Диоксид циркония: свойства и области применения. Большая энциклопедия нефти и газа

Производство циркония и его сплавов, содержащих бор, требует тщательного контроля. Так как в литературе химические методы определения бора в металлическом цирконии и его сплавах описаны не были, то целью настоящей работы явилась разработка простого химического метода определения содержания бора в металлическом цирконии и его сплавах, в частности в сплавах с небольшим содержанием ниобия.
В производстве циркония йодидный метод имеет в отличие от производства титана промышленное значение.
Содержится в выбросах производств циркония, катализаторов органического синтеза.
Гафний получают только как побочный продукт производства циркония реакторного сорта. Основное его применение - изготовление регулирующих стержней в ядерных реакторах. Общее потребление не превышает в настоящее время 75 % производства. Однако исследование новых областей применения: изготовление высокотемпературных сплавов, нитей накаливания, геттеров, порошка для ламп-вспышек, детонаторов - может сущесг-венно увеличить спрос на металл. Отделение гафния от циркония - дорогостоящий процесс, причем обычно расходы по отделению распределяются поровну между стоимостью обоих металлов.
Полной аналогии в свойствах продуктов плазменно-фторидной и экстракционно-фторидной технологий производства циркония нет, поскольку в экстракционно-фторидной технологии цирконий и гафний разделяют на гидрохимической стадии с помощью экстракции. В случае использования плазменно-фторидной технологии переработки циркона при сублимационной очистке циркония от примесей, указанных в табл. 3.4, гафний в основном следует за цирконием.
Метод разделения циркония и гафния электролизом расплавов представляет интерес для производства циркония, так как одновременно с получением металлического циркония происходит очистка его от гафния.
Сырьем для получения гафния служат циркониевые концентраты или продукты и полупродукты производства циркония.
Схема получения циркония по методу Кролля на заводе в Олбани. Все эти трудности вызывают необходимость тщательной очистки реагентов, применяемых при производстве циркония и гафния, особенно от кислорода, воды и азота, и ограничивают выбор мето дов, которые можно использовать для получения этих металлов.
Аппарат для получения. Металлический гафний можно получить теми же методами, которые применяются при производстве циркония. Тетрахлорид гафния подвергают очистке перегонкой в атмосфере водорода и затем восстанавливают магнием. Очистку гафниевой губки от хлорида магния производят на установках для очистки циркониевой губки, поскольку при этой операции нет серьезной опасности для загрязнения гафния цирконием или наоборот. Губчатый гафний переплавляют в дуге и разливают в медные изложницы.
Металлический гафний получают такими же способами, которые применяются и в производстве циркония: способ Кроля, видоизмененный способ Кроля с применением натрия в качестве восстановителя и способ де Бура, или иодидный процесс.
Иодидный процесс получения мягкого, ковкого гафния аналогичен таковому, применяемому в производстве циркония, поэтому аппаратура, с помощью которой получают иодидный гафний, примерно такая же, как и в случае получения циркония. По данным , температура осаждения гафния из тетраиодида составляет 1600 С, а циркония - 1400 С.
Обстоятельное изучение процесса Кроля в применении к титану может дать возможность внести некоторые изменения и в технологическую схему производства циркония; в частности, это касается упрощения аппаратуры, сокращения ряда операций и увеличения размеров агрегатов.
Для получения более чистых порошков ниобия и тантала лучше проводить восстановление газообразных хлоридов жидким магнием аналогично тому, как это делается в производстве циркония.

В 1945 г. в США было произведено всего 0 07 кг циркония, однако начиная с 1948 г. в связи с работами по созданию атомных реакторов производство циркония резко возросло и через несколько лет достигло нескольких десятков тонн.
Залежи руд циркония, который гораздо шире распространен в природе, чем, например, бериллий, имеются, по данным зарубежной печати, в США, Индии, Бразилии, Австралии, в ряде государств Африки. Производство циркония в США с 1947 по 1958 г. возросло в 3 тыс. раз.
Благодаря высоким антикоррозионным свойствам цирконий может применяться для изготовления деталей химической аппаратуры, медицинского инструмента и в других областях техники. Однако вряд ли производство циркония так быстро достигло бы современного уровня, если бы он не обладал еще одним специфическим свойством - малым поперечным сечением поглощения тепловых нейтронов.
Технология и оборудование, применяемые для получения гафния по способу Кроля, по существу такие же, как и в производстве металлического циркония. Видоизменения по сравнениюс технологическим процессом производства циркония определяются заменой или изменением отдельных аппаратов, технологических операций и сорта исходных материалов. Здесь следует иметь в виду большую чувствительность тетрахлорида гафния к атмосферной влаге, большую устойчивость гафнилхлорида и несколько большую пирофорностк свежеполученной металлической губки.
Поскольку гафний извлекают попутн при получении реакторного циркония, его производство расте пропорционально выпуску последнего, причем на 50 кг циркони; получают приблизительно 1 кг гафния. Пользуясь этим расчетом i обрывочными сведениями о производстве циркония в отдельны. По прогноза ] Горного бюро США, опубликованным в 1975 г., потребность это страны в гафнии на рубеже XX - - XXI вв.
Спектра л ь н ы и а н а л и з циркония на примеси в значительной степени затруднен из-за того, что на фоне многолинейчатого спектра циркония трудно выделить слабые линии спектров малых концентраций примесей. Этот метод позволяет также определять малые концентрации фтора в металлическом цирконии, что весьма существенно в контроле производства электролитического циркония.
Поскольку гафний извлекают попутно при получении реакторного циркония, его производство растет пропорционально выпуску последнего, причем на 50 кг циркония получают приблизительно 1 кг гафния. За текущее десятилетие (1970 - 1980 гг.) мировая мощность атомных электростанций возрастет в 5 - 8 раз, соответственно возрастет производство циркония и гафния. Ведь каждый мегаватт мощности АЭС требует от 45 до 79 кг циркония для изготовления труб и других деталей. Кроме того, 25 - 35 % циркониевых труб в действующих реакторах необходимо ежегодно заменять. В результате для этих целей уже в середине 70 - х годов будет расходоваться примерно столько же циркония, как и для новых реакторов.
Фторидно-сублимационная технология очистки тетрафто-рида циркония от фторидов Al, Ca, Cu, Fe, Mg была хорошо освоена в СССР в 80 - х годах на Приднепровском химическом заводе при разработке и освоении экстракционно-фторидной технологии производства ядерно-чистого циркония.
Са, Си, Fe, Mg, Th) находится в виде фторидной композиции, получаемой при сублимационной очистке циркония. При крупнотоннажном плазменном производстве циркония и кремния накопленная масса этих отходов может стать со временем значительной; для их переработки можно использовать плазменные и частотные технологии извлечения указанных компонентов в виде дисперсных оксидов или металлов (см. гл.
При переработке 1 т циркона и извлечении из него циркония и кремния в виде фторидов в отходах остаются 4 6 кг А1; 0 1 кг Са; 0 4 кг Си; 1 3 кг Fe; 1 1 кг Mg; 0 3 - 0 4 кг Th; 0 3 - 0 4 кг U; 0 3 кг Ti; т.е. 8 6 кг металлов, из которых основная часть (А1, Са, Си, Fe, Mg, Th) находится в виде фторидной композиции, получаемой при сублимационной очистке циркония. При крупнотоннажном плазменном производстве циркония и кремния накопленная масса этих отходов может стать со временем значительной; для их переработки можно использовать плазменные и частотные технологии извлечения указанных компонентов в виде дисперсных оксидов или металлов (см. гл.
В 1945 г. в США было произведено всего 0 07 кг циркония, однако начиная с 1948 г. в связи с работами по созданию атомных реакторов производство циркония резко возросло и через несколько лет достигло нескольких десятков тонн. В результате технология производства циркония, который несколько лет назад был редкостью, ныне более прогрессивна, чем технология получения многих других металлов, известных и применяющихся уже в течение десятилетий.
По принципу нагрева вакуумные дуговые печи относятся к дуговым печам прямого действия. Вакуумные дуговые печи являются одним из новых видов электротермического оборудования. Появление их вызвано увеличением производства циркония, титана, молибдена и некоторых других тугоплавких и химически активных материалов.
Но и в этом случае он не может быть применен без предварительной химической очистки (см. раздел 15.5) от всегда сопутствующего ему в природе элемента гафния, обладающего сходными с цирконием химическими свойствами. Гафний, извлекаемый в производстве циркония реакторного сорта, является отличным материалом для изготовления регулирующих стержней реактора.
Гафний находится в IV группе периодической системы элементов Д. И. Менделеева и входит в подгруппу титана. Он относится к рассеянным элементам, не имеющим собственных минералов; в природе сопутствует цирконию. В настоящее время его получают в виде побочного продукта при производстве циркония. По химическим и физическим свойствам гафний близок к цирконию, но значительно отличается от последнего по ядерным свойствам.
В химической промышленности молибден используют в виде прокладок и болтов для горячего ремонта (заправки) футерованных стеклянной плиткой сосудов, применяющихся при работе с серной кислотой и кислыми средами, в которых происходит выделение водорода. В изделиях, работающих в серной кислоте, применяют также молибденовые термопары и вентили, а молибденовые сплавы служат в качестве футеровки реакторов в установках, предназначенных для производства и-бутилхлорида путем реакций с участием соляной и серной кислот при температурах, превышающих 170 С. К числу разнообразных применений, в которых используется молибден, относят также процессы жидкофазного гидрохлорирования, производства циркония и сверхчистого тория.

За государственной границей остались предприятия, на которых созданы пилотные и промышленные установки, работающие по новым электротехнологиям. Например, наУльбинском металлургическом заводе (Казахстан) осталась промышленная установка по плазменной конверсии обогащенного по изотопу U-235 гексафторида урана на оксиды урана для изготовления оксидного ядерного топлива и плавиковую кислоту ; на Приднепровском химическом заводе (Украина) - промышленное оборудование для производства циркония и гафния из фторидного сырья по технологии холодный тигель; в НИИ стабильных изотопов (Грузия) - пилотная высокочастотная установка по получению изотопно-обогащенного (по изотопу В-10) карбида бора методом прямого индукционного нагрева; высокочастотная установка такого же типа осталась в НПО Порошковой металлургии в Белоруссии. Не лучшим образом обстоят дела и на предприятиях, оставшихся в РФ.
За государственной границей остались предприятия, на которых созданы пилотные и промышленные установки, работающие по новым электротехнологиям. Например, на Ульбинском металлургическом заводе (Казахстан) осталась промышленная установка по плазменной конверсии обогащенного по изотопу U-235 гексафторида урана на оксиды урана для изготовления оксидного ядерного топлива и плавиковую кислоту ; на Приднепровском химическом заводе (Украина) - промышленное оборудование для производства циркония и гафния из фторидного сырья по технологии холодный тигель; в НИИ стабильных изотопов (Грузия) - пилотная высокочастотная установка по получению изотопно-обогащенного (по изотопу В-10) карбида бора методом прямого индукционного нагрева; высокочастотная установка такого же типа осталась в НПО Порошковой металлургии в Белоруссии. Не лучшим образом обстоят дела и на предприятиях, оставшихся в РФ.
Рассеянные редкие металлы объединены по признаку рассеяния их в земной коре. Обычно рассеянные элементы находятся в виде изоморфной примеси в решетках других минералов и извлекаются попутно из отходов металлургич. Ga - из отходов алюминиевого производства, In - из отходов производства цинка и свинца, Т1 - из пылей обжига различных сульфидных концентратов, Ge - из от-ходов цинкового и медного производств, а также отходов переработки углей, Re - из полупродуктов молибденового производства, Ш извлекают попутно в производстве циркония. Рассеянные элементы Se и Те, встречающиеся как примеси в различных природных сульфидах, извлекаются либо из отходов сернокислотного производства, либо при металлургич.
Сырьевая база циркония включает два богатых им минерала - циркон и бадделеит, содержащие 45 6 % и 69 1 % циркония соответственно. В этих минералах цирконию сопутствует гафний - металл, имеющий высокое сечение поглощения тепловых нейтронов. Поэтому любая технология выделения и аффинажа циркония предусматривает очистку его от гафния. В начале 80 - х годов в СССР была создана новая технология производства циркония, включающая спекание циркона с карбонатом натрия, последующее выщелачивание силиката натрия, растворение циркония в азотной кислоте, экстракционное отделение от гафния и аффинаж:; затем цирконий реэкстрагируют и доводят технологический цикл до производства тетрафторида циркония, из которого при кальцийтермической плавке восстанавливают цирконий. Полученный цирконий направляют на производство сплавов для изготовления труб ТВЭЛов.
Сырьевая база циркония включает два богатых им минерала - циркон и бадделеит, содержащие 45 6 % и 69 1 % циркония соответственно. В этих минералах цирконию сопутствует гафний - металл, имеющий высокое сечение поглощения тепловых нейтронов. Поэтому любая технология выделения и аффинажа циркония предусматривает очистку его от гафния. В начале 80 - х годов в СССР была создана новая технология производства циркония, включающая спекание циркона с карбонатом натрия, последующее выщелачивание силиката натрия, растворение циркония в азотной кислоте, экстракционное отделение от гафния и аффинаж; затем цирконий реэкстрагируют и доводят технологический цикл до производства тетрафторида циркония, из которого при кальцийтермической плавке восстанавливают цирконий. Последующая технология включает электронно-лучевой аффинаж. Полученный цирконий направляют на производство сплавов для изготовления труб ТВЭЛов.
Цирконий соответственно строению электронной оболочки и, следовательно, своему месту в периодической системе элементов Д. И. Менделеева является аналогом титана в физико-химическом отношении. Для металла циркония это выражается в подобии его титану в отношении физических, механических, технологических, коррозионных свойств и характера образуемых сплавов. Поэтому в последние 15 - 20 лет происходит широкое освоение циркония: разработка методов получения и осуществление производства циркония высокой чистоты, детальное исследование его свойств и сплавов.
Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля, основанную на прямом частотном индукционном нагреве шихты UsOg xCj при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики (карбиды, нитриды и различные керамические композиции; см. гл. В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель. Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70 - 80 - х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80 - х годах появилось металлургическое оборудование типа холодный тигель, работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий; появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах; очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья.
Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля, основанную на прямом частотном индукционном нагреве шихты UsOg хС, при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики (карбиды, нитриды и различные керамические композиции; см. гл. В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель. Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70 - 80 - х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80 - х годах появилось металлургическое оборудование типа холодный тигель, работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий; появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах; очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья.

Оксид циркония — ZrO2 (диоксид циркония), бесцветные кристаллы, tпл 2900 °C.

Диоксид циркония проявляет амфотерные свойства, нерастворим в воде и водных растворах большинства кислот и щелочей, однако растворяется в плавиковой и концентрированной серной кислотах, расплавах щелочей и стеклах.

  • Диоксид циркония существует в трёх кристаллических формах:
  • стабильной моноклинной, встречающейся в природе в виде минерала бадделита. метастабильной среднетемпературной тетрагональной, присутствующей во многих циркониевых керамиках. Переход тетрагональной фазы диоксида циркония в моноклинную сопровождается увеличением объёма, что увеличивает прочность таких керамик: механические напряжения у вершины растущей микротрещины инициируют фазовый переход тетрагональной модификации в моноклинную, и, как следствие, локальные увеличения объёма и, соответственно, давления, что стабилизирует микротрещину, замедляя её рост.
  • нестабильной высокотемпературной кубической. Крупные прозрачные кристаллы кубического диоксида циркония, стабилизированные примесями оксидов кальция, иттрия или других металлов, благодаря высокому показателю преломления и дисперсии применяются в ювелирном деле в качестве имитации алмазов; в СССР такие кристаллы получили название фианитов, от Физического института Академии наук, где были впервые синтезированны.

Диоксид циркония широко используется при получении высокоогнеупорных изделий, жаростойких эмалей, тугоплавких стекол, различных видов керамики, керамических пигментов, твердых электролитов, термозащитных покрытий, катализаторов, искусственных драгоценных камней, режущих инструментов и абразивных материалов. В последние годы диоксид циркония начал широко применяться в волоконной оптике и производстве керамики, используемой в электронике.

Благодаря своим неповторимым свойствам как высочайшая износоустойчивость, невероятно гладкая поверхность и практически отсутствие негативного взаимодействия например с проволокой и кабелем, самая низкая из всех известных керамических материалов теплопроводность - оксид циркония находит применение во многих областях техники.

Благодаря минимальному взаимодействию с металлами оксид циркония отлично подходит для фильер, волоков, бандажей волочильных и других машин и приборов для производства проволоки и кабеля. Пары скольжения, благодаря прекрасным трибологическим свойствам особенно при высоких температурах, а также лучшее, чем у сталей теплорасширение. Всё это делает материалы на основе оксида циркония одним из лучших материалов технической и инженерной керамики.

Нанокерамические материалы на основе ZrO2 обладают уникальным комплексом физико-механических свойств:

  • в отличие от существующих аналогов, вследствие особой технологии синтеза, керамика имеет одновременно высокие значения прочности, вязкости разрушения и износостойкости;
  • высокие эксплуатационные свойства в условиях воздействия высоких температур (свыше 1600 °C) и коррозионно-активных сред без значительной деградации механических свойств;
  • способность поглощать и удерживать в поровом пространстве значительное количество активной жидкости.

По запросу предоставим дополнительную информацию (паспорта качества, цены, условия поставки и т.д.),
а так же образцы продукции для испытаний. Готовы ответить на все интересующие вас вопросы.
Надеемся на плодотворное и взаимовыгодное сотрудничество.

Цирко́ний - элемент побочной подгруппы четвёртой группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 40. Обозначается символом Zr (лат. Zirconium). Простое вещество цирконий (CAS-номер: 7440-67-7) - блестящий металл серебристо-серого цвета. Обладает высокой пластичностью, устойчив к коррозии. Существует в двух кристаллических модификациях: α-Zr с гексагональной решёткой типа магния, β-Zr с кубической объёмноцентрированной решёткой типа α-Fe, температура перехода α↔β 863 °C Цирконий в свободном состоянии представляет собой блестящий металл. Не содержащий примесей цирконий пластичен и легко поддаeтся горячей и холодной обработке. Одно из наиболее ценных свойств циркония - его высокая стойкость против коррозии в различных средах.

Нахождение в природе

Соединения циркония широко распространены в литосфере. В природе распространены главным образом циркон (ZrSiO4), бадделеит (ZrO2) и различные сложные минералы. Во всех земных месторождениях цирконию сопутствует Hf, который входит в минералы циркона благодаря изоморфному замещению атома Zr. Циркон является самым распространенным циркониевым минералом. Он встречается во всех типах пород, но главным образом в гранитах и сиенитах. В графстве Гиндерсон (шт. Сев. Каролина) в пегматитах были найдены кристаллы циркона длиной в несколько сантиметров, а на Мадагаскаре были обнаружены кристаллы, вес которых исчисляется килограммами. Бадделеит был найден Юссаком в 1892 г в Бразилии. Основное месторождение находится в районе Посус-ди-Калдас (Бразилия). Там была найдена глыба бадделеита весом около 30 т, а в водных потоках и вдоль обрыва бадделеит встречается в виде аллювиальной гальки диаметром до 7,5 мм, известной под названием фавас (от португальского fava - боб). Фавас обычно содержит свыше 90 % двуокиси циркония.

Применение циркония и его соединений

В промышленности цирконий стал применяться с 30-х годов XX века. Из-за высокой стоимости его применение ограничено. Единственным предприятием, специализирующемся на производстве циркония в России (и на территории бывшего СССР), является Чепецкий механический завод (Глазов, Удмуртия).

Применение Циркония в атомной энергетике

Цирконий имеет очень малое сечение захвата тепловых нейтронов. Поэтому металлический цирконий, не содержащий гафния, и его сплавы применяются в атомной энергетике для изготовления тепловыделяющих элементов, теплообменников и других конструкций атомных реакторов, а так же как весьма эффективный замедлитель нейтронов.

Применение Циркония в металлургической промышленности

в металлургии применяется в качестве лигатуры. Хороший раскислитель и деазотатор, по эффективности превосходит Mn, Si, Ti. Легирование сталей цирконием (до 0,8 %) повышает их механические свойства и обрабатываемость. Делает также более прочными и жаростойкими сплавы меди при незначительной потере электропроводности. Диоксид циркония (т. пл. 2700 °C) применяется при производство огнеупоров-бакоров (бакор - бадделеит-корундовая керамика). Применяется в качестве заменителя шамота. Огнеупоры на основе стабилизированной двуокиси применяются в металлургической промышленности для желобов, стаканов при непрерывной разливке сталей, тиглей для плавки редкоземельных элементов. Также применяется в керметах - керамикометаллических покрытиях, которые обладают высокой твёрдостью и устойчивостью ко многим химическим реагентам, выдерживают кратковременные нагревания до 2750 °C. Диборид циркония ZrB2 - кермет, в различных смесях с нитридом тантала и карбидом кремния - материал для производства резцов.

Применение Циркония в пиротехнике

цирконий обладает замечательной способностью сгорать в кислороде воздуха (температура самовоспламенения - 250 °C) практически без выделения дыма, с высокой скоростью и развивая наиболее высокую температуру из всех металлических горючих (4650 °C). За счет высокой температуры образующаяся двуокись циркония излучает значительное количество света, что используется очень широко в пиротехнике (производство салютов и фейерверков), производстве химических источников света применяемых в различных областях деятельности человека (факелы, осветительные ракеты, осветительные бомбы, ФОТАБ - фотоавиабомбы). В этой сфере повышеный интерес имеет не только металлический цирконий, но и его сплавы с церием (значительно больший световой поток). Порошкообразный цирконий применяют в смеси с окислителями (бертолетова соль) как бездымное средство в сигнальных огнях пиротехники и в запалах, заменяя гремучую ртуть и азид свинца.

Применение Циркония в научных исследованиях (в области исследования низких температур)

Сверхпроводящий сплав 75 % Nb и 25 % Zr (сверхпроводимость при 4,2 K) выдерживает нагрузку до 100 000 А/см. Применение циркония в оптической промышленности - на основе кубической модификации двуокиси циркония, стабилизированной скандием, иттрием, редкими землями, получают материал - фианит (от ФИАНа где он был впервые получен), фианит применяется в качестве оптического материала с большим коэффициентом преломления (линзы плоские). Применение Циркония в качестве конструкционного материала -- идет на изготовление кислотостойких химических реакторов, арматуры, насосов, при получении синтетических волокон, и производстве некоторых видов проволоки (волочение). Цирконий применяют как заменитель благородных металлов. Применение Циркония в стекловарении - циркон «обезжелезненный» применяется в виде различных огнеупоров для футеровки стекловаренных и металлургических печей. Применение Циркония в строительных отраслях - на производстве строительной керамики, эмалей и глазурей для сантехнических изделий. Применение Циркония в легкой промышленности Цирконий применяется для изготовления разнообразной посуды, обладающей отличными гигиеническими свойствами благодаря высокой химической стойкости. Применение циркония в лакокрасочной промышленности - двуокись - глушитель эмалей, придает им белый и непрозрачный цвет. Применение циркония в ювелирной промышленности -- в качестве синтетического ювелирного камня (дисперсия, показатель преломления и игра цвета больше, чем у бриллианта). Применение циркония в авиакосмической промышленности - карбид циркония (т. пл. 3530 °C) важнейший конструкционный материал для твердофазных ядерных реактивных двигателей. Гидрид циркония применяется в качестве компонента ракетного топлива. Бериллид циркония чрезвычайно твёрд и устойчив к окислению на воздухе до 1650 °C, применяется в авиакосмической технике (двигатели, сопла, реакторы, радиоизотопные электрогенераторы) При нагревании диоксид циркония проводит ток, что иногда используется для получения нагревательных элементов устойчивых на воздухе при очень высокой температуре. Нагретый цирконий способен проводить ионы кислорода как твердый электролит. Это свойство используется в промышленных анализаторах кислорода..php on line 203 Warning: require(http://www..php): failed to open stream: no suitable wrapper could be found in /hsphere/local/home/winexins/сайт/tab/Zr.php on line 203 Fatal error: require(): Failed opening required "http://www..php" (include_path="..php on line 203

Протезирование зубов применяется повсеместно, во всех стоматологических клиниках. Материалов для изготовления протезов и техник их установки на сегодня существует довольно большой выбор. Новый материал оксид циркония поражает своими качествами и считается лучшим для применения в этой области.

как химическое соединение

Оксид ZrO2 - это прозрачные, бесцветные кристаллы особой прочности, нерастворимые в воде и большинстве растворов щелочей и кислот, зато растворяется в расплавах щелочей, стеклах, плавиковой и серной кислоте. Температура плавления составляет 2715 °C. Оксид циркония существует в трех формах: стабильная моноклинная, которая встречается в природе, метастабильная тетрагональная - входит в состав циркониевых керамик, нестабильная кубическая - используется в ювелирном деле как имитация алмазов. В промышленности цирконий оксид получил широкое распространение благодаря своей сверхтвердости, из него изготавливают огнеупоры, эмали, стекла и керамику.

Сферы применения оксида циркония

Цирконий оксид был открыт в 1789 году и долгое время не применялся, весь его огромный потенциал был неизвестен человечеству. Только сравнительно с недавнего времени цирконий стал активно применяться во многих областях человеческой деятельности. Он используется в автомобилестроении, например, в изготовлении тормозных дисков высококлассных машин. В космической отрасли он незаменим - благодаря ему корабли выдерживают невероятные температурные воздействия. Режущие инструменты, насосы также содержат оксид циркония. Применяется он и в медицине, например, как головки искусственных тазобедренных суставов. И, наконец, в стоматологии он может проявить все свои самые лучшие качества в роли зубных протезов.

Оксид циркония в стоматологии

В современной стоматологии цирконий оксид - это самый популярный материал для изготовления зубных коронок. Он получил распространение в этой области благодаря своим качествам, таким как твердость, прочность, износоустойчивость и сохранение формы и вида на протяжении длительного времени, биологическая совместимость тканями человека, красивый внешний вид. Может служить материалом для одиночных коронок, мостов, штифтов, несъемных протезов с применением имплантов.

Оксид циркония, цена на который выше, чем на остальные виды протезов, сложен в обработке. Этим и обусловлен тот факт, что такие коронки самые дорогие. После создания каркаса, на него наносится слой белой керамики, так как сам оксид циркония не имеет цвета. Благодаря этому керамику можно наносить очень тонким слоем.

Безметалловые коронки на оксиде циркония

В производстве коронок и цирконий оксид довольн-таки новый материал. Раньше использование зубных протезов на металлическом каркасе было абсолютной нормой и безальтернативным вариантом. Но ученые вели исследования и искали наиболее подходящий материал, обладающий как эстетичным внешним видом, так и биологической совместимостью с тканями человеческого организма, прочный и легкий. Такой материал нашелся, и это в природе большая редкость, по своим качествам он может сравниться разве что с алмазом.

С появлением циркониевых коронок пациенты могут наслаждаться неповторимой эстетикой и красотой протезов, другое дело, что не всем такое счастье по карману. Но благодаря своей прочности, возможно, потратиться придется раз и на всю жизнь - циркониевые протезы невероятно износоустойчивы и долговечны. Благодаря тому, что сам по себе оксид циркония прозрачен, совместно с тонким слоем керамики создается эффект естественных зубов. Кроме того, коронки плотно прилегают к десне, не имеют ни малейшего зазора, чем создается еще более натуральный вид.

Эстетика плюс прочность

Белая сталь - так иногда называют керамику на оксиде циркония. Коронки из этого материала в 5 раз прочнее цельнокерамических протезов. В чем преимущество такой прочности? До появления в стоматологии оксида циркония, коронки делались с использованием металлического каркаса, на который наносился толстый слой керамики. Металл - для прочности, керамика - для эстетики. Но создать полностью натуральный вид таким образом невозможно, на месте соприкосновения протеза с десной явно проглядывается темная полоска (такой эффект дает металлический каркас).

Цирконий оксид не уступает по прочности металлу, и позволяет передать естественный цвет и прозрачность, как у натурального зуба, без каких-либо лишних цветовых вкраплений. Он по своей природе схож с тканями зуба, обладает светопропускаемостью. Лучи света, проникающие в толщу коронки, преломляются и рассеиваются естественным образом, создавая эффект здоровой и красивой улыбки. Стоматологи при установке протеза подбирают цвет, который не отличается от цвета остальных здоровых зубов, поэтому коронка ничем себя не выдает, сливаясь со здоровыми зубами.

Биосовместимость

Металлы, из которых создаются металлокерамические протезы, иногда становятся причиной аллергических реакций у пациента, появления воспалений и долгого привыкания к протезу. Коронки на основе оксида циркония - идеальный вариант для людей с гиперчувствительностью и непереносимостью металлов.

Это связано с такими их свойствами:

  • Безопасный состав (не содержат
  • Невосприимчивость к кислотам, низкая растворяемость.
  • Гладкая поверхность не позволяет скапливаться налету.
  • Инертность к другим материалам, присутствующим в полости рта.
  • Высокая теплоизоляция обеспечивает отсутствие дискомфорта при приеме горячей или холодной пищи.
  • Минимальная подготовка здорового зуба. Прочность материала позволяет создавать тонкие каркасы, тем самым обточить зуб по минимуму и сохранить больше здоровой ткани зуба.

Противопоказания

Оксид циркония, свойства которого идеальны для зубных протезов, почти не имеет противопоказаний, за исключением таких индивидуальных особенностей организма человека:

  • Глубокий прикус - патология строения челюсти, при которой верхняя челюсть на треть прикрывает нижние зубы при сомкнутом положении. Дефект приводит к излишнему давлению на зубы верхней челюсти и грозит повышенным стиранием зубной эмали.
  • Бруксизм - аномалия, проявляющаяся скрежетанием зубами, чаще всего во время сна. Причина до конца не выявлена, но многие ученые сходятся во мнении, что бруксизм - результат психического дисбаланса и стрессов. Приводит к повреждению эмали и стиранию зубов.

Изготовление коронок

Цирконий оксид сложен в обработке, поэтому производство коронок из него - процесс трудоемкий. Он включает в себя несколько этапов:

  1. Подготавливается ротовая полость, обтачивается под коронку зуб.
  2. Снимается слепок с обточенного зуба, изготавливается модель будущей коронки.
  3. Проводится лазерное сканирование модели, данные заносятся в компьютер для обработки.
  4. Специальная компьютерная программа моделирует каркас с учетом всех нюансов (например, усадки каркаса после обжига).
  5. К компьютеру с полученными данными подключается цифровой станок для вытачивания и происходит создание каркаса из циркониевой заготовки.
  6. Выточенный каркас помещают в для спекания массы и обеспечения большей прочности.
  7. Готовый каркас покрывают керамической массой определенного оттенка, выбранного для конкретного пациента.

Преимущества циркониевых коронок перед металлокерамикой

При необходимости протезирования перед пациентом встает вопрос, какие выбрать искусственные зубы. Оксид циркония имеет массу преимуществ перед другими материалами:

  • Протезирование циркониевыми коронками не требует удаления нерва.
  • Отсутствие металла в конструкции, что избавляет от таких проблем, как аллергическая реакция, металлический привкус во рту.
  • Гарантия отсутствия развития болезней под коронкой. Протез плотно прилегает к десне, частички пищи и бактерии под него не попадают.
  • Точность выполнения каркаса. Цифровая обработка данных гарантирует невероятную точность в изготовлении конструкции.
  • Индивидуальный подбор цвета. Готовый протез визуально не отличить от остальных, здоровых зубов.
  • Возможность изготовления мостовидного протеза любой длины;
  • Легкость конструкции.
  • Отсутствие реакции на холодную и горячую пищу. Ношение металлокерамики может вызывать неприятные ощущения от высоких или низких температур. Оксид циркония такой реакции не дает.
  • Абсолютно натуральный внешний вид.
  • Отсутствие серой каемки в зоне соприкосновения с десной.
  • При подготовке к протезированию нет необходимости сильно обтачивать зуб.
  • Коронки не деформируются и сохраняют свой вид и форму на протяжении долгого времени.
Соединения циркония широко распространены в литосфере. По разным данным кларк циркония от 170 до 250 г/т. Концентрация в морской воде 5·10-5 мг/л. Цирконий - литофильный элемент. В природе известны его соединения исключительно с кислородом в виде окислов и силикатов. Несмотря на то, что цирконий рассеянный элемент, насчитывается около 40 минералов, в которых цирконий присутствует в виде окислов или солей. В природе распространены главным образом циркон (ZrSiO4)(67,1 % ZrO2), бадделеит (ZrO2) и различные сложные минералы (эвдиалит (Na, Ca)5(Zr, Fe, Mn) и др.). Во всех земных месторождениях цирконию сопутствует Hf, который входит в минералы циркона благодаря изоморфному замещению атома Zr.
Циркон является самым распространенным циркониевым минералом. Он встречается во всех типах пород, но главным образом в гранитах и сиенитах. В графстве Гиндерсон (штат Северная Каролина) в пегматитах были найдены кристаллы циркона длиной в несколько сантиметров, а на Мадагаскаре были обнаружены кристаллы, вес которых исчисляется килограммами. Бадделеит был найден Юссаком в 1892 году в Бразилии. Основное месторождение находится в районе Посус-ди-Калдас (Бразилия). Наиболее крупные месторождения циркония расположены на территории США, Австралии, Бразилии, Индии.
В России, на долю которой приходится 10% мировых запасов циркония (3 место в мире после Австралии и ЮАР), основными месторождениями являются: Ковдорское коренное бадделит-апатит-магнетитовое в Мурманской области, Туганское россыпное циркон-рутил-ильменитовое в Томской области, Центральное россыпное циркон-рутил-ильменитовое в Тамбовской области, Лукояновское россыпное циркон-рутил-ильменитовое в Нижегородской области, Катугинское коренное циркон-пирохлор-криолитовое в Читинской области и Улуг-Танзекское коренное циркон-пирохлор-колумбитовое.

Запасы на месторождениях циркония в 2012 году, тыс.тонн *

Австралия 21,000.0
ЮАР 14,000.0
Индия 3,400.0
Мозамбик 1,200.0
Китай 500.0
Прочие страны 7,900.0
Всего запасы 48,000.0

* данные US Geological Survey

В промышленности исходным сырьем для производства циркония являются циркониевые концентраты с массовым содержанием диоксида циркония не менее 60-65%, получаемые обогащением циркониевых руд. Основные методы получения металлического циркония из концентратом - хлоридный, фторидный и щелочной процессы. Крупнейшим производителем циркона в мире является компания Iluka.
Производство циркона сконцентрировано в Австралии (40% продукции в 2010 году) и Южной Африке (30%). Остальной циркон производится в более чем дюжине других стран. Добыча циркона увеличивалась ежегодно в среднем на 2,8% в период между 2002 и 2010 годами. Крупные производители, такие как Iluka Resources, Richards Bay Minerals, Exxaro Resources Ltd и DuPont, извлекают циркон как побочный продукт во время добычи полезных ископаемых титана. Спрос на полезные ископаемые титана не увеличивался с такой скоростью, как в случае с цирконом в прошлое десятилетие, поэтому производители начали развивать и эксплуатировать минеральные залежи песков с более высоким содержанием циркона, такие как в Африке и в Южной Австралии.

* данные US Geological Survey

В промышленности цирконий стал применяться с 30-х годов XX века. Из-за высокой стоимости его применение ограничено. Металлический цирконий и его сплавы применяются в ядерной энергетике. Цирконий имеет очень малое сечение захвата тепловых нейтронов и высокую температуру плавления. Поэтому металлический цирконий, не содержащий гафния, и его сплавы применяются в атомной энергетике для изготовления тепловыделяющих элементов, тепловыделяющих сборок и других конструкций ядерных реакторов.
Другой областью применения циркония служит легирование. В металлургии применяется в качестве лигатуры. Хороший раскислитель и деазотатор, по эффективности превосходит Mn, Si, Ti. Легирование сталей цирконием (до 0,8%) повышает их механические свойства и обрабатываемость. Делает также более прочными и жаростойкими сплавы меди при незначительной потере электропроводности.
Используется цирконий и в пиротехнике. Цирконий обладает замечательной способностью сгорать в кислороде воздуха (температура самовоспламенения - 250°C) практически без выделения дыма и с высокой скоростью. При этом развивается самая высокая температура для металлических горючих (4650°C). За счет высокой температуры образующаяся двуокись циркония излучает значительное количество света, что используется очень широко в пиротехнике (производство салютов и фейерверков), производстве химических источников света, применяемых в различных областях деятельности человека (факелы, осветительные ракеты, осветительные бомбы, ФОТАБ - фотоавиабомбы; широко применялся в фотографии в составе одноразовых ламп-вспышек, пока не был вытеснен электронными вспышками). Для применения в этой сфере представляет интерес не только металлический цирконий, но и его сплавы с церием, дающие значительно больший световой поток. Порошкообразный цирконий применяют в смеси с окислителями (бертолетова соль) как бездымное средство в сигнальных огнях пиротехники и в запалах, заменяя гремучую ртуть и азид свинца. Проводились удачные эксперименты по использованию горения циркония в качестве источника света для накачки лазера.
Еще одно применение циркония - в сверхпроводниках. Сверхпроводящий сплав 75% Nb и 25 % Zr (сверхпроводимость при 4,2 K) выдерживает нагрузку до 100 000 А/см2. В виде конструкционного материала цирконий идет на изготовление кислотостойких химических реакторов, арматуры, насосов. Цирконий применяют как заменитель благородных металлов. В атомной энергетике цирконий является основным материалом оболочек твэлов.
Цирконий обладает высокой стойкостью к воздействию биологических сред, даже более высокой, чем титан, и отличной биосовместимостью, благодаря чему применяется для создания костных, суставных и зубных протезов, а также хирургического инструмента. В стоматологии керамика на основе диоксида циркония является материалом для изготовления зубопротезных изделий. Кроме того, благодаря биоинертности этот материал служит альтернативой титану при изготовлении дентальных имплантатов.
Цирконий применяется для изготовления разнообразной посуды, обладающей отличными гигиеническими свойствами благодаря высокой химической стойкости.
Диоксид циркония (т. пл. 2700°C) используется для производства огнеупоров-бакоров (бакор - бадделеит-корундовая керамика). Применяется в качестве заменителя шамота, так как в 3-4 раза увеличивает кампанию в печах для варки стекла и алюминия. Огнеупоры на основе стабилизированной двуокиси применяются в металлургической промышленности для желобов, стаканов при непрерывной разливке сталей, тиглей для плавки редкоземельных элементов. Также применяется в керметах - керамикометаллических покрытиях, которые обладают высокой твёрдостью и устойчивостью ко многим химическим реагентам, выдерживают кратковременные нагревания до 2750°C. Двуокись - глушитель эмалей, придает им белый и непрозрачный цвет. На основе кубической модификации двуокиси циркония, стабилизированной скандием, иттрием, редкими землями, получают материал - фианит (от ФИАНа где он был впервые получен), фианит применяется в качестве оптического материала с большим коэффициентом преломления (линзы плоские), в медицине (хирургический инструмент), в качестве синтетического ювелирного камня (дисперсия, показатель преломления и игра цвета больше, чем у бриллианта), при получении синтетических волокон и в производстве некоторых видов проволоки (волочение). При нагревании диоксид циркония проводит ток, что иногда используется для получения нагревательных элементов, устойчивых на воздухе при очень высокой температуре. Нагретый цирконий способен проводить ионы кислорода как твердый электролит. Это свойство используется в промышленных анализаторах кислорода.
Гидрид циркония применяется в атомной технике как весьма эффективный замедлитель нейтронов. Также гидрид циркония служит для покрытия цирконием в виде тонких плёнок с помощью термического разложения его на различных поверхностях.
Нитрид циркония материал для керамических покрытий, температура плавления около 2990°C , гидролизуется в царской водке. Нашёл применение в качестве покрытий в стоматологии и ювелирном деле.
Циркон, т.е. ZrSiO4, является основным минералом-источником циркония и гафния. Также из него извлекают различные редкие элементы и уран, которые в нём концентрируются. Цирконовый концентрат используется при производстве огнеупоров. Высокое содержание урана в цирконе делает его удобным минералом для определения возраста методом уран-свинцового датирования. Прозрачные кристаллы циркона используются в ювелирных украшениях (гиацинт, жаргон). При прокаливании циркона получают ярко-голубые камни, носящие название старлит.
Около 55% всего циркония применяется для производства керамики - керамической плитки для стен, пола, а также для производства керамических подложек в электронике. Около 18% циркона используется в химической промышленности, а рост потребления в данной области составляет в последние годы в среднем 11% в год. Для выплавки металла используется примерно 22% циркона, однако это направление в последнее время не столь популярно ввиду наличия более дешевых методов получения циркония. Оставшиеся 5% циркона используются для призводства катодных трубок, однако потребление в данной области падает.
Потребление циркона сильно увеличилось в 2010 году до 1,33 млн тонн, после того, как экономический спад в мире в 2009 году стал причиной уменьшения потребления на 18% к 2008 году. Рост потребления в производстве керамики, которое составило 54% потребления циркона в 2010 году, особенно в Китае, а также в других развивающихся экономических системах, таких как Бразилия, Индия и Иран, был ключевым фактором для увеличенного спроса на циркон в 2000-ых годах. В то время как в США и Еврозоне потребление даже снизилось. Потребление циркона в химикатах циркония, включая двуокись циркония, более чем удвоилось в период между 2000 и 2010 годами, тем временем использование циркона для выплавки металлического циркония показало более низкие темпы роста.
Как сообщает Roskill, 90% потребляемого в мире металлического циркония используется в производстве узлов ядерных реакторов и около 10% - в изготовлении стойкой к коррозии и высоким давлениям облицовки контейнеров, применяемых на заводах по выпуску уксусной кислоты. По мнению экспертов, в перспективе ожидается повышение мирового спроса на металлический цирконий, поскольку в ряде стран (в КНР, Индии, Южной Корее и США) планируется строительство новых атомных электростанций.
Окись циркония, также известная как двуокись циркония, используется в промышленном применении, включая лекарственные препараты, оптоволокно, водонепроницаемую одежду и косметику. Есть большее потребление материалов двуокиси циркония - мука циркона и сплавленная двуокись циркония из-за быстрого увеличения производства керамической плитки в Китае. Южная Корея, Индия и Китай - важные рынки роста для окиси циркония. По данным отчета об исследовании рынка циркония, Азиатско-Тихоокеанский регион представляет самый большой и быстро растущий региональный рынок в мире. Компания Saint-Gobain, размещенная во Франции, является одним из самых крупных изготовителей двуокиси циркония.
Крупнейший рынок конечного использования циркония - керамика, которая включает плитки, санитарное изделие и столовую посуду. Следующие крупнейшие рынки, которые используют материалы циркония, невосприимчивые и сектора литейного завода. Циркон используется как добавка для большого разнообразия керамических продуктов, и он также используется в стеклянном покрытии в компьютерных мониторах и телевизионных панелях, поскольку материал обладает абсорбирующими радиацию свойствами. Кирпичи с добавлением циркония используются в качестве альтернативы базовым решениям с сплавленной двуокисью циркония.

Производство и потребление циркона (ZrSiO4) в мире, тыс.тонн*

год 2008 2009 2010 2011 2012
Всего производство 1300.0 1050.0 1250.0 1400.0 1200.0
Китай 400.0 380.0 600.0 650.0 500.0
Прочие страны 750.0 600.0 770.0 750.0 600.0
Всего потребление 1150.0 980.0 1370.0 1400.0 1100.0
Баланс рынка 150.0 70.0 -120.0 -- 100.0
Цена COMEX 788.00 830.00 860.00 2650.00 2650.00

* Сводные данные

Рынок циркона показал резкое сокращение, которое началось в конце 2008 года и продлилось в течение 2009 года. Производители сократили объемы производства, чтобы сократить издержки и остановить накопление запасов. Потребление начало приходить в себя в конце 2009 года, ускорило рост в 2010 году, и продолжило его в 2011 году. Поставки, особенно из Австралии, где добывается более чем 40% циркониевых руд, долго не увеличивались, и другие производители были вынуждены поставить на рынок приблизительно 0,5 млн тонн своих запасов в течение 2008-2010 гг. Дефицит на рынке, вместе со снижением уровня запасов, привел к повышению цен, которое началось в начале 2009 года. К январю 2011 года австралийские премиальные цены на циркон были на рекордных уровнях после роста на 50% по сравнению с началом 2009 года и продолжили повышаться дальше в 2011-2012 гг.
В 2008 году цены на циркониевую губку выросли ввиду подорожания цирконового песка, являющегося сырьевым материалом для производства металла. Цены на промышленные сорта циркония увеличились на 7-8% - до 100 долл./кг, а на металл для ядерных реакторов - на 10% - до 70 - 80 долл. В конце 2008 года и начале 2009 года последовало некоторое снижение цен, однако уже со второй половины 2009 года цены на цирконий снова возобновили рост, приче таким образом, что средние цены на цирконий в 2009 году оказались выше, чем в 2008 году. В 2012 году цены на цирконий выросли до 110 долл./кг.

Несмотря на более низкое потребление в 2009 году, цены за циркон не падали резко, поскольку крупные производители сократили объемы производства и опустили запасы. В 2010 году производство не могло идти в ногу со спросом, прежде всего потому что китайский импорт циркона вырос на более чем на 50% в 2010 году до 0,7 млн. тонн. Спрос на циркон, как предсказывают, будет увеличиваться ежегодно на 5,4% до 2015 года, но производственные мощности могут увеличиваться только на 2,3% в год. Дополнительная поставка поэтому продолжит быть ограниченной, и цены могут продолжить расти, пока не заработают новые проекты.
Согласно отчету о научно-исследовательской работе, изданному Global Industry Analysts (GIA), глобальный рынок циркония, как ожидают, достигнет 2,6 млн метрических тонн к 2017 году. Отчет обеспечивает оценки продаж и прогнозы с 2009 по 2017 год на различных географических рынках, включая Азиатско-Тихоокеанский регион, Европу, Японию, Канаду и США.
Рост в международной промышленности ядерной энергии увеличит спрос на цирконий, так же как увеличит его производственные мощности глобально. Другие факторы роста - увеличивающийся спрос в Азиатско-Тихоокеанском регионе, а также в производстве керамической плитки по всему миру.

Loading...Loading...