Kai kvadratinėje lygtyje nėra šaknų. Kvadratinių lygčių sprendimo būdai

Kvadratinė lygtis – lengva išspręsti! *Toliau – KU. Bičiuliai, atrodytų, kad matematikoje negali būti nieko paprasčiau nei išspręsti tokią lygtį. Tačiau kažkas man pasakė, kad daugelis žmonių turi problemų su juo. Nusprendžiau pažiūrėti, kiek parodymų pagal pareikalavimą „Yandex“ pateikia per mėnesį. Štai kas atsitiko, žiūrėk:


Ką tai reiškia? Tai reiškia, kad per mėnesį ieško apie 70 000 žmonių Ši informacija, ką tai turi bendro su vasara ir kas bus per mokslo metus – prašymų bus dvigubai daugiau. Tai nenuostabu, nes šios informacijos ieško tie vaikinai ir merginos, kurie seniai baigė mokyklą ir ruošiasi vieningam valstybiniam egzaminui, o atmintį atgaivinti stengiasi ir moksleiviai.

Nepaisant to, kad yra daugybė svetainių, kuriose pasakojama, kaip išspręsti šią lygtį, aš nusprendžiau taip pat prisidėti ir paskelbti medžiagą. Pirma, noriu, kad lankytojai į mano svetainę ateitų pagal šį prašymą; antra, kituose straipsniuose, kai iškils tema “KU”, pateiksiu nuorodą į šį straipsnį; trečia, aš jums papasakosiu šiek tiek daugiau apie jo sprendimą, nei paprastai nurodoma kitose svetainėse. Pradėkime! Straipsnio turinys:

Kvadratinė lygtis yra tokios formos lygtis:

kur koeficientai a,bir c yra savavališki skaičiai, kurių a≠0.

Mokyklos kurse medžiaga pateikiama sekančią formą– lygtys skirstomos į tris klases:

1. Jie turi dvi šaknis.

2. *Turėti tik vieną šaknį.

3. Jie neturi šaknų. Čia ypač verta paminėti, kad jie neturi tikrų šaknų

Kaip apskaičiuojamos šaknys? Tiesiog!

Apskaičiuojame diskriminantą. Po šiuo „siaubingu“ žodžiu slypi labai paprasta formulė:

Šaknies formulės yra tokios:

*Šias formules reikia žinoti mintinai.

Galite iš karto užsirašyti ir išspręsti:

Pavyzdys:


1. Jei D > 0, tai lygtis turi dvi šaknis.

2. Jei D = 0, tai lygtis turi vieną šaknį.

3. Jei D< 0, то уравнение не имеет действительных корней.

Pažiūrėkime į lygtį:


Šiuo atžvilgiu, kai diskriminantas yra lygus nuliui, mokyklos kursas sako, kad gaunama viena šaknis, čia ji yra lygi devynioms. Viskas teisinga, taip yra, bet...

Ši mintis yra šiek tiek neteisinga. Tiesą sakant, yra dvi šaknys. Taip, taip, nenustebkite, gausite dvi lygias šaknis, o jei matematiškai tiksliai, tada atsakyme turėtų būti parašytos dvi šaknys:

x 1 = 3 x 2 = 3

Bet taip yra – mažas nukrypimas. Mokykloje gali užsirašyti ir pasakyti, kad yra viena šaknis.

Dabar kitas pavyzdys:


Kaip žinome, neigiamo skaičiaus šaknis negalima paimti, todėl sprendiniai in tokiu atveju Nr.

Tai yra visas sprendimo procesas.

Kvadratinė funkcija.

Tai parodo, kaip sprendimas atrodo geometriškai. Tai nepaprastai svarbu suprasti (ateityje viename iš straipsnių išsamiai išanalizuosime kvadratinės nelygybės sprendimą).

Tai yra formos funkcija:

kur x ir y yra kintamieji

a, b, c – duoti skaičiai, kurių a ≠ 0

Grafikas yra parabolė:

Tai yra, paaiškėja, kad išsprendę kvadratinę lygtį, kai „y“ lygi nuliui, randame parabolės susikirtimo taškus su x ašimi. Šių taškų gali būti du (diskriminantas yra teigiamas), vienas (diskriminantas yra nulis) ir nė vienas (diskriminantas yra neigiamas). Išsami informacija apie kvadratinė funkcija Galite peržiūrėti Innos Feldman straipsnis.

Pažiūrėkime į pavyzdžius:

1 pavyzdys: išspręskite 2x 2 +8 x–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Atsakymas: x 1 = 8 x 2 = –12

*Galima buvo iš karto padalyti kairę ir dešinę lygties puses iš 2, tai yra supaprastinti. Skaičiavimai bus lengvesni.

2 pavyzdys: Nuspręskite x 2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 – 4ac = (–22) 2 –4, 1, 121 = 484–484 = 0

Mes nustatėme, kad x 1 = 11 ir x 2 = 11

Atsakyme leidžiama rašyti x = 11.

Atsakymas: x = 11

3 pavyzdys: Nuspręskite x 2 – 8x+72 = 0

a=1 b= –8 c=72

D = b 2 -4ac = (-8) 2 -4, 1, 72 = 64 - 288 = -224

Diskriminantas yra neigiamas, realiaisiais skaičiais sprendimo nėra.

Atsakymas: nėra sprendimo

Diskriminantas yra neigiamas. Yra sprendimas!

Čia kalbėsime apie lygties sprendimą tuo atveju, kai gaunamas neigiamas diskriminantas. Ar žinote ką nors apie kompleksinius skaičius? Čia nenagrinėsiu, kodėl ir kur jie atsirado ir koks jų specifinis vaidmuo ir būtinybė matematikoje; tai yra didelio atskiro straipsnio tema.

Kompleksinio skaičiaus samprata.

Šiek tiek teorijos.

Kompleksinis skaičius z yra formos skaičius

z = a + bi

kur a ir b yra realieji skaičiai, i yra vadinamasis įsivaizduojamas vienetas.

a+bi – tai VIENAS SKAIČIUS, o ne papildymas.

Įsivaizduojamas vienetas yra lygus minus vieneto šaknei:

Dabar apsvarstykite lygtį:


Gauname dvi konjuguotas šaknis.

Nebaigta kvadratinė lygtis.

Panagrinėkime specialius atvejus, kai koeficientas „b“ arba „c“ yra lygus nuliui (arba abu lygūs nuliui). Jas galima lengvai išspręsti be jokių diskriminacinių priemonių.

1 atvejis. Koeficientas b = 0.

Lygtis tampa tokia:

Transformuokime:

Pavyzdys:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

2 atvejis. Koeficientas c = 0.

Lygtis tampa tokia:

Transformuokime ir faktorizuokime:

* Produktas yra lygus nuliui, kai bent vienas iš veiksnių yra lygus nuliui.

Pavyzdys:

9x 2 –45x = 0 => 9x (x-5) =0 => x = 0 arba x-5 =0

x 1 = 0 x 2 = 5

3 atvejis. Koeficientai b = 0 ir c = 0.

Čia aišku, kad lygties sprendimas visada bus x = 0.

Naudingos koeficientų savybės ir modeliai.

Yra savybių, kurios leidžia išspręsti lygtis su dideliais koeficientais.

Ax 2 + bx+ c=0 galioja lygybė

a + b+ c = 0, Tai

- jei lygties koeficientams Ax 2 + bx+ c=0 galioja lygybė

a+ s =b, Tai

Šios savybės padeda apsispręsti tam tikro tipo lygtys

1 pavyzdys: 5001 x 2 –4995 x – 6=0

Šansų suma yra 5001+( 4995)+( 6) = 0, o tai reiškia

2 pavyzdys: 2501 x 2 +2507 x+6=0

Lygybė galioja a+ s =b, Reiškia

Koeficientų dėsningumai.

1. Jei lygtyje ax 2 + bx + c = 0 koeficientas "b" yra lygus (a 2 +1), o koeficientas "c" yra skaitine prasme lygus koeficientui "a", tai jo šaknys yra lygios

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

Pavyzdys. Apsvarstykite lygtį 6x 2 + 37x + 6 = 0.

x 1 = –6 x 2 = –1/6.

2. Jei lygtyje ax 2 – bx + c = 0 koeficientas „b“ yra lygus (a 2 +1), o koeficientas „c“ skaitine prasme lygus koeficientui „a“, tai jo šaknys yra lygios.

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

Pavyzdys. Apsvarstykite lygtį 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Jei lygtyje. ax 2 + bx – c = 0 koeficientas „b“ yra lygus (a 2 – 1), ir koeficientas „c“ yra skaitine prasme lygus koeficientui "a", tada jo šaknys lygios

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

Pavyzdys. Apsvarstykite lygtį 17x 2 +288x – 17 = 0.

x 1 = – 17 x 2 = 1/17.

4. Jei lygtyje ax 2 – bx – c = 0 koeficientas „b“ yra lygus (a 2 – 1), o koeficientas c skaitine prasme lygus koeficientui „a“, tai jo šaknys yra lygios

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

Pavyzdys. Apsvarstykite lygtį 10x 2 – 99x –10 = 0.

x 1 = 10 x 2 = – 1/10

Vietos teorema.

Vietos teorema pavadinta garsaus prancūzų matematiko Francois Vieta vardu. Naudodamiesi Vietos teorema, galime išreikšti savavališko KU šaknų sumą ir sandaugą jo koeficientais.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Iš viso skaičius 14 duoda tik 5 ir 9. Tai šaknys. Turėdami tam tikrų įgūdžių, naudodami pateiktą teoremą, galite iškart žodžiu išspręsti daugybę kvadratinių lygčių.

Vietos teorema, be to. Patogu tuo, kad įprastu būdu (per diskriminantą) išsprendus kvadratinę lygtį galima patikrinti gautas šaknis. Aš rekomenduoju tai daryti visada.

TRANSPORTAVIMO BŪDAS

Taikant šį metodą koeficientas „a“ dauginamas iš laisvojo termino, tarsi „įmetamas“ į jį, todėl jis vadinamas "perdavimo" metodas.Šis metodas naudojamas, kai lygties šaknis galima lengvai rasti naudojant Vietos teoremą ir, svarbiausia, kai diskriminantas yra tikslus kvadratas.

Jeigu A± b+c≠ 0, tada naudojama perdavimo technika, pavyzdžiui:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Naudojant Vietos teoremą (2) lygtyje, nesunku nustatyti, kad x 1 = 10 x 2 = 1

Gautas lygties šaknis reikia padalyti iš 2 (kadangi jos buvo „išmestos“ iš x 2), gauname

x 1 = 5 x 2 = 0,5.

Koks yra loginis pagrindas? Pažiūrėk, kas vyksta.

(1) ir (2) lygčių diskriminantai yra lygūs:

Jei pažvelgsite į lygčių šaknis, gausite tik skirtingus vardiklius, o rezultatas priklauso būtent nuo x 2 koeficiento:


Antrasis (modifikuotas) turi 2 kartus didesnes šaknis.

Todėl rezultatą padalijame iš 2.

*Jei persuksime tris, rezultatą padalinsime iš 3 ir pan.

Atsakymas: x 1 = 5 x 2 = 0,5

kv. ur-ie ir vieningas valstybinis egzaminas.

Trumpai papasakosiu apie jo svarbą – TURI GEBĖTI SPRENDIMS greitai ir negalvodamas, reikia mintinai žinoti šaknų ir diskriminatorių formules. Daugelis problemų, įtrauktų į vieningo valstybinio egzamino užduotis, yra susijusios su kvadratinės lygties (įskaitant geometrines) sprendimu.

Į ką nors verta atkreipti dėmesį!

1. Lygties rašymo forma gali būti „numanoma“. Pavyzdžiui, galimas toks įrašas:

15+ 9x 2 - 45x = 0 arba 15x + 42 + 9x 2 - 45x = 0 arba 15 -5x + 10x 2 = 0.

Turite jį pateikti į standartinę formą (kad nesusipainiotumėte sprendžiant).

2. Atsiminkite, kad x yra nežinomas dydis ir jį galima žymėti bet kuria kita raide – t, q, p, h ir kt.

Bibliografinis aprašymas: Gasanovas A. R., Kuramshin A. A., Elkov A. A., Shilnenkov N. V., Ulanovas D. D., Shmeleva O. V. Sprendimo metodai kvadratines lygtis// Jaunasis mokslininkas. 2016. Nr 6.1. P. 17-20.03.2019).





Mūsų projektas yra apie kvadratinių lygčių sprendimo būdus. Projekto tikslas: išmokti spręsti kvadratines lygtis į mokyklos programą neįtrauktais būdais. Užduotis: surask viską galimi būdai spręsti kvadratines lygtis ir išmokti jomis naudotis pačiam bei supažindinti su šiais metodais savo klasės draugus.

Kas yra „kvadratinės lygtys“?

Kvadratinė lygtis- formos lygtis kirvis2 + bx + c = 0, Kur a, b, c- kai kurie skaičiai ( a ≠ 0), x- nežinomas.

Skaičiai a, b, c vadinami kvadratinės lygties koeficientais.

  • a vadinamas pirmuoju koeficientu;
  • b vadinamas antruoju koeficientu;
  • c - laisvas narys.

Kas pirmasis „išrado“ kvadratines lygtis?

Kai kurios algebrinės tiesinių ir kvadratinių lygčių sprendimo technikos buvo žinomos prieš 4000 metų Senovės Babilone. Senovės Babilono molio lentelių, datuotų kažkur tarp 1800 ir 1600 m. pr. Kr., atradimas yra ankstyviausias kvadratinių lygčių tyrimo įrodymas. Tose pačiose tabletėse yra tam tikrų tipų kvadratinių lygčių sprendimo būdų.

Poreikį spręsti ne tik pirmojo, bet ir antrojo laipsnio lygtis senovėje lėmė poreikis spręsti problemas, susijusias su vietovių paieška. žemės sklypai ir su žemės darbai karinio pobūdžio, taip pat su pačios astronomijos ir matematikos raida.

Šių lygčių sprendimo taisyklė, išdėstyta babiloniečių tekstuose, iš esmės sutampa su šiuolaikine, tačiau nežinoma, kaip babiloniečiai priėjo prie šios taisyklės. Beveik visuose iki šiol rastuose dantiraščio tekstuose pateikiamos tik receptų forma išdėstytų sprendimų problemos, nenurodant, kaip jie buvo rasti. Nepaisant aukštas lygis Algebros raida Babilone, dantiraščio tekstuose trūksta neigiamo skaičiaus sampratos ir bendrieji metodai sprendžiant kvadratines lygtis.

Babilono matematikai maždaug IV amžiuje prieš Kristų. naudojo kvadrato komplemento metodą, kad išspręstų lygtis su teigiamomis šaknimis. Maždaug 300 m.pr.Kr Euklidas sugalvojo bendresnį geometrinio sprendimo būdą. Pirmasis matematikas, radęs lygčių su neigiamomis šaknimis sprendimus algebrinės formulės pavidalu, buvo indų mokslininkas. Brahmagupta(Indija, VII a. po Kr.).

Brahmagupta išdėstė bendrą kvadratinių lygčių, sumažintų iki vienos kanoninės formos, sprendimo taisyklę:

ax2 + bx = c, a>0

Šios lygties koeficientai taip pat gali būti neigiami. Brahmaguptos taisyklė iš esmės yra tokia pati kaip mūsų.

Indijoje buvo įprasti vieši konkursai sprendžiant sudėtingas problemas. Vienoje iš senų indų knygų apie tokias varžybas rašoma taip: „Kaip saulė savo spindesiu užtemdo žvaigždes, taip išmokęs žmogus užtemdys jo šlovę viešuose susirinkimuose siūlydamas ir spręsdamas algebrines problemas. Problemos dažnai buvo pateikiamos poetine forma.

Algebriniame traktate Al-Khwarizmi pateikta tiesinių ir kvadratinių lygčių klasifikacija. Autorius suskaičiuoja 6 lygčių tipus, jas išreikšdamas taip:

1) „Kvadratai lygūs šaknims“, ty ax2 = bx.

2) „Kvadratai lygūs skaičiams“, ty ax2 = c.

3) „Šaknys lygios skaičiui“, ty ax2 = c.

4) „Kvadratai ir skaičiai lygūs šaknims“, ty ax2 + c = bx.

5) „Kvadratai ir šaknys yra lygūs skaičiui“, ty ax2 + bx = c.

6) „Šaknys ir skaičiai lygūs kvadratams“, ty bx + c == ax2.

Al-Khwarizmi, kuris vengė naudoti neigiamus skaičius, kiekvienos iš šių lygčių sąlygos yra sudėjimai, o ne atimtys. Šiuo atveju akivaizdžiai neatsižvelgiama į lygtis, kurios neturi teigiamų sprendimų. Autorius pateikia šių lygčių sprendimo būdus, naudodamas al-jabr ir al-mukabal metodus. Jo sprendimas, žinoma, ne visiškai sutampa su mūsų. Jau nekalbant apie tai, kad tai yra grynai retorinė, reikia pažymėti, kad, pavyzdžiui, spręsdamas nepilną pirmojo tipo kvadratinę lygtį, Al-Khorezmi, kaip ir visi matematikai iki XVII a., neatsižvelgia į nulinį sprendimą. tikriausiai todėl, kad konkrečioje praktikoje tai neturi reikšmės užduotyse. Spręsdamas visas kvadratines lygtis, Al-Khwarizmi nustato jų sprendimo taisykles, naudodamas tam tikrus skaitinius pavyzdžius, o tada jų geometrinius įrodymus.

Kvadratinių lygčių sprendimo formos pagal Al-Khwarizmi modelį Europoje pirmą kartą buvo pateiktos „Abako knygoje“, parašytoje 1202 m. italų matematikas Leonardas Fibonačis. Autorius savarankiškai sukūrė keletą naujų algebriniai pavyzdžiai sprendžiant problemas ir pirmasis Europoje įvedė neigiamus skaičius.

Ši knyga prisidėjo prie algebrinių žinių sklaidos ne tik Italijoje, bet ir Vokietijoje, Prancūzijoje bei kitose Europos šalyse. Daugelis šios knygos problemų buvo panaudotos beveik visuose XIV–XVII a. Europos vadovėliuose. Pagrindinė taisyklė kvadratinių lygčių sprendimas, redukuotas į vieną kanoninę formą x2 + bх = с visoms galimoms ženklų ir koeficientų kombinacijoms b, c buvo suformuluotas Europoje 1544 m. M. Stiefel.

Kvadratinės lygties sprendimo formulės išvedimas į bendras vaizdas Vietas tai turi, bet Vietas pripažino tik teigiamas šaknis. italų matematikai Tartaglia, Cardano, Bombelli tarp pirmųjų XVI a. Be teigiamų, atsižvelgiama ir į neigiamas šaknis. Tik XVII a. pastangų dėka Girardas, Dekartas, Niutonas ir kitų mokslininkų, kvadratinių lygčių sprendimo metodas įgauna šiuolaikinę formą.

Pažvelkime į kelis kvadratinių lygčių sprendimo būdus.

Standartiniai kvadratinių lygčių sprendimo metodai iš mokyklos mokymo programa:

  1. Kairiosios lygties pusės faktorinavimas.
  2. Viso kvadrato pasirinkimo būdas.
  3. Kvadratinių lygčių sprendimas naudojant formulę.
  4. Grafinis sprendimas kvadratinė lygtis.
  5. Lygčių sprendimas naudojant Vietos teoremą.

Išsamiau apsistokime ties redukuotų ir neredukuotų kvadratinių lygčių sprendimu, naudodamiesi Vietos teorema.

Prisiminkite, kad aukščiau nurodytoms kvadratinėms lygtims išspręsti pakanka rasti du skaičius, kurių sandauga yra lygi laisvajam nariui, o suma lygi antrajam koeficientui su priešingu ženklu.

Pavyzdys.x 2 -5x+6=0

Reikia rasti skaičius, kurių sandauga yra 6, o suma – 5. Šie skaičiai bus 3 ir 2.

Atsakymas: x 1 =2, x 2 =3.

Bet jūs taip pat galite naudoti šį metodą lygtims, kurių pirmasis koeficientas nėra lygus vienetui.

Pavyzdys.3x 2 +2x-5=0

Paimkite pirmąjį koeficientą ir padauginkite jį iš laisvojo nario: x 2 +2x-15=0

Šios lygties šaknys bus skaičiai, kurių sandauga lygi – 15, o suma lygi – 2. Šie skaičiai yra 5 ir 3. Norėdami rasti pradinės lygties šaknis, gautas šaknis padalinkite iš pirmojo koeficiento.

Atsakymas: x 1 =-5/3, x 2 =1

6. Lygčių sprendimas „metimo“ metodu.

Apsvarstykite kvadratinę lygtį ax 2 + bx + c = 0, kur a≠0.

Abi puses padauginę iš a, gauname lygtį a 2 x 2 + abx + ac = 0.

Tegu ax = y, iš kur x = y/a; tada gauname lygtį y 2 + by + ac = 0, lygiavertę duotajai. Jo šaknis 1 ir 2 randame naudodami Vietos teoremą.

Galiausiai gauname x 1 = y 1 /a ir x 2 = y 2 /a.

Taikant šį metodą, koeficientas a dauginamas iš laisvojo termino, tarsi jam „įmestas“, todėl jis vadinamas „metimo“ metodu. Šis metodas naudojamas, kai lygties šaknis galima lengvai rasti naudojant Vietos teoremą ir, svarbiausia, kai diskriminantas yra tikslus kvadratas.

Pavyzdys.2x 2 - 11x + 15 = 0.

„Išmeskime“ koeficientą 2 į laisvąjį dėmenį, pakeiskime ir gaukime lygtį y 2 - 11y + 30 = 0.

Pagal atvirkštinę Vietos teoremą

y 1 = 5, x 1 = 5/2, x 1 = 2,5; y 2 ​​= 6, x 2 = 6/2, x 2 = 3.

Atsakymas: x 1 =2,5; X 2 = 3.

7. Kvadratinės lygties koeficientų savybės.

Tegu kvadratinė lygtis ax 2 + bx + c = 0, a ≠ 0.

1. Jei a+ b + c = 0 (t.y. lygties koeficientų suma lygi nuliui), tai x 1 = 1.

2. Jei a - b + c = 0 arba b = a + c, tai x 1 = - 1.

Pavyzdys.345x 2 - 137x - 208 = 0.

Kadangi a + b + c = 0 (345 - 137 - 208 = 0), tai x 1 = 1, x 2 = -208/345.

Atsakymas: x 1 =1; X 2 = -208/345 .

Pavyzdys.132x 2 + 247x + 115 = 0

Nes a-b+c = 0 (132 - 247 +115 = 0), tada x 1 = - 1, x 2 = - 115/132

Atsakymas: x 1 = - 1; X 2 =- 115/132

Yra ir kitų kvadratinės lygties koeficientų savybių. bet jų naudojimas yra sudėtingesnis.

8. Kvadratinių lygčių sprendimas naudojant nomogramą.

1 pav. Nomograma

Tai senas ir šiuo metu pamirštas kvadratinių lygčių sprendimo būdas, patalpintas rinkinio 83 p.: Bradis V.M. Keturių skaitmenų matematikos lentelės. - M., Išsilavinimas, 1990 m.

XXII lentelė. Nomograma lygčiai išspręsti z 2 + pz + q = 0. Ši nomograma leidžia, neišsprendžiant kvadratinės lygties, iš jos koeficientų nustatyti lygties šaknis.

Kreivinė nomogramos skalė sudaryta pagal formules (1 pav.):

Tikėdamas OS = p, ED = q, OE = a(visi cm), iš 1 pav. trikampių panašumai SAN Ir CDF gauname proporciją

kuri po pakeitimų ir supaprastinimų duoda lygtį z 2 + pz + q = 0, ir laiškas z reiškia bet kurio taško ženklą lenktoje skalėje.

Ryžiai. 2 Kvadratinių lygčių sprendimas naudojant nomogramą

Pavyzdžiai.

1) Dėl lygties z 2 – 9z + 8 = 0 nomograma pateikia šaknis z 1 = 8,0 ir z 2 = 1,0

Atsakymas:8,0; 1.0.

2) Naudodami nomogramą išsprendžiame lygtį

2z 2 – 9z + 2 = 0.

Šios lygties koeficientus padaliname iš 2, gauname lygtį z 2 - 4,5z + 1 = 0.

Nomogramoje pateikiamos šaknys z 1 = 4 ir z 2 = 0,5.

Atsakymas: 4; 0.5.

9. Geometrinis kvadratinių lygčių sprendimo metodas.

Pavyzdys.X 2 + 10x = 39.

Originale ši problema suformuluota taip: „Kvadratas ir dešimt šaknų yra lygūs 39“.

Apsvarstykite kvadratą, kurio kraštinė x, jo šonuose sukonstruoti stačiakampiai taip, kad kiekvieno iš jų kita pusė būtų 2,5, todėl kiekvieno plotas yra 2,5x. Tada gauta figūra papildoma į naują kvadratą ABCD, kampuose pastatant keturis vienodus kvadratus, kurių kiekvieno kraštinė yra 2,5, o plotas 6,25

Ryžiai. 3 Grafinis lygties x 2 + 10x = 39 sprendimo metodas

Kvadrato ABCD plotas S gali būti pavaizduotas kaip: pradinio kvadrato x 2, keturių stačiakampių (4∙2,5x = 10x) ir keturių papildomų kvadratų (6,25∙4 = 25) suma, t.y. S = x 2 + 10x = 25. Pakeitę x 2 + 10x skaičiumi 39, gauname, kad S = 39 + 25 = 64, vadinasi, kvadrato kraštinė yra ABCD, t.y. atkarpa AB = 8. Pradinio kvadrato reikiamai kraštinei x gauname

10. Lygčių sprendimas naudojant Bezout teoremą.

Bezouto teorema. Polinomo P(x) dalijimo iš dvejetainio x - α likusioji dalis yra lygi P(α) (tai yra P(x) reikšmė, kai x = α).

Jei skaičius α yra daugianario P(x) šaknis, tai šis daugianomas dalijasi iš x -α be liekanos.

Pavyzdys.x²-4x+3=0

Р(x)= x²-4x+3, α: ±1,±3, α =1, 1-4+3=0. Padalinkite P(x) iš (x-1): (x²-4x+3)/(x-1)=x-3

x²-4x+3=(x-1)(x-3), (x-1)(x-3)=0

x-1 = 0; x=1 arba x-3=0, x=3; Atsakymas: x1 =2, x2 =3.

Išvada: Gebėjimas greitai ir racionaliai išspręsti kvadratines lygtis tiesiog būtinas norint išspręsti daugiau sudėtingos lygtys, pavyzdžiui, trupmeninės racionalios lygtys, lygtys aukštesni laipsniai, bikvadratinės lygtys ir vidurinės mokyklos trigonometrinės, eksponentinės ir logaritminės lygtys. Išstudijavę visus rastus kvadratinių lygčių sprendimo būdus, galime patarti savo klasės draugams, be standartinių metodų, spręsti perkėlimo metodu (6) ir spręsti lygtis naudojant koeficientų savybę (7), nes jos yra labiau prieinamos. iki supratimo.

Literatūra:

  1. Bradis V.M. Keturių skaitmenų matematikos lentelės. - M., Išsilavinimas, 1990 m.
  2. Algebra 8 klasė: vadovėlis 8 klasei. bendrojo išsilavinimo įstaigos Makarychev Yu. N., Mindyuk N. G., Neshkov K. I., Suvorova S. B. red. S. A. Telyakovsky 15-asis leidimas, pataisytas. - M.: Švietimas, 2015 m
  3. https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0 %B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5
  4. Glazeris G.I. Matematikos istorija mokykloje. Vadovas mokytojams. / Red. V.N. Jaunesnis. - M.: Išsilavinimas, 1964 m.

Tiesiog. Pagal formules ir aiškias, paprastas taisykles. Pirmajame etape

reikia duotą lygtį suvesti į standartinę formą, t.y. į formą:

Jei lygtis jums jau pateikta šioje formoje, jums nereikia atlikti pirmojo etapo. Svarbiausia tai padaryti teisingai

nustatyti visus koeficientus, A, b Ir c.

Kvadratinės lygties šaknų radimo formulė.

Išraiška po šaknies ženklu vadinama diskriminuojantis . Kaip matote, norėdami rasti X, mes

mes naudojame tik a, b ir c. Tie. koeficientai nuo kvadratinė lygtis. Tiesiog atsargiai įdėkite

vertybes a, b ir c Skaičiuojame pagal šią formulę. Mes pakeičiame su ženklai!

Pavyzdžiui, lygtyje:

A =1; b = 3; c = -4.

Pakeičiame reikšmes ir rašome:

Pavyzdys beveik išspręstas:

Tai yra atsakymas.

Dažniausios klaidos yra painiojimas su ženklų reikšmėmis a, b Ir Su. Tiksliau, su pakeitimu

neigiamas vertes į šaknų skaičiavimo formulę. Čia į pagalbą ateina išsamus formulės įrašas

su konkrečiais skaičiais. Jei turite problemų su skaičiavimais, padarykite tai!

Tarkime, kad turime išspręsti šį pavyzdį:

Čia a = -6; b = -5; c = -1

Viską aprašome išsamiai, kruopščiai, nieko nepraleisdami su visais ženklais ir skliausteliuose:

Kvadratinės lygtys dažnai atrodo šiek tiek kitaip. Pavyzdžiui, taip:

Dabar atkreipkite dėmesį į praktinius metodus, kurie žymiai sumažina klaidų skaičių.

Pirmas susitikimas. Nebūk tingus anksčiau sprendžiant kvadratinę lygtį padėkite jį į standartinę formą.

Ką tai reiškia?

Tarkime, kad po visų transformacijų gausite tokią lygtį:

Neskubėkite rašyti šaknies formulės! Beveik neabejotinai sumaišysite šansus a, b ir c.

Teisingai sukonstruokite pavyzdį. Pirma, X kvadratas, tada be kvadrato, tada laisvas terminas. Kaip šitas:

Atsikratykite minuso. Kaip? Turime padauginti visą lygtį iš -1. Mes gauname:

Bet dabar galite drąsiai užsirašyti šaknų formulę, apskaičiuoti diskriminantą ir baigti spręsti pavyzdį.

Spręskite patys. Dabar turėtumėte turėti šaknis 2 ir -1.

Priėmimas antras. Patikrinkite šaknis! Autorius Vietos teorema.

Išspręsti pateiktas kvadratines lygtis, t.y. jei koeficientas

x 2 +bx+c=0,

Tadax 1 x 2 =c

x 1 +x 2 =−b

Pilnai kvadratinei lygčiai, kurioje a≠1:

x 2+bx+c=0,

padalykite visą lygtį iš A:

Kur x 1 Ir x 2 – lygties šaknys.

Trečias priėmimas. Jei jūsų lygtis turi trupmenų koeficientus, atsikratykite trupmenų! Padauginti

lygtis su bendru vardikliu.

Išvada. Praktinis patarimas:

1. Prieš spręsdami kvadratinę lygtį įvedame į standartinę formą ir ją sudarome Teisingai.

2. Jei prieš X kvadratą yra neigiamas koeficientas, jį pašaliname viską padauginę

lygtys -1.

3. Jei koeficientai yra trupmeniniai, pašaliname trupmenas, padauginus visą lygtį iš atitinkamos

veiksnys.

4. Jei x kvadratas yra grynas, jo koeficientas lygus vienetui, sprendinį galima nesunkiai patikrinti pagal

Pirmas lygis

Kvadratinės lygtys. Išsamus vadovas (2019)

Sąvokoje „kvadratinė lygtis“ pagrindinis žodis yra „kvadratinė“. Tai reiškia, kad lygtyje būtinai turi būti kintamasis (tas pats x) kvadratas, o trečiosios (ar didesnės) laipsnio x neturėtų būti.

Daugelio lygčių sprendimas yra kvadratinių lygčių sprendimas.

Išmokime nustatyti, kad tai yra kvadratinė lygtis, o ne kokia nors kita lygtis.

1 pavyzdys.

Atsikratykime vardiklio ir kiekvieną lygties narį padauginkime iš

Viską perkelkime į kairę pusę ir sudėkime terminus mažėjančia X galių tvarka

Dabar galime drąsiai teigti, kad ši lygtis yra kvadratinė!

2 pavyzdys.

Padauginkite kairę ir dešinę puses iš:

Ši lygtis, nors ir iš pradžių joje buvo, nėra kvadratinė!

3 pavyzdys.

Padauginkime viską iš:

Baugus? Ketvirtasis ir antrasis laipsniai... Tačiau jei pakeisime, pamatysime, kad turime paprastą kvadratinę lygtį:

4 pavyzdys.

Atrodo, kad ten yra, bet pažiūrėkime atidžiau. Viską perkelkime į kairę pusę:

Žiūrėkite, ji sumažinta – ir dabar tai paprasta tiesinė lygtis!

Dabar pabandykite patys nustatyti, kurios iš šių lygčių yra kvadratinės, o kurios ne:

Pavyzdžiai:

Atsakymai:

  1. kvadratas;
  2. kvadratas;
  3. ne kvadratas;
  4. ne kvadratas;
  5. ne kvadratas;
  6. kvadratas;
  7. ne kvadratas;
  8. kvadratas.

Matematikai visas kvadratines lygtis paprastai skirsto į šiuos tipus:

  • Užbaigtos kvadratinės lygtys- lygtys, kuriose koeficientai ir, kaip ir laisvasis terminas c, nėra lygūs nuliui (kaip pavyzdyje). Be to, tarp pilnųjų kvadratinių lygčių yra duota- tai lygtys, kuriose koeficientas (lygtis iš pirmojo pavyzdžio yra ne tik baigta, bet ir sumažinta!)
  • Nebaigtos kvadratinės lygtys- lygtys, kuriose koeficientas ir (arba) laisvasis narys c yra lygūs nuliui:

    Jie yra neišsamūs, nes trūksta kažkokio elemento. Bet lygtyje visada turi būti x kvadratas!!! Priešingu atveju tai bus nebe kvadratinė lygtis, o kažkokia kita lygtis.

Kodėl jie sugalvojo tokį skirstymą? Atrodytų, kad yra X kvadratas, ir gerai. Šis skirstymas nustatomas sprendimo metodais. Pažvelkime į kiekvieną iš jų išsamiau.

Nepilniųjų kvadratinių lygčių sprendimas

Pirma, sutelkime dėmesį į nepilnų kvadratinių lygčių sprendimą – jos daug paprastesnės!

Yra neišsamių kvadratinių lygčių tipai:

  1. , šioje lygtyje koeficientas yra lygus.
  2. , šioje lygtyje laisvasis narys yra lygus.
  3. , šioje lygtyje koeficientas ir laisvasis narys yra lygūs.

1. i. Kadangi žinome, kaip paimti kvadratinę šaknį, išreikškime iš šios lygties

Išraiška gali būti neigiama arba teigiama. Skaičius kvadratu negali būti neigiamas, nes padauginus du neigiamus arba du teigiamus skaičius, rezultatas visada bus teigiamas skaičius, taigi: jei, tai lygtis neturi sprendinių.

Ir jei, tada mes gauname dvi šaknis. Šių formulių įsiminti nereikia. Svarbiausia, kad jūs turite žinoti ir visada atsiminti, kad tai negali būti mažiau.

Pabandykime išspręsti keletą pavyzdžių.

5 pavyzdys:

Išspręskite lygtį

Dabar belieka ištraukti šaknį iš kairės ir dešinės pusės. Juk prisimeni, kaip išgauti šaknis?

Atsakymas:

Niekada nepamirškite apie šaknis su neigiamu ženklu!!!

6 pavyzdys:

Išspręskite lygtį

Atsakymas:

7 pavyzdys:

Išspręskite lygtį

Oi! Skaičiaus kvadratas negali būti neigiamas, o tai reiškia, kad lygtis

jokių šaknų!

Tokioms lygtims, kurios neturi šaknų, matematikai sugalvojo specialią piktogramą - (tuščias rinkinys). O atsakymą galima parašyti taip:

Atsakymas:

Taigi ši kvadratinė lygtis turi dvi šaknis. Čia nėra jokių apribojimų, nes mes neištraukėme šaknies.
8 pavyzdys:

Išspręskite lygtį

Išimkime bendrą veiksnį iš skliaustų:

Taigi,

Ši lygtis turi dvi šaknis.

Atsakymas:

Paprasčiausias nepilnų kvadratinių lygčių tipas (nors visos jos paprastos, tiesa?). Akivaizdu, kad ši lygtis visada turi tik vieną šaknį:

Čia atsisakysime pavyzdžių.

Pilnų kvadratinių lygčių sprendimas

Primename, kad visa kvadratinė lygtis yra formos lygtis, kur

Išspręsti visas kvadratines lygtis yra šiek tiek sunkiau (tik šiek tiek) nei šias.

Prisiminti, Bet kurią kvadratinę lygtį galima išspręsti naudojant diskriminantą! Net nepilnas.

Kiti metodai padės tai padaryti greičiau, bet jei kyla problemų dėl kvadratinių lygčių, pirmiausia įvaldykite sprendimą naudodami diskriminantą.

1. Kvadratinių lygčių sprendimas naudojant diskriminantą.

Kvadratinių lygčių sprendimas naudojant šį metodą yra labai paprastas, svarbiausia atsiminti veiksmų seką ir porą formulių.

Jei, tada lygtis turi šaknį. Ypatingas dėmesysžengti žingsnį. Diskriminantas () nurodo lygties šaknų skaičių.

  • Jei, tada žingsnio formulė bus sumažinta iki. Taigi lygtis turės tik šaknį.
  • Jei, tada veiksme negalėsime išgauti diskriminanto šaknies. Tai rodo, kad lygtis neturi šaknų.

Grįžkime prie savo lygčių ir pažvelkime į keletą pavyzdžių.

9 pavyzdys:

Išspręskite lygtį

1 žingsnis mes praleidžiame.

2 žingsnis.

Mes randame diskriminantą:

Tai reiškia, kad lygtis turi dvi šaknis.

3 veiksmas.

Atsakymas:

10 pavyzdys:

Išspręskite lygtį

Lygtis pateikiama standartine forma, taigi 1 žingsnis mes praleidžiame.

2 žingsnis.

Mes randame diskriminantą:

Tai reiškia, kad lygtis turi vieną šaknį.

Atsakymas:

11 pavyzdys:

Išspręskite lygtį

Lygtis pateikiama standartine forma, taigi 1 žingsnis mes praleidžiame.

2 žingsnis.

Mes randame diskriminantą:

Tai reiškia, kad negalėsime išgauti diskriminanto šaknies. Lygties šaknų nėra.

Dabar mes žinome, kaip teisingai užrašyti tokius atsakymus.

Atsakymas: jokių šaknų

2. Kvadratinių lygčių sprendimas naudojant Vietos teoremą.

Jei prisimenate, yra lygties tipas, kuris vadinamas sumažinta (kai koeficientas a yra lygus):

Tokias lygtis labai lengva išspręsti naudojant Vietos teoremą:

Šaknų suma duota kvadratinė lygtis yra lygi, o šaknų sandauga yra lygi.

12 pavyzdys:

Išspręskite lygtį

Šią lygtį galima išspręsti naudojant Vietos teoremą, nes .

Lygties šaknų suma lygi, t.y. gauname pirmąją lygtį:

Ir produktas yra lygus:

Sudarykime ir išspręskime sistemą:

  • Ir. Suma yra lygi;
  • Ir. Suma yra lygi;
  • Ir. Suma yra lygi.

ir yra sistemos sprendimas:

Atsakymas: ; .

13 pavyzdys:

Išspręskite lygtį

Atsakymas:

14 pavyzdys:

Išspręskite lygtį

Pateikta lygtis, kuri reiškia:

Atsakymas:

Kvadratinės LYGTYBĖS. VIDUTINIS LYGIS

Kas yra kvadratinė lygtis?

Kitaip tariant, kvadratinė lygtis yra formos lygtis, kur - nežinomasis, - kai kurie skaičiai ir.

Skaičius vadinamas didžiausiu arba pirmasis koeficientas kvadratinė lygtis, - antrasis koeficientas, A - nemokamas narys.

Kodėl? Nes jei lygtis iš karto tampa tiesinė, nes išnyks.

Šiuo atveju ir gali būti lygus nuliui. Šioje kėdės lygtis vadinama nepilna. Jei visi terminai yra vietoje, tai yra, lygtis baigta.

Įvairių tipų kvadratinių lygčių sprendimai

Neišsamių kvadratinių lygčių sprendimo būdai:

Pirmiausia pažvelkime į nepilnų kvadratinių lygčių sprendimo būdus – jie paprastesni.

Galime išskirti šiuos lygčių tipus:

I., šioje lygtyje koeficientas ir laisvasis narys yra lygūs.

II. , šioje lygtyje koeficientas yra lygus.

III. , šioje lygtyje laisvasis narys yra lygus.

Dabar pažvelkime į kiekvieno iš šių potipių sprendimą.

Akivaizdu, kad ši lygtis visada turi tik vieną šaknį:

Skaičius kvadratu negali būti neigiamas, nes padauginus du neigiamus arba du teigiamus skaičius, rezultatas visada bus teigiamas. Štai kodėl:

jei, tai lygtis neturi sprendinių;

jei turime dvi šaknis

Šių formulių įsiminti nereikia. Svarbiausia atsiminti, kad jo negali būti mažiau.

Pavyzdžiai:

Sprendimai:

Atsakymas:

Niekada nepamirškite apie šaknis su neigiamu ženklu!

Skaičiaus kvadratas negali būti neigiamas, o tai reiškia, kad lygtis

jokių šaknų.

Norėdami trumpai užrašyti, kad problema neturi sprendimų, naudojame tuščio rinkinio piktogramą.

Atsakymas:

Taigi, ši lygtis turi dvi šaknis: ir.

Atsakymas:

Išimkime bendrą veiksnį iš skliaustų:

Produktas yra lygus nuliui, jei bent vienas iš veiksnių yra lygus nuliui. Tai reiškia, kad lygtis turi sprendimą, kai:

Taigi, ši kvadratinė lygtis turi dvi šaknis: ir.

Pavyzdys:

Išspręskite lygtį.

Sprendimas:

Paskaičiuokime kairę lygties pusę ir raskime šaknis:

Atsakymas:

Pilnų kvadratinių lygčių sprendimo būdai:

1. Diskriminuojantis

Tokiu būdu kvadratines lygtis išspręsti lengva, svarbiausia atsiminti veiksmų seką ir porą formulių. Atminkite, kad bet kurią kvadratinę lygtį galima išspręsti naudojant diskriminantą! Net nepilnas.

Ar pastebėjote šaknį iš diskriminanto šaknų formulėje? Tačiau diskriminantas gali būti neigiamas. Ką daryti? Ypatingą dėmesį turime skirti 2 žingsniui. Diskriminantas nurodo lygties šaknų skaičių.

  • Jei, tada lygtis turi šaknis:
  • Jei, tada lygtis turi tas pačias šaknis, o iš tikrųjų vieną šaknį:

    Tokios šaknys vadinamos dvigubomis šaknimis.

  • Jei, tada diskriminanto šaknis nėra išgaunama. Tai rodo, kad lygtis neturi šaknų.

Kodėl tai įmanoma skirtingi kiekiaišaknys? Kreipkimės į geometrine prasme kvadratinė lygtis. Funkcijos grafikas yra parabolė:

Ypatingu atveju, kuris yra kvadratinė lygtis, . Tai reiškia, kad kvadratinės lygties šaknys yra susikirtimo su abscisių ašimi (ašiu) taškai. Parabolė gali išvis nesikirsti su ašimi arba gali susikirsti viename (kai parabolės viršūnė yra ant ašies) arba dviejuose taškuose.

Be to, koeficientas yra atsakingas už parabolės šakų kryptį. Jei, tada parabolės šakos nukreiptos aukštyn, o jei, tada žemyn.

Pavyzdžiai:

Sprendimai:

Atsakymas:

Atsakymas:.

Atsakymas:

Tai reiškia, kad sprendimų nėra.

Atsakymas:.

2. Vietos teorema

Naudoti Vietos teoremą labai paprasta: tereikia pasirinkti skaičių porą, kurios sandauga būtų lygi laisvajam lygties nariui, o suma lygi antrajam koeficientui, paimtam su priešingu ženklu.

Svarbu atsiminti, kad Vietos teorema gali būti taikoma tik sumažintos kvadratinės lygtys ().

Pažvelkime į kelis pavyzdžius:

1 pavyzdys:

Išspręskite lygtį.

Sprendimas:

Šią lygtį galima išspręsti naudojant Vietos teoremą, nes . Kiti koeficientai: ; .

Lygties šaknų suma yra tokia:

Ir produktas yra lygus:

Išsirinkime skaičių poras, kurių sandauga yra lygi, ir patikrinkime, ar jų suma lygi:

  • Ir. Suma yra lygi;
  • Ir. Suma yra lygi;
  • Ir. Suma yra lygi.

ir yra sistemos sprendimas:

Taigi ir yra mūsų lygties šaknys.

Atsakymas: ; .

2 pavyzdys:

Sprendimas:

Išsirinkime skaičių poras, kurios pateikia sandaugą, ir patikrinkime, ar jų suma yra lygi:

ir: jie duoda iš viso.

ir: jie duoda iš viso. Norint gauti, pakanka tiesiog pakeisti tariamų šaknų požymius: ir, galų gale, produktą.

Atsakymas:

3 pavyzdys:

Sprendimas:

Laisvasis lygties narys yra neigiamas, todėl šaknų sandauga yra neigiamas skaičius. Tai įmanoma tik tuo atveju, jei viena iš šaknų yra neigiama, o kita - teigiama. Todėl šaknų suma yra lygi jų modulių skirtumai.

Parinkime skaičių poras, kurios pateikia sandaugą ir kurių skirtumas yra lygus:

ir: jų skirtumas lygus – netinka;

ir: - netinka;

ir: - netinka;

ir: - tinka. Belieka tik prisiminti, kad viena iš šaknų yra neigiama. Kadangi jų suma turi būti lygi, šaknis su mažesniu moduliu turi būti neigiama: . Mes tikriname:

Atsakymas:

4 pavyzdys:

Išspręskite lygtį.

Sprendimas:

Pateikta lygtis, kuri reiškia:

Laisvasis terminas yra neigiamas, todėl šaknų sandauga yra neigiama. Ir tai įmanoma tik tada, kai viena lygties šaknis yra neigiama, o kita – teigiama.

Pažymime skaičių poras, kurių sandauga yra lygi, ir tada nustatykime, kurios šaknys turi turėti neigiamą ženklą:

Akivaizdu, kad tik šaknys tinka pirmajai sąlygai:

Atsakymas:

5 pavyzdys:

Išspręskite lygtį.

Sprendimas:

Pateikta lygtis, kuri reiškia:

Šaknų suma yra neigiama, o tai reiškia, kad pagal bent jau, viena iš šaknų yra neigiama. Bet kadangi jų produktas yra teigiamas, tai reiškia, kad abi šaknys turi minuso ženklą.

Parinkime skaičių poras, kurių sandauga yra lygi:

Akivaizdu, kad šaknys yra skaičiai ir.

Atsakymas:

Sutikite, labai patogu sugalvoti šaknis žodžiu, o ne skaičiuoti šį bjaurų diskriminantą. Stenkitės kuo dažniau naudoti Vietos teoremą.

Tačiau Vietos teorema reikalinga, kad būtų lengviau ir greičiau rasti šaknis. Kad naudotumėte jį, turite atlikti veiksmus automatiškai. Ir tam išspręskite dar penkis pavyzdžius. Tačiau neapgaudinėkite: jūs negalite naudoti diskriminanto! Tik Vietos teorema:

Savarankiško darbo užduočių sprendimai:

Užduotis 1. ((x)^(2))-8x+12=0

Pagal Vietos teoremą:

Kaip įprasta, atranką pradedame nuo kūrinio:

Netinka, nes kiekis;

: suma yra tokia, kokios jums reikia.

Atsakymas: ; .

2 užduotis.

Ir vėl mūsų mėgstamiausia Vieta teorema: suma turi būti lygi, o sandauga turi būti lygi.

Bet kadangi turi būti ne, o, keičiame šaknų ženklus: ir (iš viso).

Atsakymas: ; .

3 užduotis.

Hmm... Kur tai?

Turite perkelti visas sąlygas į vieną dalį:

Šaknų suma lygi sandaugai.

Gerai, sustok! Lygtis nepateikta. Tačiau Vietos teorema taikoma tik pateiktose lygtyse. Taigi pirmiausia turite pateikti lygtį. Jei negalite vadovauti, atsisakykite šios idėjos ir išspręskite ją kitu būdu (pavyzdžiui, per diskriminantą). Leiskite jums priminti, kad pateikti kvadratinę lygtį reiškia, kad pagrindinis koeficientas būtų lygus:

Puiku. Tada šaknų suma lygi ir sandaugai.

Čia pasirinkti taip pat paprasta, kaip kriaušes gliaudyti: juk tai pirminis skaičius (atsiprašau už tautologiją).

Atsakymas: ; .

4 užduotis.

Laisvas narys yra neigiamas. Kuo tai ypatinga? Ir faktas yra tas, kad šaknys turės skirtingus ženklus. O dabar atrankos metu tikriname ne šaknų sumą, o jų modulių skirtumą: šis skirtumas lygus, o produktas.

Taigi, šaknys yra lygios ir, bet viena iš jų yra minusas. Vietos teorema sako, kad šaknų suma yra lygi antrajam koeficientui su priešingu ženklu, ty. Tai reiškia, kad mažesnė šaknis turės minusą: ir, kadangi.

Atsakymas: ; .

5 užduotis.

Ką daryti pirmiausia? Teisingai, pateikite lygtį:

Vėlgi: pasirenkame skaičiaus veiksnius, o jų skirtumas turėtų būti lygus:

Šaknys yra lygios ir, bet viena iš jų yra minusas. Kuris? Jų suma turėtų būti lygi, o tai reiškia, kad minuso šaknis bus didesnė.

Atsakymas: ; .

Leiskite man apibendrinti:
  1. Vietos teorema naudojama tik pateiktose kvadratinėse lygtyse.
  2. Naudojant Vietos teoremą, galima rasti šaknis pagal atranką, žodžiu.
  3. Jei lygtis nepateikta arba nerandama tinkama laisvojo nario veiksnių pora, tada nėra sveikų šaknų ir ją reikia išspręsti kitu būdu (pavyzdžiui, per diskriminantą).

3. Viso kvadrato parinkimo būdas

Jei visi terminai, kuriuose yra nežinomasis, yra pavaizduoti terminų forma iš sutrumpintų daugybos formulių - sumos arba skirtumo kvadratu, tada pakeitus kintamuosius, lygtis gali būti pateikta nepilnos kvadratinės lygties forma.

Pavyzdžiui:

1 pavyzdys:

Išspręskite lygtį: .

Sprendimas:

Atsakymas:

2 pavyzdys:

Išspręskite lygtį: .

Sprendimas:

Atsakymas:

Apskritai transformacija atrodys taip:

Tai reiškia:.

Ar tau nieko neprimena? Tai yra diskriminacinis dalykas! Būtent taip mes gavome diskriminuojančios formulę.

Kvadratinės LYGTYBĖS. TRUMPAI APIE PAGRINDINIUS DALYKUS

Kvadratinė lygtis- tai formos lygtis, kur - nežinomasis, - kvadratinės lygties koeficientai, - laisvasis narys.

Pilna kvadratinė lygtis- lygtis, kurioje koeficientai nėra lygūs nuliui.

Sumažinta kvadratinė lygtis- lygtis, kurioje koeficientas, tai yra: .

Nebaigta kvadratinė lygtis- lygtis, kurioje koeficientas ir (arba) laisvasis narys c yra lygūs nuliui:

  • jei koeficientas, lygtis atrodo taip: ,
  • jei yra laisvasis terminas, lygtis turi tokią formą: ,
  • jei ir, lygtis atrodo taip: .

1. Nepilniųjų kvadratinių lygčių sprendimo algoritmas

1.1. Nebaigta kvadratinė formos lygtis, kur:

1) Išreikškime nežinomybę: ,

2) Patikrinkite išraiškos ženklą:

  • jei, tada lygtis neturi sprendinių,
  • jei, tai lygtis turi dvi šaknis.

1.2. Nebaigta kvadratinė formos lygtis, kur:

1) Išimkime bendrą koeficientą iš skliaustų: ,

2) sandauga lygi nuliui, jei bent vienas iš veiksnių yra lygus nuliui. Todėl lygtis turi dvi šaknis:

1.3. Nebaigta kvadratinė formos lygtis, kur:

Ši lygtis visada turi tik vieną šaknį: .

2. Algoritmas sprendžiant pilnąsias kvadratines lygtis formos kur

2.1. Sprendimas naudojant diskriminantą

1) Perkelkime lygtį į standartinę formą: ,

2) Apskaičiuokime diskriminantą pagal formulę: , kuri nurodo lygties šaknų skaičių:

3) Raskite lygties šaknis:

  • jei, tada lygtis turi šaknis, kurios randamos pagal formulę:
  • jei, tada lygtis turi šaknį, kuri randama pagal formulę:
  • jei, tai lygtis neturi šaknų.

2.2. Sprendimas naudojant Vietos teoremą

Sumažintos kvadratinės lygties (formos kur lygtis) šaknų suma lygi, o šaknų sandauga lygi, t.y. , A.

2.3. Sprendimas pasirenkant pilną kvadratą

Jei formos kvadratinė lygtis turi šaknis, tada ją galima parašyti tokia forma: .

Na, tema baigta. Jei skaitote šias eilutes, tai reiškia, kad esate labai šaunus.

Nes tik 5% žmonių sugeba ką nors įvaldyti patys. Ir jei perskaitėte iki galo, tada esate šiame 5%!

Dabar svarbiausia.

Jūs supratote šios temos teoriją. Ir, kartoju, tai... tai tiesiog super! Tu jau esi geresnis už didžiąją daugumą tavo bendraamžių.

Problema ta, kad to gali nepakakti...

Kam?

Už sėkmingą išlaikęs vieningą valstybinį egzaminą, stojant į koledžą su biudžetu ir, SVARBIAUSIA, visam gyvenimui.

Niekuo neįtikinsiu, pasakysiu tik vieną dalyką...

Žmonės, kurie gavo geras išsilavinimas, uždirba daug daugiau nei tie, kurie jo negavo. Tai yra statistika.

Tačiau tai nėra pagrindinis dalykas.

Svarbiausia, kad jie būtų LAIMINGESNI (yra tokių tyrimų). Galbūt todėl, kad prieš juos atsiveria daug daugiau galimybių ir gyvenimas tampa šviesesnis? nezinau...

Bet pagalvok pats...

Ko reikia, kad būtumėte tikri, kad vieningo valstybinio egzamino metu būtumėte geresni už kitus ir galiausiai būtumėte... laimingesni?

ĮGYKITE SAVO RANKĄ SPRĘSDAMI ŠIOS TEmos problemas.

Per egzaminą teorijos neprašys.

Jums reikės spręsti problemas prieš laiką.

Ir, jei jų neišsprendėte (DAUG!), tikrai kur nors padarysite kvailą klaidą arba tiesiog neturėsite laiko.

Tai kaip sporte – reikia kartoti daug kartų, kad laimėtum užtikrintai.

Raskite kolekciją, kur tik norite, būtinai su sprendimais, išsamią analizę ir nuspręsk, nuspręsk, nuspręsk!

Galite naudoti mūsų užduotis (neprivaloma) ir mes, žinoma, jas rekomenduojame.

Kad galėtumėte geriau atlikti užduotis, turite padėti pratęsti šiuo metu skaitomo YouClever vadovėlio gyvavimo laiką.

Kaip? Yra dvi parinktys:

  1. Atrakinkite visas paslėptas užduotis šiame straipsnyje - 299 rubliai.
  2. Atrakinkite prieigą prie visų paslėptų užduočių visuose 99 vadovėlio straipsniuose - 499 rubliai.

Taip, mūsų vadovėlyje yra 99 tokie straipsniai ir prieiga prie visų užduočių ir visų jose esančių paslėptų tekstų gali būti atidaryta iš karto.

Prieiga prie visų paslėptų užduočių suteikiama VISĄ svetainės gyvenimą.

Apibendrinant...

Jei jums nepatinka mūsų užduotys, susiraskite kitus. Tiesiog nesustokite ties teorija.

„Supratau“ ir „aš galiu išspręsti“ yra visiškai skirtingi įgūdžiai. Jums reikia abiejų.

Raskite problemas ir jas spręskite!

IN šiuolaikinė visuomenė galimybė atlikti operacijas su lygtimis, turinčiomis kintamąjį kvadratą, gali būti naudinga daugelyje veiklos sričių ir yra plačiai naudojama praktikoje mokslo ir technikos raidoje. To įrodymų galima rasti projektuojant jūrų ir upių valtys, lėktuvai ir raketos. Naudojant tokius skaičiavimus, judėjimo trajektorijos labiausiai skirtingi kūnai, įskaitant kosminius objektus. Kvadratinių lygčių sprendimo pavyzdžiai naudojami ne tik ekonominiam prognozavimui, pastatų projektavimui ir statybai, bet ir įprastomis kasdienėmis aplinkybėmis. Jų gali prireikti žygiuose pėsčiomis, sporto renginiuose, parduotuvėse perkant ir kitose labai įprastose situacijose.

Išskaidykime išraišką į komponentinius veiksnius

Lygties laipsnis nustatomas pagal didžiausią kintamojo laipsnio reikšmę, kurią sudaro išraiška. Jei jis lygus 2, tada tokia lygtis vadinama kvadratine.

Jei kalbame formulių kalba, tada nurodytos išraiškos, kad ir kaip jos atrodytų, visada gali būti perkeltos į formą, kai kairė pusė išraiška susideda iš trijų terminų. Tarp jų: ​​ax 2 (ty kintamasis kvadratas su jo koeficientu), bx (nežinomasis be kvadrato su jo koeficientu) ir c (laisvasis komponentas, tai yra įprastas skaičius). Visa tai dešinėje yra lygi 0. Tuo atveju, kai tokiame daugianario nėra vieno iš jo sudedamųjų dalių, išskyrus ax 2, jis vadinamas nepilna kvadratine lygtimi. Pirmiausia reikėtų atsižvelgti į tokių problemų sprendimo pavyzdžius, kurių kintamųjų reikšmes lengva rasti.

Jei išraiška atrodo taip, kad dešinėje pusėje yra du terminai, tiksliau ax 2 ir bx, lengviausia x rasti kintamąjį iš skliaustų. Dabar mūsų lygtis atrodys taip: x(ax+b). Tada tampa akivaizdu, kad arba x=0, arba problema kyla ieškant kintamojo iš šios išraiškos: ax+b=0. Tai lemia viena iš daugybos savybių. Taisyklė teigia, kad dviejų veiksnių sandauga yra 0 tik tada, kai vienas iš jų yra lygus nuliui.

Pavyzdys

x = 0 arba 8x - 3 = 0

Dėl to gauname dvi lygties šaknis: 0 ir 0,375.

Tokios lygtys gali apibūdinti kūnų judėjimą veikiant gravitacijai, kurie pradėjo judėti iš tam tikro taško, laikomo koordinačių pradžia. Čia matematinis žymėjimas įgauna tokią formą: y = v 0 t + gt 2 /2. Pakeitę reikiamas reikšmes, prilygindami dešinę pusę su 0 ir suradę galimus nežinomuosius, galite sužinoti laiką, kuris praeina nuo kūno pakilimo iki kritimo, taip pat daugybę kitų dydžių. Bet apie tai pakalbėsime vėliau.

Išraiškos faktorius

Aukščiau aprašyta taisyklė leidžia išspręsti šias problemas sudėtingesniais atvejais. Pažvelkime į tokio tipo kvadratinių lygčių sprendimo pavyzdžius.

X 2 – 33x + 200 = 0

Šis kvadratinis trinaris baigtas. Pirma, transformuokime išraišką ir ją koeficientu. Jų yra dvi: (x-8) ir (x-25) = 0. Dėl to turime dvi šaknis 8 ir 25.

Kvadratinių lygčių sprendimo pavyzdžiai 9 klasėje leidžia šiuo metodu rasti kintamąjį ne tik antros, bet net ir trečios bei ketvirtos eilės išraiškose.

Pavyzdžiui: 2x 3 + 2x 2 - 18x - 18 = 0. Skaičiuojant dešinę pusę į veiksnius su kintamuoju, yra trys iš jų, tai yra (x+1), (x-3) ir (x+) 3).

Dėl to tampa akivaizdu, kad ši lygtis turi tris šaknis: -3; -1; 3.

Kvadratinė šaknis

Kitas nepilnos antrosios eilės lygties atvejis yra išraiška, pavaizduota raidžių kalba taip, kad dešinė pusė sudaryta iš komponentų ax 2 ir c. Čia, norint gauti kintamojo reikšmę, laisvasis terminas perkeliamas į dešinioji pusė, o po to kvadratinė šaknis paimama iš abiejų lygybės pusių. Reikia pažymėti, kad šiuo atveju dažniausiai yra dvi lygties šaknys. Vienintelės išimtys gali būti lygybės, kuriose iš viso nėra termino su, kai kintamasis lygus nuliui, taip pat reiškinių variantai, kai dešinioji pusė pasirodo esanti neigiama. Pastaruoju atveju iš viso nėra sprendimų, nes pirmiau minėtų veiksmų negalima atlikti su šaknimis. Reikėtų apsvarstyti tokio tipo kvadratinių lygčių sprendimų pavyzdžius.

Šiuo atveju lygties šaknys bus skaičiai -4 ir 4.

Žemės ploto apskaičiavimas

Tokio pobūdžio skaičiavimų poreikis atsirado senovėje, nes matematikos raidą tais tolimais laikais daugiausia lėmė poreikis kuo tiksliau nustatyti žemės sklypų plotus ir perimetrus.

Taip pat turėtume apsvarstyti kvadratinių lygčių, pagrįstų tokio pobūdžio problemomis, sprendimo pavyzdžius.

Taigi, tarkime, yra stačiakampis žemės sklypas, kurio ilgis yra 16 metrų didesnis už plotį. Turėtumėte sužinoti sklypo ilgį, plotį ir perimetrą, jei žinote, kad jos plotas yra 612 m2.

Norėdami pradėti, pirmiausia sukurkime reikiamą lygtį. Pažymėkime x ploto plotį, tada jo ilgis bus (x+16). Iš to, kas parašyta, seka, kad plotas nustatomas pagal išraišką x(x+16), kuri pagal mūsų uždavinio sąlygas yra 612. Tai reiškia, kad x(x+16) = 612.

Išspręsti visas kvadratines lygtis, o ši išraiška yra būtent tokia, negali būti atlikta taip pat. Kodėl? Nors kairėje pusėje vis dar yra du faktoriai, jų sandauga visai nelygu 0, todėl čia naudojami skirtingi metodai.

Diskriminuojantis

Pirmiausia atlikime reikiamas transformacijas, tada išvaizdašios išraiškos atrodys taip: x 2 + 16x - 612 = 0. Tai reiškia, kad gavome išraišką, atitinkančią anksčiau nurodytą standartą, kur a=1, b=16, c=-612.

Tai galėtų būti kvadratinių lygčių, naudojant diskriminantą, sprendimo pavyzdys. Čia reikalingi skaičiavimai atliekami pagal schemą: D = b 2 - 4ac. Šis pagalbinis dydis ne tik leidžia rasti reikiamus kiekius antros eilės lygtyje, bet ir nustato kiekį galimi variantai. Jei D>0, jų yra du; D=0 yra viena šaknis. Tuo atveju, kai D<0, никаких шансов для решения у уравнения вообще не имеется.

Apie šaknis ir jų formulę

Mūsų atveju diskriminantas yra lygus: 256 - 4(-612) = 2704. Tai rodo, kad mūsų problema turi atsakymą. Jei žinote k, kvadratinių lygčių sprendimas turi būti tęsiamas naudojant toliau pateiktą formulę. Tai leidžia apskaičiuoti šaknis.

Tai reiškia, kad pateiktu atveju: x 1 =18, x 2 =-34. Antrasis variantas šioje dilemoje negali būti sprendimas, nes žemės sklypo matmenys negali būti matuojami neigiamais dydžiais, o tai reiškia, kad x (tai yra sklypo plotis) yra 18 m. Iš čia skaičiuojame ilgį: 18 +16=34, o perimetras 2(34+ 18)=104(m2).

Pavyzdžiai ir užduotys

Tęsiame kvadratinių lygčių tyrimą. Toliau bus pateikti kelių iš jų pavyzdžiai ir išsamūs sprendimai.

1) 15x 2 + 20x + 5 = 12x 2 + 27x + 1

Viską perkelkime į kairę lygybės pusę, atliksime transformaciją, tai yra, gausime lygties tipą, kuris paprastai vadinamas standartiniu, ir prilyginsime jį nuliui.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Sudėję panašius, nustatome diskriminantą: D = 49 - 48 = 1. Tai reiškia, kad mūsų lygtis turės dvi šaknis. Apskaičiuokime juos pagal aukščiau pateiktą formulę, o tai reiškia, kad pirmasis iš jų bus lygus 4/3, o antrasis - 1.

2) Dabar išspręskime kitokio pobūdžio paslaptis.

Išsiaiškinkime, ar čia yra šaknų x 2 - 4x + 5 = 1? Norėdami gauti išsamų atsakymą, sumažinkime daugianarį iki atitinkamos įprastos formos ir apskaičiuokime diskriminantą. Aukščiau pateiktame pavyzdyje kvadratinės lygties spręsti nebūtina, nes tai visai ne problemos esmė. Šiuo atveju D = 16 - 20 = -4, o tai reiškia, kad šaknų tikrai nėra.

Vietos teorema

Kvadratines lygtis patogu spręsti naudojant aukščiau pateiktas formules ir diskriminantą, kai iš pastarojo reikšmės imama kvadratinė šaknis. Tačiau taip nutinka ne visada. Tačiau šiuo atveju yra daug būdų, kaip gauti kintamųjų reikšmes. Pavyzdys: kvadratinių lygčių sprendimas naudojant Vietos teoremą. Ji pavadinta XVI amžiuje gyvenusio Prancūzijoje ir dėl savo matematinio talento bei ryšių dvaro dėka padariusio puikią karjerą. Jo portretą galima pamatyti straipsnyje.

Modelis, kurį pastebėjo garsus prancūzas, buvo toks. Jis įrodė, kad lygties šaknys skaičiais sumuojasi į -p=b/a, o jų sandauga atitinka q=c/a.

Dabar pažvelkime į konkrečias užduotis.

3x 2 + 21x - 54 = 0

Kad būtų paprasčiau, pakeiskime išraišką:

x 2 + 7x - 18 = 0

Pasinaudokime Vietos teorema, tai duos mums taip: šaknų suma yra -7, o jų sandauga -18. Iš čia gauname, kad lygties šaknys yra skaičiai -9 ir 2. Patikrinę įsitikinsime, kad šios kintamųjų reikšmės tikrai tinka išraiškai.

Parabolės grafikas ir lygtis

Kvadratinės funkcijos ir kvadratinių lygčių sąvokos yra glaudžiai susijusios. To pavyzdžiai jau buvo pateikti anksčiau. Dabar pažvelkime į kai kurias matematines mįsles šiek tiek išsamiau. Bet kuri aprašyto tipo lygtis gali būti pavaizduota vizualiai. Toks santykis, nubraižytas kaip grafikas, vadinamas parabole. Įvairūs jo tipai pateikti paveikslėlyje žemiau.

Bet kuri parabolė turi viršūnę, tai yra tašką, iš kurio atsiranda jos šakos. Jei a>0, jie kyla aukštai iki begalybės, o kai a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Vizualus funkcijų atvaizdavimas padeda išspręsti visas lygtis, įskaitant kvadratines. Šis metodas vadinamas grafiniu. O kintamojo x reikšmė yra abscisių koordinatė taškuose, kur grafiko linija susikerta su 0x. Viršūnės koordinates galima rasti naudojant ką tik pateiktą formulę x 0 = -b/2a. Ir pakeisdami gautą reikšmę į pradinę funkcijos lygtį, galite sužinoti y 0, tai yra, antrąją parabolės viršūnės koordinatę, kuri priklauso ordinačių ašiai.

Parabolės šakų susikirtimas su abscisių ašimi

Yra daug kvadratinių lygčių sprendimo pavyzdžių, tačiau yra ir bendrųjų modelių. Pažiūrėkime į juos. Akivaizdu, kad grafiko susikirtimas su 0x ašimi, kai a>0 yra įmanomas tik tada, kai 0 įgyja neigiamas reikšmes. Ir už a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Priešingu atveju D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

Iš parabolės grafiko taip pat galite nustatyti šaknis. Taip pat yra priešingai. Tai yra, jei nėra lengva gauti vaizdinį kvadratinės funkcijos vaizdą, dešinę išraiškos pusę galite prilyginti 0 ir išspręsti gautą lygtį. O žinant susikirtimo taškus su 0x ašimi, grafiką sudaryti lengviau.

Iš istorijos

Naudojant lygtis, turinčias kvadratinį kintamąjį, senais laikais jie ne tik atlikdavo matematinius skaičiavimus ir nustatydavo geometrinių figūrų plotus. Tokių skaičiavimų senovės žmonėms prireikė dideliems atradimams fizikos ir astronomijos srityse, taip pat astrologinėms prognozėms daryti.

Kaip teigia šiuolaikiniai mokslininkai, Babilono gyventojai vieni pirmųjų išsprendė kvadratines lygtis. Tai įvyko keturis šimtmečius prieš mūsų erą. Žinoma, jų skaičiavimai kardinaliai skyrėsi nuo šiuo metu priimtų ir pasirodė esą daug primityvesni. Pavyzdžiui, Mesopotamijos matematikai neturėjo supratimo apie neigiamų skaičių egzistavimą. Jiems nebuvo pažįstamos ir kitos subtilybės, kurias žino bet kuris šiuolaikinis moksleivis.

Galbūt net anksčiau nei Babilono mokslininkai išminčius iš Indijos Baudhayama pradėjo spręsti kvadratines lygtis. Tai įvyko maždaug aštuonis šimtmečius prieš Kristaus erą. Tiesa, antros eilės lygtys, jų sprendimo būdai, kuriuos jis pateikė, buvo patys paprasčiausi. Be jo, senais laikais panašiais klausimais domėjosi ir kinų matematikai. Europoje kvadratinės lygtys pradėtos spręsti tik XIII amžiaus pradžioje, tačiau vėliau jas savo darbuose naudojo tokie didieji mokslininkai kaip Niutonas, Dekartas ir daugelis kitų.

Įkeliama...Įkeliama...