Logaritmo atvirkštinė vertė. Logaritmai: pavyzdžiai ir sprendimai

Mums svarbu išlaikyti jūsų privatumą. Dėl šios priežasties sukūrėme Privatumo politiką, kurioje aprašoma, kaip naudojame ir saugome jūsų informaciją. Peržiūrėkite mūsų privatumo praktiką ir praneškite mums, jei turite klausimų.

Asmeninės informacijos rinkimas ir naudojimas

Asmeninė informacija reiškia duomenis, kurie gali būti naudojami konkretaus asmens tapatybei nustatyti arba susisiekti su juo.

Jūsų gali būti paprašyta pateikti savo asmeninę informaciją bet kuriuo metu, kai susisiekiate su mumis.

Toliau pateikiami keli pavyzdžiai, kokios rūšies asmeninės informacijos galime rinkti ir kaip galime tokią informaciją naudoti.

Kokią asmeninę informaciją renkame:

  • Kai pateikiate paraišką svetainėje, galime rinkti įvairią informaciją, įskaitant jūsų vardą, telefono numerį, adresą El. paštas ir tt

Kaip naudojame jūsų asmeninę informaciją:

  • Mūsų surinkta Asmeninė informacija leidžia susisiekti su jumis ir informuoti apie unikalius pasiūlymus, akcijas ir kitus renginius bei artėjančius renginius.
  • Retkarčiais galime naudoti jūsų asmeninę informaciją svarbiems pranešimams ir pranešimams siųsti.
  • Mes taip pat galime naudoti asmeninę informaciją vidiniais tikslais, pavyzdžiui, atlikti auditą, duomenų analizę ir įvairius tyrimus, siekdami tobulinti teikiamas paslaugas ir teikti rekomendacijas dėl mūsų paslaugų.
  • Jei dalyvaujate prizų traukime, konkurse ar panašioje akcijoje, mes galime naudoti jūsų pateiktą informaciją tokioms programoms administruoti.

Informacijos atskleidimas trečiosioms šalims

Mes neatskleidžiame iš jūsų gautos informacijos trečiosioms šalims.

Išimtys:

  • Esant poreikiui – įstatymų nustatyta tvarka, teismine tvarka, in teismo procesas, ir (arba) remiantis viešais prašymais arba prašymais iš vyriausybines agentūras Rusijos Federacijos teritorijoje – atskleiskite savo asmeninę informaciją. Taip pat galime atskleisti informaciją apie jus, jei nuspręsime, kad toks atskleidimas yra būtinas ar tinkamas saugumo, teisėsaugos ar kitais visuomenei svarbiais tikslais.
  • Reorganizavimo, susijungimo ar pardavimo atveju surinktą asmeninę informaciją galime perduoti atitinkamai trečiajai šaliai.

Asmeninės informacijos apsauga

Mes imamės atsargumo priemonių, įskaitant administracines, technines ir fizines, siekdami apsaugoti jūsų asmeninę informaciją nuo praradimo, vagystės ir netinkamo naudojimo, taip pat nuo neteisėtos prieigos, atskleidimo, pakeitimo ir sunaikinimo.

Jūsų privatumo gerbimas įmonės lygiu

Siekdami užtikrinti, kad jūsų asmeninė informacija būtų saugi, savo darbuotojams pranešame apie privatumo ir saugumo standartus ir griežtai vykdome privatumo praktiką.

Kaip žinote, dauginant išraiškas su laipsniais, jų rodikliai visada sumuojasi (a b *a c = a b+c). Šį matematinį dėsnį išvedė Archimedas, o vėliau, VIII amžiuje, matematikas Virasenas sukūrė sveikųjų rodiklių lentelę. Būtent jie pasitarnavo tolesniam logaritmų atradimui. Šios funkcijos naudojimo pavyzdžių galima rasti beveik visur, kur reikia supaprastinti sudėtingą dauginimą paprastu sudėjimu. Jei skaitydami šį straipsnį skirsite 10 minučių, paaiškinsime, kas yra logaritmai ir kaip su jais dirbti. Paprasta ir prieinama kalba.

Apibrėžimas matematikoje

Logaritmas yra tokios formos išraiška: log a b=c, tai yra, bet kurio neneigiamo skaičiaus (ty bet kurio teigiamo) „b“ logaritmas iki jo bazės „a“ laikomas laipsniu „c“. “, iki kurio turi būti padidinta bazė „a“, kad galiausiai būtų gauta reikšmė „b“. Išanalizuokime logaritmą naudodami pavyzdžius, tarkime, kad yra išraiška log 2 8. Kaip rasti atsakymą? Tai labai paprasta, reikia rasti tokią galią, kad nuo 2 iki reikiamos galios gautumėte 8. Galvoje atlikę keletą skaičiavimų, gauname skaičių 3! Ir tai tiesa, nes 2 iki 3 laipsnio suteikia atsakymą kaip 8.

Logaritmų tipai

Daugeliui mokinių ir studentų ši tema atrodo sudėtinga ir nesuprantama, tačiau iš tikrųjų logaritmai nėra tokie baisūs, svarbiausia suprasti jų bendrą prasmę ir atsiminti jų savybes bei kai kurias taisykles. Yra trys atskiros rūšys logaritminės išraiškos:

  1. Natūralusis logaritmas ln a, kur bazė yra Eulerio skaičius (e = 2,7).
  2. Dešimtainė a, kur bazė yra 10.
  3. Bet kurio skaičiaus b logaritmas bazei a>1.

Kiekvienas iš jų yra išspręstas standartiniu būdu, įskaitant supaprastinimą, sumažinimą ir vėlesnį redukavimą iki vieno logaritmo naudojant logaritmines teoremas. Norėdami gauti teisingas logaritmų reikšmes, spręsdami turėtumėte atsiminti jų savybes ir veiksmų seką.

Taisyklės ir kai kurie apribojimai

Matematikoje yra keletas taisyklių-apribojimų, kurie priimami kaip aksioma, tai yra, jie nėra diskutuojami ir yra tiesa. Pavyzdžiui, neįmanoma padalyti skaičių iš nulio, taip pat neįmanoma išgauti lygiosios šaknies neigiami skaičiai. Logaritmai taip pat turi savo taisykles, kurių laikydamiesi galite lengvai išmokti dirbti net su ilgomis ir talpiomis logaritminėmis išraiškomis:

  • Bazė „a“ visada turi būti didesnė už nulį, o ne lygi 1, kitaip išraiška praras savo prasmę, nes „1“ ir „0“ bet kokiu laipsniu visada yra lygūs jų reikšmėms;
  • jei a > 0, tai a b >0, pasirodo, kad „c“ taip pat turi būti didesnis už nulį.

Kaip išspręsti logaritmus?

Pavyzdžiui, pateikiama užduotis rasti atsakymą į lygtį 10 x = 100. Tai labai paprasta, reikia pasirinkti laipsnį, padidinant skaičių dešimt, iki kurio gauname 100. Tai, žinoma, yra 10 2 = 100.

Dabar pavaizduokime šią išraišką logaritmine forma. Gauname logaritmą 10 100 = 2. Sprendžiant logaritmus visi veiksmai praktiškai susilieja, kad rastų laipsnį, į kurį reikia įvesti logaritmo bazę, norint gauti duotą skaičių.

Norėdami tiksliai nustatyti nežinomo laipsnio reikšmę, turite išmokti dirbti su laipsnių lentele. Tai atrodo taip:

Kaip matote, kai kuriuos eksponentus galima atspėti intuityviai, jei turite techninį protą ir išmanote daugybos lentelę. Tačiau didesnėms vertėms jums reikės maitinimo stalo. Jį gali naudoti net tie, kurie nieko nežino apie kompleksą matematines temas. Kairiajame stulpelyje yra skaičiai (bazė a), viršutinė skaičių eilutė yra laipsnio c reikšmė, iki kurios pakeliamas skaičius a. Sankryžoje langeliuose yra skaičių reikšmės, kurios yra atsakymas (a c = b). Paimkime, pavyzdžiui, patį pirmąjį langelį su skaičiumi 10 ir padėkite jį kvadratu, gausime reikšmę 100, kuri yra nurodyta mūsų dviejų langelių sankirtoje. Viskas taip paprasta ir lengva, kad supras net pats tikriausias humanistas!

Lygtys ir nelygybės

Pasirodo, kai tam tikromis sąlygomis eksponentas yra logaritmas. Todėl bet kurios matematinės skaitinės išraiškos gali būti užrašytos kaip logaritminė lygybė. Pavyzdžiui, 3 4 =81 gali būti parašytas kaip 81 bazinis 3 logaritmas, lygus keturiems (log 3 81 = 4). Dėl neigiamų galių taisyklės tos pačios: 2 -5 = 1/32 rašome kaip logaritmą, gauname log 2 (1/32) = -5. Viena įdomiausių matematikos skyrių yra „logaritmų“ tema. Žemiau pažvelgsime į lygčių pavyzdžius ir sprendimus, iš karto ištyrę jų savybes. Dabar pažiūrėkime, kaip atrodo nelygybės ir kaip jas atskirti nuo lygčių.

Duota tokios formos išraiška: log 2 (x-1) > 3 – tai yra logaritminė nelygybė, nes nežinoma reikšmė "x" yra po logaritmo ženklu. Taip pat išraiškoje lyginami du dydžiai: norimo skaičiaus logaritmas su baziniu du yra didesnis nei skaičius trys.

Svarbiausias skirtumas tarp logaritminių lygčių ir nelygybių yra tas, kad lygtys su logaritmais (pavyzdžiui, logaritmas 2 x = √9) reiškia vieną ar daugiau konkrečių atsakymų. skaitinės reikšmės, o sprendžiant nelygybės apibrėžiamos kaip regionas priimtinos vertės, ir šios funkcijos lūžio taškai. Todėl atsakymas yra ne paprastas atskirų skaičių rinkinys, kaip lygties atsakyme, o ištisinė skaičių seka arba rinkinys.

Pagrindinės teoremos apie logaritmus

Sprendžiant primityvias logaritmo reikšmių radimo užduotis, jo savybės gali būti nežinomos. Tačiau kalbant apie logaritmines lygtis ar nelygybes, pirmiausia reikia aiškiai suprasti ir praktiškai pritaikyti visas pagrindines logaritmų savybes. Vėliau apžvelgsime lygčių pavyzdžius; pirmiausia pažvelkime į kiekvieną ypatybę išsamiau.

  1. Pagrindinė tapatybė atrodo taip: a logaB =B. Jis taikomas tik tada, kai a yra didesnis nei 0, nelygus vienetui, o B yra didesnis už nulį.
  2. Produkto logaritmą galima pavaizduoti tokia formule: log d (s 1 * s 2) = log d s 1 + log d s 2. Šiuo atveju privaloma sąlyga yra: d, s 1 ir s 2 > 0; a≠1. Galite pateikti šios logaritminės formulės įrodymą su pavyzdžiais ir sprendimu. Tegu log a s 1 = f 1 ir log a s 2 = f 2, tada a f1 = s 1, a f2 = s 2. Gauname, kad s 1 * s 2 = a f1 *a f2 = a f1+f2 (ypatybės laipsniai ), o tada pagal apibrėžimą: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, ką reikėjo įrodyti.
  3. Dalinio logaritmas atrodo taip: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Perima formulės formos teorema kitas vaizdas: log a q b n = n/q log a b.

Ši formulė vadinama „logaritmo laipsnio savybe“. Tai primena įprastų laipsnių savybes, ir tai nenuostabu, nes visa matematika remiasi natūraliais postulatais. Pažiūrėkime į įrodymą.

Tegu log a b = t, pasirodo a t =b. Jei abi dalis pakelsime laipsniu m: a tn = b n ;

bet kadangi a tn = (a q) nt/q = b n, todėl log a q b n = (n*t)/t, tada log a q b n = n/q log a b. Teorema įrodyta.

Problemų ir nelygybių pavyzdžiai

Dažniausiai pasitaikančios logaritmų problemos yra lygčių ir nelygybių pavyzdžiai. Jie yra beveik visose probleminėse knygose, taip pat yra privaloma matematikos egzaminų dalis. Dėl stojimo į universitetą arba išlaikymo stojamieji egzaminai matematikoje reikia mokėti teisingai išspręsti tokius uždavinius.

Deja, nėra vieno plano ar schemos, kaip išspręsti ir nustatyti nežinomą logaritmo reikšmę, tačiau kiekvienai matematinei nelygybei ar logaritminei lygčiai gali būti taikomos tam tikros taisyklės. Visų pirma, jūs turėtumėte išsiaiškinti, ar posakis gali būti supaprastintas ar sukelti bendra išvaizda. Galite supaprastinti ilgas logaritmines išraiškas, jei teisingai naudojate jų savybes. Greitai su jais susipažinkime.

Spręsdami logaritmines lygtis turime nustatyti, kokio tipo logaritmą turime: pavyzdinėje išraiškoje gali būti natūralusis logaritmas arba dešimtainis.

Štai pavyzdžiai ln100, ln1026. Jų sprendimas yra susijęs su tuo, kad jiems reikia nustatyti galią, kuriai bazė 10 bus lygi atitinkamai 100 ir 1026. Norėdami išspręsti natūralius logaritmus, turite taikyti logaritminius tapatumus arba jų savybes. Pažvelkime į įvairių tipų logaritminių uždavinių sprendimo pavyzdžius.

Kaip naudoti logaritmo formules: su pavyzdžiais ir sprendimais

Taigi, pažvelkime į pagrindinių logaritmų teoremų naudojimo pavyzdžius.

  1. Produkto logaritmo savybė gali būti naudojama atliekant užduotis, kur reikia plėsti didelę reikšmę skaičius b į paprastesnius veiksnius. Pavyzdžiui, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Atsakymas yra 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - kaip matote, naudojant ketvirtąją logaritmo galios savybę, mums pavyko išspręsti iš pažiūros sudėtingą ir neišsprendžiamą išraišką. Jums tereikia apskaičiuoti bazę ir išimti eksponentų reikšmes iš logaritmo ženklo.

Vieningo valstybinio egzamino užduotys

Logaritmai dažnai aptinkami stojamuosiuose egzaminuose, ypač daug logaritminių uždavinių – vieningame valstybiniame egzamine (valstybinis egzaminas visiems abiturientams). Paprastai šios užduotys pateikiamos ne tik A dalyje (lengviausia egzamino dalis), bet ir C dalyje (sudėtingiausios ir didžiausios užduotys). Egzaminas reikalauja tikslių ir nepriekaištingų temos „Natūralūs logaritmai“ išmanymo.

Pavyzdžiai ir problemų sprendimai paimti iš oficialaus Vieningo valstybinio egzamino parinktys. Pažiūrėkime, kaip tokios užduotys sprendžiamos.

Duotas log 2 (2x-1) = 4. Sprendimas:
perrašykime išraišką, šiek tiek supaprastindami log 2 (2x-1) = 2 2, pagal logaritmo apibrėžimą gauname, kad 2x-1 = 2 4, todėl 2x = 17; x = 8,5.

  • Geriausia visus logaritmus sumažinti iki vienodo pagrindo, kad sprendimas nebūtų sudėtingas ir painus.
  • Visos išraiškos po logaritmo ženklu nurodomos kaip teigiamos, todėl, kai po logaritmo ženklu esančios išraiškos ir jo bazės eksponentas išimamas kaip daugiklis, po logaritmu likusi išraiška turi būti teigiama.

Teigiamo skaičiaus b logaritmas bazei a (a>0, a nelygus 1) yra toks skaičius c, kad a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Atkreipkite dėmesį, kad neteigiamojo skaičiaus logaritmas yra neapibrėžtas. Be to, logaritmo pagrindas turi būti teigiamas skaičius, kuris nėra lygus 1. Pavyzdžiui, jei kvadratu -2, gauname skaičių 4, bet tai nereiškia, kad logaritmas į bazę -2 iš 4 yra lygus 2.

Pagrindinė logaritminė tapatybė

a log a b = b (a > 0, a ≠ 1) (2)

Svarbu, kad šios formulės dešinės ir kairės pusės apibrėžimo apimtis būtų skirtinga. Kairė pusė apibrėžiamas tik b>0, a>0 ir a ≠ 1. Dešinė pusė yra apibrėžta bet kuriam b ir visiškai nepriklauso nuo a. Taigi pagrindinio logaritminio „tapatumo“ taikymas sprendžiant lygtis ir nelygybes gali lemti OD pasikeitimą.

Dvi akivaizdžios logaritmo apibrėžimo pasekmės

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Išties, keldami skaičių a iki pirmo laipsnio, gauname tą patį skaičių, o pakeldami iki nulinio laipsnio – vienetą.

Produkto logaritmas ir koeficiento logaritmas

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Norėčiau perspėti moksleivius, kad sprendžiant logaritmines lygtis ir nelygybes neapgalvotai nenaudotų šių formulių. Naudojant juos „iš kairės į dešinę“, ODZ susiaurėja, o pereinant nuo logaritmų sumos ar skirtumo prie sandaugos ar koeficiento logaritmo, ODZ plečiasi.

Iš tiesų, išraiška log a (f (x) g (x)) apibrėžiama dviem atvejais: kai abi funkcijos yra griežtai teigiamos arba kai f (x) ir g (x) yra mažesnės už nulį.

Pavertę šią išraišką į sumą log a f (x) + log a g (x), esame priversti apsiriboti tik tuo atveju, kai f(x)>0 ir g(x)>0. Priimtinų verčių diapazonas susiaurėja, o tai kategoriškai nepriimtina, nes gali būti prarasti sprendimai. Panaši problema yra su (6) formule.

Laipsnį galima paimti iš logaritmo ženklo

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

Ir vėl norėčiau paraginti tikslumo. Apsvarstykite šį pavyzdį:

Log a (f (x) 2 = 2 log a f (x)

Kairioji lygybės pusė akivaizdžiai apibrėžta visoms f(x) reikšmėms, išskyrus nulį. Dešinė pusė skirta tik f(x)>0! Iš logaritmo išėmę laipsnį, vėl susiauriname ODZ. Atvirkštinė procedūra leidžia išplėsti priimtinų verčių diapazoną. Visos šios pastabos galioja ne tik 2 galiai, bet ir bet kuriai lygiai galiai.

Perėjimo prie naujo pagrindo formulė

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Tas retas atvejis, kai transformacijos metu ODZ nesikeičia. Jei išmintingai pasirinkote bazę c (teigiama ir nelygu 1), perkėlimo į naują bazę formulė yra visiškai saugi.

Jei pasirinksime skaičių b kaip naują bazę c, gausime svarbų ypatinga byla formulės (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Keletas paprastų logaritmų pavyzdžių

Pavyzdys 1. Apskaičiuokite: log2 + log50.
Sprendimas. log2 + log50 = log100 = 2. Naudojome logaritmų sumos formulę (5) ir dešimtainio logaritmo apibrėžimą.


Pavyzdys 2. Apskaičiuokite: lg125/lg5.
Sprendimas. log125/log5 = log 5 125 = 3. Naudojome perėjimo į naują bazę formulę (8).

Su logaritmais susijusių formulių lentelė

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Pateikiamos pagrindinės logaritmo savybės, logaritminis grafikas, apibrėžimo sritis, reikšmių rinkinys, pagrindinės formulės, didėjimas ir mažėjimas. Svarstoma logaritmo išvestinės radimas. Taip pat integralas, laipsnių eilučių išplėtimas ir vaizdavimas naudojant kompleksinius skaičius.

Logaritmo apibrėžimas

Logaritmas su baze a yra y funkcija (x) = log a x, atvirkštinė eksponentinė funkcija su baze a: x (y) = a y.

Dešimtainis logaritmas yra logaritmas iki skaičiaus pagrindo 10 : log x ≡ log 10 x.

Natūralus logaritmas yra logaritmas iki e pagrindo: ln x ≡ log e x.

2,718281828459045... ;
.

Logaritmo grafikas gaunamas iš eksponentinės funkcijos grafiko, atspindint jį tiesės y = x atžvilgiu. Kairėje yra funkcijos y grafikai (x) = log a x keturioms vertėms logaritmų bazės: a = 2 , a = 8 , a = 1/2 ir a = 1/8 . Diagrama rodo, kad kai a > 1 logaritmas didėja monotoniškai. Didėjant x, augimas žymiai sulėtėja. At 0 < a < 1 logaritmas mažėja monotoniškai.

Logaritmo savybės

Domenas, vertybių rinkinys, didėjantis, mažėjantis

Logaritmas yra monotoninė funkcija, todėl ji neturi ekstremalių. Pagrindinės logaritmo savybės pateiktos lentelėje.

Domenas 0 < x < + ∞ 0 < x < + ∞
Vertybių diapazonas - ∞ < y < + ∞ - ∞ < y < + ∞
Monotoniškas monotoniškai didėja monotoniškai mažėja
Nuliai, y = 0 x = 1 x = 1
Sukirtimo taškai su ordinačių ašimi, x = 0 Nr Nr
+ ∞ - ∞
- ∞ + ∞

Privačios vertybės


Vadinamas logaritmas iki 10 bazės dešimtainis logaritmas ir žymimas taip:

Logaritmas iki pagrindo e paskambino natūralusis logaritmas :

Pagrindinės logaritmų formulės

Logaritmo savybės, kylančios iš atvirkštinės funkcijos apibrėžimo:

Pagrindinė logaritmų savybė ir jos pasekmės

Bazės pakeitimo formulė

Logaritmas yra matematinė logaritmo ėmimo operacija. Imant logaritmus faktorių sandaugai paverčiami terminų sumomis.

Potencija yra atvirkštinė matematinė logaritmo operacija. Potencijos metu tam tikra bazė pakeliama iki išraiškos laipsnio, per kurį atliekamas stiprinimas. Šiuo atveju terminų sumos paverčiamos veiksnių sandaugomis.

Pagrindinių logaritmų formulių įrodymas

Su logaritmais susijusios formulės kyla iš eksponentinių funkcijų formulių ir iš atvirkštinės funkcijos apibrėžimo.

Apsvarstykite eksponentinės funkcijos savybę
.
Tada
.
Taikykime eksponentinės funkcijos savybę
:
.

Įrodykime bazės pakeitimo formulę.
;
.
Darant prielaidą, kad c = b, turime:

Atvirkštinė funkcija

Logaritmo atvirkštinė bazė a yra eksponentinė funkcija su eksponentu a.

Jei tada

Jei tada

Logaritmo išvestinė

Modulio x logaritmo išvestinė:
.
N-osios eilės vedinys:
.
Išvedimo formulės >>>

Norint rasti logaritmo išvestinę, jis turi būti sumažintas iki pagrindo e.
;
.

Integralinis

Logaritmo integralas apskaičiuojamas integruojant dalimis: .
Taigi,

Išraiškos naudojant kompleksinius skaičius

Apsvarstykite kompleksinio skaičiaus funkciją z:
.
Išreikškime kompleksinį skaičių z per modulį r ir argumentas φ :
.
Tada, naudodamiesi logaritmo savybėmis, turime:
.
Arba

Tačiau argumentas φ nėra vienareikšmiškai apibrėžta. Jei įdėsite
, kur n yra sveikas skaičius,
tada jis bus tas pats skaičius skirtingiems n.

Todėl logaritmas, kaip sudėtingo kintamojo funkcija, nėra vienareikšmė funkcija.

Galios serijos išplėtimas

Kai plėtra vyksta:

Nuorodos:
I.N. Bronšteinas, K.A. Semendyaev, Matematikos vadovas inžinieriams ir kolegijų studentams, „Lan“, 2009 m.

Išplaukia iš jo apibrėžimo. Ir taip skaičiaus logaritmas b remiantis A apibrėžiamas kaip eksponentas, iki kurio skaičius turi būti padidintas a norėdami gauti numerį b(logaritmas egzistuoja tik teigiamiems skaičiams).

Iš šios formuluotės matyti, kad skaičiavimas x=log a b, yra lygiavertis lygties sprendimui a x =b. Pavyzdžiui, log 2 8 = 3 nes 8 = 2 3 . Logaritmo formuluotė leidžia pagrįsti, kad jeigu b=a c, tada skaičiaus logaritmas b remiantis a lygus Su. Taip pat aišku, kad logaritmų tema yra glaudžiai susijusi su skaičiaus galių tema.

Su logaritmais, kaip ir su bet kuriais skaičiais, galite tai padaryti sudėjimo, atimties operacijos ir transformuotis visais įmanomais būdais. Tačiau dėl to, kad logaritmai nėra visiškai įprasti skaičiai, čia galioja savos specialios taisyklės, kurios vadinamos pagrindinės savybės.

Logaritmų pridėjimas ir atėmimas.

Paimkime du logaritmus su tomis pačiomis bazėmis: užsirašyk x Ir prisijungti a y. Tada galima atlikti sudėjimo ir atimties operacijas:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

žurnalas a(x 1 . x 2 . x 3 ... x k) = užsirašyk x 1 + užsirašyk x 2 + užsirašyk x 3 + ... + log a x k.

Nuo logaritmo koeficiento teorema Galima gauti dar vieną logaritmo savybę. Visiems žinoma, kad žurnalas a 1 = 0, todėl

žurnalas a 1 /b= žurnalas a 1 - rąstas a b= -log a b.

Tai reiškia, kad yra lygybė:

log a 1 / b = - log a b.

Dviejų grįžtamųjų skaičių logaritmai dėl tos pačios priežasties vienas nuo kito skirsis tik ženklu. Taigi:

Log 3 9= - log 3 1/9 ; log 5 1 / 125 = -log 5 125.

Įkeliama...Įkeliama...