representasjon av tallet b i formen a c . Ofte er denne representasjonen ganske åpenbar, spesielt når tallet under logaritmetegnet er lik basen i potensen 1, eller 2, eller 3, ...

Eksempel.

Beregn logaritmene log 5 25 , og .

Løsning.

Det er lett å se at 25=5 2, dette lar deg beregne den første logaritmen: log 5 25=log 5 5 2 =2.

La oss gå videre til å beregne den andre logaritmen. Tallet kan representeres som en potens av 7: (se om nødvendig). Derfor, .

La oss omskrive den tredje logaritmen inn følgende skjema. Nå kan du se det , hvorfra vi konkluderer med at . Derfor, ved definisjonen av logaritme .

Kort fortalt kan løsningen skrives slik: .

Svar:

log 5 25=2 , Og .

Når under logaritmetegnet er det en tilstrekkelig stor naturlig tall, så ville det ikke skade å ta det inn i hovedfaktorer. Det hjelper ofte å representere et slikt tall som en potens av basen til logaritmen, og derfor beregne denne logaritmen per definisjon.

Eksempel.

Finn verdien av logaritmen.

Løsning.

Noen egenskaper til logaritmer lar deg spesifisere verdien av logaritmer umiddelbart. Disse egenskapene inkluderer egenskapen til logaritmen til en og egenskapen til logaritmen til et tall som er lik grunntallet: log 1 1=log a a 0 =0 og log a a=log a a 1 =1. Det vil si at når det under fortegnet til logaritmen er et tall 1 eller et tall a lik basen til logaritmen, så er logaritmene i disse tilfellene lik henholdsvis 0 og 1.

Eksempel.

Hva er logaritmer og log10 lik?

Løsning.

Siden , så følger det fra definisjonen av logaritme .

I det andre eksemplet faller tallet 10 under logaritmetegnet sammen med grunntallet, så desimallogaritmen på ti er lik én, det vil si lg10=lg10 1 =1.

Svar:

OG lg10=1 .

Merk at beregningen av logaritmer per definisjon (som vi diskuterte i forrige avsnitt) innebærer bruk av likhetsloggen a a p =p, som er en av egenskapene til logaritmer.

I praksis, når et tall under logaritmetegnet og basen av logaritmen lett kan representeres som en potens av et bestemt tall, er det veldig praktisk å bruke formelen , som tilsvarer en av egenskapene til logaritmer. La oss se på et eksempel på å finne en logaritme som illustrerer bruken av denne formelen.

Eksempel.

Regn ut logaritmen.

Løsning.

Svar:

.

Egenskaper til logaritmer som ikke er nevnt ovenfor, brukes også i beregninger, men vi vil snakke om dette i de følgende avsnittene.

Finne logaritmer gjennom andre kjente logaritmer

Informasjonen i dette avsnittet fortsetter temaet om å bruke egenskapene til logaritmer når de beregnes. Men her er hovedforskjellen at egenskapene til logaritmene brukes til å uttrykke den opprinnelige logaritmen i form av en annen logaritme, hvis verdi er kjent. La oss gi et eksempel for avklaring. La oss si at vi vet at log 2 3≈1.584963, så kan vi finne for eksempel log 2 6 ved å gjøre en liten transformasjon ved å bruke egenskapene til logaritmen: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

I eksemplet ovenfor var det nok for oss å bruke egenskapen til logaritmen til et produkt. Imidlertid er det mye oftere nødvendig å bruke et bredere arsenal av egenskaper til logaritmer for å beregne den opprinnelige logaritmen gjennom de gitte.

Eksempel.

Beregn logaritmen av 27 til grunntallet 60 hvis du vet at log 60 2=a og log 60 5=b.

Løsning.

Så vi må finne logg 60 27 . Det er lett å se at 27 = 3 3, og den opprinnelige logaritmen, på grunn av egenskapen til potensens logaritme, kan skrives om til 3·log 60 3 .

La oss nå se hvordan du uttrykker log 60 3 i form av kjente logaritmer. Egenskapen til logaritmen til et tall lik grunntallet lar oss skrive likhetsloggen 60 60=1. På den annen side, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Dermed, 2 log 60 2+log 60 3+log 60 5=1. Derfor, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Til slutt beregner vi den opprinnelige logaritmen: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Svar:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Separat er det verdt å nevne betydningen av formelen for overgang til en ny base av logaritmen til formen . Den lar deg gå fra logaritmer med hvilken som helst base til logaritmer med en spesifikk base, hvis verdier er kjent eller det er mulig å finne dem. Vanligvis, fra den opprinnelige logaritmen, ved å bruke overgangsformelen, flytter de til logaritmer i en av basene 2, e eller 10, siden for disse basene er det tabeller med logaritmer som lar verdiene deres beregnes med en viss grad av nøyaktighet. I neste avsnitt skal vi vise hvordan dette gjøres.

Logaritmetabeller og deres bruk

For omtrentlig beregning av logaritmeverdier kan brukes logaritmetabeller. Den mest brukte base 2-logaritmetabellen er tabellen naturlige logaritmer og en tabell med desimallogaritmer. Når du arbeider i desimaltallsystemet, er det praktisk å bruke en tabell med logaritmer basert på grunntallet ti. Med dens hjelp vil vi lære å finne verdiene til logaritmer.










Den presenterte tabellen lar deg finne verdiene til desimallogaritmene til tall fra 1000 til 9999 (med tre desimaler) med en nøyaktighet på en ti tusendel. Vi vil analysere prinsippet for å finne verdien av en logaritme ved å bruke en tabell med desimallogaritmer i spesifikt eksempel– Det er tydeligere på den måten. La oss finne log1.256.

I venstre kolonne i tabellen med desimallogaritmer finner vi de to første sifrene i tallet 1,256, det vil si at vi finner 1,2 (dette tallet er sirklet inn i blått for klarhetens skyld). Det tredje sifferet i tallet 1.256 (siffer 5) finnes i den første eller siste linjen til venstre for den doble linjen (dette tallet er ringt inn med rødt). Det fjerde sifferet i det opprinnelige tallet 1.256 (siffer 6) finnes i den første eller siste linjen til høyre for den doble linjen (dette tallet er omringet med en grønn linje). Nå finner vi tallene i cellene i logaritmetabellen i skjæringspunktet mellom den merkede raden og markerte kolonner (disse tallene er uthevet oransje). Summen av de markerte tallene gir den ønskede verdien av desimallogaritmen nøyaktig til fjerde desimal, det vil si, log1,236≈0,0969+0,0021=0,0990.

Er det mulig, ved å bruke tabellen ovenfor, å finne verdiene til desimallogaritmer av tall som har mer enn tre sifre etter desimaltegnet, så vel som de som går utover området fra 1 til 9,999? Ja det kan du. La oss vise hvordan dette gjøres med et eksempel.

La oss beregne lg102.76332. Først må du skrive ned nummer i standardform: 102,76332=1,0276332·10 2. Etter dette skal mantissen avrundes til tredje desimal, vi har 1,0276332 10 2 ≈1,028 10 2, mens den opprinnelige desimallogaritmen er omtrent lik logaritmen til det resulterende tallet, det vil si at vi tar log102.76332≈lg1.028·10 2. Nå bruker vi egenskapene til logaritmen: lg1.028·10 2 =lg1.028+lg10 2 =lg1.028+2. Til slutt finner vi verdien av logaritmen lg1.028 fra tabellen med desimallogaritmer lg1.028≈0.0086+0.0034=0.012. Som et resultat ser hele prosessen med å beregne logaritmen slik ut: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1,028+lg10 2 =log1,028+2≈0,012+2=2,012.

Avslutningsvis er det verdt å merke seg at ved å bruke en tabell med desimallogaritmer kan du beregne den omtrentlige verdien av enhver logaritme. For å gjøre dette er det nok å bruke overgangsformelen for å gå til desimallogaritmer, finne verdiene deres i tabellen og utføre de resterende beregningene.

La oss for eksempel beregne log 2 3 . I henhold til formelen for overgang til en ny base av logaritmen har vi . Fra tabellen med desimallogaritmer finner vi log3≈0,4771 og log2≈0,3010. Dermed, .

Bibliografi.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. Algebra og begynnelsen av analyse: Lærebok for 10. - 11. klassetrinn ved allmennutdanningsinstitusjoner.
  • Gusev V.A., Mordkovich A.G. Matematikk (en manual for de som går inn på tekniske skoler).

*Masterstudent under vitenskapelig veiledning Isakhova A.A.,PhD i matematisk og datamodellering

Har du noen gang tenkt på hvordan folk telte i antikken, da det ikke fantes kalkulatorer eller datamaskiner? Beregninger ble utført manuelt, på papir eller i tankene. Selv om oppgavene de sto overfor var like komplekse som moderne.

Fravær datamaskiner presset gamle matematikere til å forenkle beregninger. De kom opp med tabeller med allerede beregnede uttrykk (for eksempel en multiplikasjonstabell), og så etter måter å erstatte komplekse operasjoner med enkle. I dag skal vi snakke om en slik "forenkling" eller hvordan folk lærte å erstatte multiplikasjon med addisjon og divisjon med subtraksjon. Takket være dette ble logaritmen oppfunnet. For å forstå hva det er, må du bare ta tre trinn.

TRINN 1: Forenkle og forenkle igjen

La oss starte med et enkelt eksempel.

2 + 2 = 4

La oss komplisere problemet og finne summen av fem toere.

2 + 2 + 2 + 2 + 2 = 10

Og vi taklet enkelt denne oppgaven. Hva om du trenger å finne summen av 1 000 000 toere? Å bruke en lignende beregningsmetode vil ta mye plass og tid. Men snedige matematikere innså hvor enkelt det er å gjøre dette. De kom opp med multiplikasjonsoperasjonen. La oss se hvordan det ser ut:

2 × 2 × 2 × 2 × 2 × 2 × 2 = 128

For å forenkle dette uttrykket, kom matematikere opp med operasjonen av eksponentiering. Det er klart at vi snakker om å multiplisere det samme tallet med seg selv n ganger, hvorfor duplisere det og skrive det ned igjen og igjen? Er det ikke lettere å skrive det på denne måten?

Her EN– grunnlaget for graden, n- eksponent. Dermed har vi forkortet innspillingen betydelig. Uavhengig av verdien av eksponenten, vil uttrykket se veldig kortfattet ut:

Michael Stiefel(1487–1567) - Tysk matematiker, ga betydelige bidrag til utviklingen av algebra og dens områder som progresjoner, eksponentiering og negative tall. Stiefel var den første som brukte begrepene "eksponent" og "root". Til tross for at forskeren faktisk brukte logaritmer, gikk oppdagerens ære til den skotske matematikeren John Napier (1550–1617).

TRINN 2: Forstå egenskapene til grader

Som vi allerede har sagt, belastet ikke gamle matematikere seg selv med beregninger hver gang de trengte å multiplisere eller legge til tall, men brukte tabeller med forhåndsberegnet resultater. Veldig komfortabelt! Ved hjelp av en lignende tabell, en tysk matematiker Michael Stiefel la merke til et interessant mønster mellom aritmetisk og geometrisk progresjon.

Aritmetisk progresjon 1 2 3 4 5 6 7 8 9 10
Geometrisk progresjon 2 4 8 16 32 64 128 256 512 1024
Power notasjon 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10

La oss prøve å se henne også. Tross alt lar dette mønsteret deg forenkle operasjoner multiplikasjon og divisjon. La oss beregne produktet av to tall:

16 × 64 =  ?

Før du begynner å gjøre beregningene, ta en titt på tabellen og finn disse tallene: dette er begrepene geometrisk progresjon i trinn på 2. Tallene over dem i den øverste raden: 4 over 16; 6 over 64 er termer for en aritmetisk progresjon. La oss legge til disse tallene: 4 + 6 = 10. La oss nå se på hvilket tall som er under tallet 10 i den andre raden - 1024. Men hvis vi fullfører vår første oppgave 16x64, vil resultatet være lik 1024. Dette betyr at, ved å bruke tabellen og bare vite hvordan du legger til tall, kan du enkelt finne produktet.

Vurder nå divisjonsoperasjonen:

Se på tabellen igjen og finn de tilsvarende tallene fra den øverste raden. Vi får henholdsvis 10 og 7. Hvis når vi multipliserer vi adderer, så trekker vi når vi dividerer: 10–7 = 3. Vi ser på tallet under tallet 3 i den andre raden, det er 8. Derfor er 1024:128 = 8.

På samme måte kan du bruke en tabell for operasjoner eksponentiering og rotutvinning.

For eksempel må vi kvadrat 32. Vi ser på tallet over 32 i øverste rad. Vi får 5. Multipliser 5 med 2. Resultatet er 10, og se så på tallet under 10: 1024. Derfor 32 2   = 1024.

La oss vurdere rotutvinning. La oss for eksempel finne den tredje roten av tallet 512. Over tallet 512 i den øverste raden står 9. Del 9 med 3, vi får 3. Finn det tilsvarende tallet i den andre raden. Vi får 8. Derfor er 83 = 512.

Alle fire eksemplene er en konsekvens av egenskapene til grader, som kan skrives som følger:

TRINN 3: La oss kalle det en logaritme

Etter å ha behandlet grader, la oss prøve å løse en liten ligning:

2 x = 4

Denne ligningen kalles veiledende. Fordi X, som vi må finne er indikator potensen som 2 må heves til for å få 4. Løsning av ligningen x  = 2.

La oss se på et annet lignende eksempel:

2 x = 5

La oss si betingelsen igjen: vi leter etter tallet x som 2 må heves til for å få 5. Dette spørsmålet stumper oss. Det finnes sannsynligvis en løsning; hvis du for eksempel tegner grafer for disse funksjonene, skjærer de hverandre. Men for å finne det, må vi lete etter det gjennom prøving og feiling. Og dette kan ta lang tid.

Det er derfor eldgamle forskere kom opp med logaritmen; de visste at det fantes en løsning på ligningen, men det var ikke alltid nødvendig med en gang. Matematisk er det skrevet slik: x  =  log 2 5. Så vi har funnet løsningen på ligningen 2 x = 5. Svar: x = log 2 5. Hvis vi gir det nøyaktige svaret, så er x = 2,32192809489..., og denne brøken slutter aldri.

Uttrykket lyder som følger: logaritme av 5 til base 2. Det er lett å huske: Grunnlaget skrives alltid nederst, i både eksponentiell og logaritmisk notasjon.

Egenskaper til logaritmen

Logaritmer har begrensninger. Det er to harde grenser i matematikk.

a) Du kan ikke dele på null

b) Trekk ut den partallsroten av et negativt tall(siden et negativt tall i annen vil alltid være positivt).

tilsvarende skriving

a x = b

Begrensninger på en

a er basen som må heves til x-potensen for å få b.

Hvis a  = 1. En til enhver makt vil gi en.

Og hvis en mindre enn null? Negative tall- lunefull. De kan heves til en grad, men ikke til en annen. Derfor ekskluderer vi dem også. Som et resultat får vi: a > 0; a ≠ 1

Begrensninger på b

Hvis et positivt tall heves til en potensiell potens, får vi også et positivt tall. Derfor: b > 0. x kan være et hvilket som helst tall, siden vi kan heve til hvilken som helst potens.

Hvis b  = 1. er verdien x = 0 for enhver a.

Operasjoner på logaritmer

Når vi tar i betraktning de grunnleggende egenskapene til potenser, utleder vi lignende for logaritmer:

Sum. Logaritmen til produktet er lik summen av logaritmene til faktorene:

Forskjell. Logaritmen til kvotienten er lik differansen mellom logaritmene til utbyttet og divisoren:

Grad. Logaritmen til en potens er lik produktet av eksponenten og logaritmen av basen.

hovedegenskaper.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

identiske grunner

Log6 4 + log6 9.

La oss nå komplisere oppgaven litt.

Eksempler på løsning av logaritmer

Hva om basen eller argumentet til en logaritme er en potens? Deretter kan eksponenten for denne graden tas ut av logaritmens fortegn i henhold til følgende regler:

Selvfølgelig gir alle disse reglene mening hvis ODZ til logaritmen blir observert: a > 0, a ≠ 1, x >

Oppgave. Finn betydningen av uttrykket:

Overgang til ny stiftelse

La logaritmen logaks gis. Så for et hvilket som helst tall c slik at c > 0 og c ≠ 1, er likheten sann:

Oppgave. Finn betydningen av uttrykket:

Se også:


Grunnleggende egenskaper for logaritmen

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Eksponenten er 2,718281828…. For å huske eksponenten kan du studere regelen: eksponenten er lik 2,7 og to ganger fødselsåret til Leo Nikolaevich Tolstoy.

Grunnleggende egenskaper ved logaritmer

Når du kjenner denne regelen, vil du vite og eksakt verdi utstillere, og fødselsdatoen til Leo Tolstoj.


Eksempler på logaritmer

Logaritmeuttrykk

Eksempel 1.
EN). x=10ac^2 (a>0,c>0).

Ved hjelp av egenskaper 3.5 beregner vi

2.

3.

4. Hvor .



Eksempel 2. Finn x if


Eksempel 3. La verdien av logaritmer gis

Beregn log(x) if




Grunnleggende egenskaper ved logaritmer

Logaritmer, som alle tall, kan legges til, trekkes fra og transformeres på alle måter. Men siden logaritmer ikke er helt vanlige tall, er det regler her, som kalles hovedegenskaper.

Du trenger definitivt å kjenne disse reglene - uten dem kan ikke et eneste alvorlig logaritmisk problem løses. I tillegg er det svært få av dem – du kan lære alt på en dag. Så la oss komme i gang.

Legge til og subtrahere logaritmer

Tenk på to logaritmer med samme base: logax og logay. Deretter kan de legges til og trekkes fra, og:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Så summen av logaritmer er lik logaritmen til produktet, og forskjellen er lik logaritmen til kvotienten. Vennligst merk: nøkkelen her er identiske grunner. Hvis årsakene er forskjellige, fungerer ikke disse reglene!

Disse formlene vil hjelpe deg med å beregne et logaritmisk uttrykk selv når dets individuelle deler ikke vurderes (se leksjonen "Hva er en logaritme"). Ta en titt på eksemplene og se:

Siden logaritmer har samme base, bruker vi sumformelen:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Oppgave. Finn verdien av uttrykket: log2 48 − log2 3.

Basene er de samme, vi bruker forskjellsformelen:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Oppgave. Finn verdien av uttrykket: log3 135 − log3 5.

Igjen er basene de samme, så vi har:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Som du kan se, består de opprinnelige uttrykkene av "dårlige" logaritmer, som ikke beregnes separat. Men etter transformasjonene viser de seg ganske normale tall. Mange er bygget på dette faktum testpapirer. Ja, testlignende uttrykk tilbys i fullt alvor (noen ganger med praktisk talt ingen endringer) på Unified State Examination.

Trekker ut eksponenten fra logaritmen

Det er lett å se at den siste regelen følger de to første. Men det er bedre å huske det uansett - i noen tilfeller vil det redusere mengden beregninger betydelig.

Selvfølgelig gir alle disse reglene mening hvis ODZ til logaritmen blir observert: a > 0, a ≠ 1, x > 0. Og en ting til: lær å bruke alle formler ikke bare fra venstre til høyre, men også omvendt , dvs. Du kan legge inn tallene før logaritmetegnet i selve logaritmen. Dette er det som oftest kreves.

Oppgave. Finn verdien av uttrykket: log7 496.

La oss bli kvitt graden i argumentet ved å bruke den første formelen:
log7 496 = 6 log7 49 = 6 2 = 12

Oppgave. Finn betydningen av uttrykket:

Legg merke til at nevneren inneholder en logaritme, hvis basis og argument er eksakte potenser: 16 = 24; 49 = 72. Vi har:

Jeg tror det siste eksemplet krever litt avklaring. Hvor har logaritmene blitt av? Helt til siste øyeblikk jobber vi kun med nevneren.

Logaritmeformler. Logaritmer eksempler på løsninger.

Vi presenterte grunnlaget og argumentet til logaritmen som sto der i form av potenser og tok ut eksponentene - vi fikk en "tre-etasjers" brøk.

La oss nå se på hovedbrøken. Telleren og nevneren inneholder samme tall: log2 7. Siden log2 7 ≠ 0, kan vi redusere brøken - 2/4 vil forbli i nevneren. I henhold til reglene for regnestykket kan de fire overføres til telleren, som er det som ble gjort. Resultatet ble svaret: 2.

Overgang til ny stiftelse

Når jeg snakker om reglene for å addere og subtrahere logaritmer, la jeg spesielt vekt på at de bare fungerer med de samme basene. Hva om årsakene er forskjellige? Hva om de ikke er nøyaktige potenser av samme tall?

Formler for overgang til en ny stiftelse kommer til unnsetning. La oss formulere dem i form av et teorem:

La logaritmen logaks gis. Så for et hvilket som helst tall c slik at c > 0 og c ≠ 1, er likheten sann:

Spesielt hvis vi setter c = x, får vi:

Fra den andre formelen følger det at basen og argumentet til logaritmen kan byttes, men i dette tilfellet blir hele uttrykket "snudd", dvs. logaritmen vises i nevneren.

Disse formlene finnes sjelden i vanlige numeriske uttrykk. Det er mulig å vurdere hvor praktiske de er bare når man løser logaritmiske ligninger og ulikheter.

Det er imidlertid problemer som ikke kan løses i det hele tatt bortsett fra ved å flytte til en ny stiftelse. La oss se på et par av disse:

Oppgave. Finn verdien av uttrykket: log5 16 log2 25.

Merk at argumentene til begge logaritmene inneholder eksakte potenser. La oss ta ut indikatorene: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

La oss nå "reversere" den andre logaritmen:

Siden produktet ikke endrer seg ved omorganisering av faktorer, multipliserte vi rolig fire og to, og behandlet deretter logaritmer.

Oppgave. Finn verdien av uttrykket: log9 100 lg 3.

Grunnlaget og argumentet til den første logaritmen er eksakte potenser. La oss skrive dette ned og bli kvitt indikatorene:

La oss nå bli kvitt desimallogaritmen ved å flytte til en ny base:

Grunnleggende logaritmisk identitet

Ofte i løsningsprosessen er det nødvendig å representere et tall som en logaritme til en gitt base. I dette tilfellet vil følgende formler hjelpe oss:

I det første tilfellet blir tallet n eksponenten i argumentet. Tallet n kan være absolutt hva som helst, fordi det bare er en logaritmeverdi.

Den andre formelen er faktisk en omskrevet definisjon. Det heter det: .

Faktisk, hva skjer hvis tallet b heves til en slik potens at tallet b i denne potensen gir tallet a? Det stemmer: resultatet er det samme tallet a. Les denne paragrafen nøye igjen - mange setter seg fast i den.

Som formlene for overgang til en ny base, den viktigste logaritmisk identitet noen ganger er det den eneste mulige løsningen.

Oppgave. Finn betydningen av uttrykket:

Legg merke til at log25 64 = log5 8 - ganske enkelt tok kvadratet fra basen og argumentet til logaritmen. Når vi tar i betraktning reglene for å multiplisere potenser med samme base, får vi:

Hvis noen ikke vet, var dette en skikkelig oppgave fra Unified State Exam :)

Logaritmisk enhet og logaritmisk null

Avslutningsvis vil jeg gi to identiteter som vanskelig kan kalles egenskaper – snarere er de konsekvenser av definisjonen av logaritmen. De dukker stadig opp i problemer og, overraskende nok, skaper de problemer selv for "avanserte" studenter.

  1. logaa = 1 er. Husk en gang for alle: logaritmen til en hvilken som helst base a av selve basen er lik én.
  2. loga 1 = 0 er. Grunnlaget a kan være hva som helst, men hvis argumentet inneholder en, er logaritmen lik null! Fordi a0 = 1 er en direkte konsekvens av definisjonen.

Det er alle egenskapene. Sørg for å trene på å sette dem ut i livet! Last ned juksearket i begynnelsen av leksjonen, skriv det ut og løs problemene.

Se også:

Logaritmen til b for å basere a angir uttrykket. Å beregne logaritmen betyr å finne en potens x () der likheten er tilfredsstilt

Grunnleggende egenskaper for logaritmen

Det er nødvendig å kjenne egenskapene ovenfor, siden nesten alle problemer og eksempler relatert til logaritmer løses på grunnlag av dem. Resten av de eksotiske egenskapene kan utledes gjennom matematiske manipulasjoner med disse formlene

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Når man regner ut formelen for sum og forskjell av logaritmer (3.4) kommer man over ganske ofte. Resten er noe sammensatt, men i en rekke oppgaver er de uunnværlige for å forenkle komplekse uttrykk og beregne deres verdier.

Vanlige tilfeller av logaritmer

Noen av de vanlige logaritmene er de der basen til og med er ti, eksponentiell eller to.
Logaritmen til grunntallet ti kalles vanligvis desimallogaritmen og er ganske enkelt betegnet med lg(x).

Det fremgår tydelig av opptaket at det grunnleggende ikke er skrevet i opptaket. For eksempel

En naturlig logaritme er en logaritme hvis base er en eksponent (angitt med ln(x)).

Eksponenten er 2,718281828…. For å huske eksponenten kan du studere regelen: eksponenten er lik 2,7 og to ganger fødselsåret til Leo Nikolaevich Tolstoy. Når du kjenner denne regelen, vil du vite både eksponentverdien og fødselsdatoen til Leo Tolstoy.

Og en annen viktig logaritme til base to er betegnet med

Den deriverte av logaritmen til en funksjon er lik en dividert med variabelen

Integral- eller antiderivertelogaritmen bestemmes av forholdet

Det gitte materialet er nok for deg til å løse en bred klasse av problemer knyttet til logaritmer og logaritmer. For å hjelpe deg å forstå materialet, vil jeg gi bare noen få vanlige eksempler fra skolepensum og universiteter.

Eksempler på logaritmer

Logaritmeuttrykk

Eksempel 1.
EN). x=10ac^2 (a>0,c>0).

Ved hjelp av egenskaper 3.5 beregner vi

2.
Ved egenskapen forskjell av logaritmer har vi

3.
Ved å bruke egenskaper 3.5 finner vi

4. Hvor .

Et tilsynelatende komplekst uttrykk forenkles til å danne ved hjelp av en rekke regler

Finne logaritmeverdier

Eksempel 2. Finn x if

Løsning. For beregning gjelder vi siste termin 5 og 13 eiendommer

Vi setter det på rekord og sørger

Siden basene er like, setter vi likhetstegn mellom uttrykkene

Logaritmer. Første nivå.

La verdien av logaritmer gis

Beregn log(x) if

Løsning: La oss ta en logaritme av variabelen for å skrive logaritmen gjennom summen av dens ledd


Dette er bare begynnelsen på vårt bekjentskap med logaritmer og deres egenskaper. Øv på beregninger, berik dine praktiske ferdigheter - du vil snart trenge kunnskapen du får for å løse logaritmiske ligninger. Etter å ha studert de grunnleggende metodene for å løse slike ligninger, vil vi utvide kunnskapen din til et annet like viktig emne - logaritmiske ulikheter ...

Grunnleggende egenskaper ved logaritmer

Logaritmer, som alle tall, kan legges til, trekkes fra og transformeres på alle måter. Men siden logaritmer ikke er helt vanlige tall, er det regler her, som kalles hovedegenskaper.

Du trenger definitivt å kjenne disse reglene - uten dem kan ikke et eneste alvorlig logaritmisk problem løses. I tillegg er det svært få av dem – du kan lære alt på en dag. Så la oss komme i gang.

Legge til og subtrahere logaritmer

Tenk på to logaritmer med samme base: logax og logay. Deretter kan de legges til og trekkes fra, og:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Så summen av logaritmer er lik logaritmen til produktet, og forskjellen er lik logaritmen til kvotienten. Vennligst merk: nøkkelen her er identiske grunner. Hvis årsakene er forskjellige, fungerer ikke disse reglene!

Disse formlene vil hjelpe deg med å beregne et logaritmisk uttrykk selv når dets individuelle deler ikke vurderes (se leksjonen "Hva er en logaritme"). Ta en titt på eksemplene og se:

Oppgave. Finn verdien av uttrykket: log6 4 + log6 9.

Siden logaritmer har samme base, bruker vi sumformelen:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Oppgave. Finn verdien av uttrykket: log2 48 − log2 3.

Basene er de samme, vi bruker forskjellsformelen:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Oppgave. Finn verdien av uttrykket: log3 135 − log3 5.

Igjen er basene de samme, så vi har:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Som du kan se, består de opprinnelige uttrykkene av "dårlige" logaritmer, som ikke beregnes separat. Men etter transformasjonene får man helt normale tall. Mange tester er basert på dette faktum. Ja, testlignende uttrykk tilbys i fullt alvor (noen ganger med praktisk talt ingen endringer) på Unified State Examination.

Trekker ut eksponenten fra logaritmen

La oss nå komplisere oppgaven litt. Hva om basen eller argumentet til en logaritme er en potens? Deretter kan eksponenten for denne graden tas ut av logaritmens fortegn i henhold til følgende regler:

Det er lett å se at den siste regelen følger de to første. Men det er bedre å huske det uansett - i noen tilfeller vil det redusere mengden beregninger betydelig.

Selvfølgelig gir alle disse reglene mening hvis ODZ til logaritmen blir observert: a > 0, a ≠ 1, x > 0. Og en ting til: lær å bruke alle formler ikke bare fra venstre til høyre, men også omvendt , dvs. Du kan legge inn tallene før logaritmetegnet i selve logaritmen.

Hvordan løse logaritmer

Dette er det som oftest kreves.

Oppgave. Finn verdien av uttrykket: log7 496.

La oss bli kvitt graden i argumentet ved å bruke den første formelen:
log7 496 = 6 log7 49 = 6 2 = 12

Oppgave. Finn betydningen av uttrykket:

Legg merke til at nevneren inneholder en logaritme, hvis basis og argument er eksakte potenser: 16 = 24; 49 = 72. Vi har:

Jeg tror det siste eksemplet krever litt avklaring. Hvor har logaritmene blitt av? Helt til siste øyeblikk jobber vi kun med nevneren. Vi presenterte grunnlaget og argumentet til logaritmen som sto der i form av potenser og tok ut eksponentene - vi fikk en "tre-etasjers" brøk.

La oss nå se på hovedbrøken. Telleren og nevneren inneholder samme tall: log2 7. Siden log2 7 ≠ 0, kan vi redusere brøken - 2/4 vil forbli i nevneren. I henhold til reglene for regnestykket kan de fire overføres til telleren, som er det som ble gjort. Resultatet ble svaret: 2.

Overgang til ny stiftelse

Når jeg snakker om reglene for å addere og subtrahere logaritmer, la jeg spesielt vekt på at de bare fungerer med de samme basene. Hva om årsakene er forskjellige? Hva om de ikke er nøyaktige potenser av samme tall?

Formler for overgang til en ny stiftelse kommer til unnsetning. La oss formulere dem i form av et teorem:

La logaritmen logaks gis. Så for et hvilket som helst tall c slik at c > 0 og c ≠ 1, er likheten sann:

Spesielt hvis vi setter c = x, får vi:

Fra den andre formelen følger det at basen og argumentet til logaritmen kan byttes, men i dette tilfellet blir hele uttrykket "snudd", dvs. logaritmen vises i nevneren.

Disse formlene finnes sjelden i vanlige numeriske uttrykk. Det er mulig å vurdere hvor praktiske de er bare når man løser logaritmiske ligninger og ulikheter.

Det er imidlertid problemer som ikke kan løses i det hele tatt bortsett fra ved å flytte til en ny stiftelse. La oss se på et par av disse:

Oppgave. Finn verdien av uttrykket: log5 16 log2 25.

Merk at argumentene til begge logaritmene inneholder eksakte potenser. La oss ta ut indikatorene: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

La oss nå "reversere" den andre logaritmen:

Siden produktet ikke endrer seg ved omorganisering av faktorer, multipliserte vi rolig fire og to, og behandlet deretter logaritmer.

Oppgave. Finn verdien av uttrykket: log9 100 lg 3.

Grunnlaget og argumentet til den første logaritmen er eksakte potenser. La oss skrive dette ned og bli kvitt indikatorene:

La oss nå bli kvitt desimallogaritmen ved å flytte til en ny base:

Grunnleggende logaritmisk identitet

Ofte i løsningsprosessen er det nødvendig å representere et tall som en logaritme til en gitt base. I dette tilfellet vil følgende formler hjelpe oss:

I det første tilfellet blir tallet n eksponenten i argumentet. Tallet n kan være absolutt hva som helst, fordi det bare er en logaritmeverdi.

Den andre formelen er faktisk en omskrevet definisjon. Det heter det: .

Faktisk, hva skjer hvis tallet b heves til en slik potens at tallet b i denne potensen gir tallet a? Det stemmer: resultatet er det samme tallet a. Les denne paragrafen nøye igjen - mange setter seg fast i den.

Som formler for å flytte til en ny base, er den grunnleggende logaritmiske identiteten noen ganger den eneste mulige løsningen.

Oppgave. Finn betydningen av uttrykket:

Legg merke til at log25 64 = log5 8 - ganske enkelt tok kvadratet fra basen og argumentet til logaritmen. Når vi tar i betraktning reglene for å multiplisere potenser med samme base, får vi:

Hvis noen ikke vet, var dette en skikkelig oppgave fra Unified State Exam :)

Logaritmisk enhet og logaritmisk null

Avslutningsvis vil jeg gi to identiteter som vanskelig kan kalles egenskaper – snarere er de konsekvenser av definisjonen av logaritmen. De dukker stadig opp i problemer og, overraskende nok, skaper de problemer selv for "avanserte" studenter.

  1. logaa = 1 er. Husk en gang for alle: logaritmen til en hvilken som helst base a av selve basen er lik én.
  2. loga 1 = 0 er. Grunnlaget a kan være hva som helst, men hvis argumentet inneholder en, er logaritmen lik null! Fordi a0 = 1 er en direkte konsekvens av definisjonen.

Det er alle egenskapene. Sørg for å trene på å sette dem ut i livet! Last ned juksearket i begynnelsen av leksjonen, skriv det ut og løs problemene.

Laster inn...Laster inn...