İkinci dereceden bir denklemin kökü nedir? İkinci dereceden denklemlerin çözümü, kök formülü, örnekler

Matematikteki bazı problemler karekök değerini hesaplama becerisini gerektirir. Bu tür problemler ikinci dereceden denklemlerin çözülmesini içerir. Bu yazımızda sunacağımız etkili yöntem hesaplamalar Karekök ve ikinci dereceden bir denklemin köklerine ilişkin formüllerle çalışırken bunu kullanın.

Karekök nedir?

Matematikte bu kavram √ sembolüne karşılık gelir. Tarihsel veriler, ilk kez 16. yüzyılın ilk yarısında Almanya'da kullanıldığını söylüyor (Christoph Rudolf'un cebir üzerine ilk Alman çalışması). Bilim adamları belirtilen sembolün dönüştürülmüş bir sembol olduğuna inanıyor Latince harf r (radix Latince'de "kök" anlamına gelir).

Herhangi bir sayının kökü, karesi radikal ifadeye karşılık gelen değere eşittir. Matematik dilinde bu tanım şu şekilde görünecektir: √x = y, eğer y 2 = x ise.

Pozitif bir sayının kökü (x > 0) da pozitif bir sayıdır (y > 0), ancak negatif bir sayının kökünü alırsanız (x< 0), то его результатом уже будет комплексное число, включающее мнимую единицу i.

İşte iki basit örnek:

√9 = 3, çünkü 3 2 = 9; √(-9) = 3i, çünkü i 2 = -1.

Heron'un karekök değerlerini bulmak için yinelemeli formülü

Yukarıdaki örnekler çok basittir ve bunların içindeki kökleri hesaplamak zor değildir. Kareyle ifade edilemeyen herhangi bir değerin kök değerlerini bulmakta zorluklar ortaya çıkmaya başlar doğal sayı, örneğin √10, √11, √12, √13, pratikte tam sayı olmayan sayıların köklerini bulmanın gerekli olduğu gerçeğinden bahsetmiyorum bile: örneğin √(12,15), √(8,5) ve benzeri.

Yukarıdaki durumların hepsinde karekök hesaplamak için özel bir yöntem kullanılmalıdır. Şu anda bu tür birkaç yöntem bilinmektedir: örneğin Taylor serisi genişletme, sütun bölme ve diğerleri. Hepsinden bilinen yöntemler Belki de en basit ve en etkili olanı, Babil'in karekök belirleme yöntemi olarak da bilinen Heron'un yinelemeli formülünü kullanmaktır (eski Babillilerin bunu pratik hesaplamalarında kullandıklarına dair kanıtlar vardır).

√x'in değerini belirlemek gerekli olsun. Karekök bulma formülü şu şekildedir: sonraki görünüm:

a n+1 = 1/2(a n +x/a n), burada lim n->∞ (a n) => x.

Bu matematiksel gösterimi deşifre edelim. √x'i hesaplamak için belirli bir a 0 sayısını almalısınız (isteğe bağlı olabilir, ancak sonucu hızlı bir şekilde elde etmek için, onu (a 0) 2 x'e mümkün olduğunca yakın olacak şekilde seçmelisiniz. Daha sonra bunu yerine koyun) karekök hesaplamak için belirtilen formül ve istenen değere daha yakın olacak yeni bir 1 sayısı elde edin.Bundan sonra ifadeye 1'i koyup 2 almanız gerekir. Bu prosedür gerekli olana kadar tekrarlanmalıdır. doğruluk elde edilir.

Heron'un yinelemeli formülünü kullanma örneği

Belirli bir sayının karekökünü elde etmek için yukarıda açıklanan algoritma birçok kişiye oldukça karmaşık ve kafa karıştırıcı gelebilir, ancak gerçekte her şey çok daha basit hale gelir, çünkü bu formül çok hızlı bir şekilde yakınsar (özellikle başarılı bir sayı 0 seçilirse) .

Basit bir örnek verelim: √11'i hesaplamanız gerekiyor. 3 2 = 9 olduğundan, 11'e 4 2 = 16'dan daha yakın olduğundan 0 = 3'ü seçelim. Formülde yerine koyarsak şunu elde ederiz:

a 1 = 1/2(3 + 11/3) = 3,333333;

a 2 = 1/2(3,33333 + 11/3,33333) = 3,316668;

a 3 = 1/2(3,316668 + 11/3,316668) = 3,31662.

Hesaplamalara devam etmenin bir anlamı yok, çünkü a 2 ile a 3'ün yalnızca 5. ondalık basamakta farklılık göstermeye başladığını bulduk. Böylece √11'i 0,0001 doğrulukla hesaplamak için formülü yalnızca 2 kez uygulamak yeterliydi.

Günümüzde kökleri hesaplamak için hesap makineleri ve bilgisayarlar yaygın olarak kullanılmaktadır, ancak bunların tam değerini manuel olarak hesaplayabilmek için işaretli formülü hatırlamakta fayda vardır.

İkinci dereceden denklemler

Karekökün ne olduğunu anlamak ve onu hesaplama yeteneği ikinci dereceden denklemlerin çözümünde kullanılır. Bu denklemlere, genel formu aşağıdaki şekilde gösterilen bir bilinmeyenli eşitlikler denir.

Burada c, b ve a bazı sayıları temsil eder ve a sıfıra eşit olmamalıdır ve c ve b'nin değerleri sıfıra eşit olmak üzere tamamen keyfi olabilir.

Şekilde belirtilen eşitliği sağlayan herhangi bir x değerine kökleri denir (bu kavram, karekök √ ile karıştırılmamalıdır). Söz konusu denklem 2. dereceden (x 2) olduğundan, ikiden fazla kökü olamaz. Makalede bu kökleri nasıl bulacağımıza daha ayrıntılı olarak bakalım.

İkinci dereceden bir denklemin köklerini bulma (formül)

Söz konusu eşitlik türlerini çözmenin bu yöntemine evrensel yöntem veya ayırma yöntemi de denir. Herhangi ikinci dereceden denklemler için kullanılabilir. İkinci dereceden denklemin diskriminant ve köklerinin formülü aşağıdaki gibidir:

Köklerin denklemin üç katsayısının her birinin değerine bağlı olduğunu gösterir. Üstelik x 1'in hesaplanması, x 2'nin hesaplanmasından yalnızca karekökün önündeki işaret nedeniyle farklılık gösterir. b 2 - 4ac'ye eşit olan radikal ifadesi, söz konusu eşitliğin diskriminantından başka bir şey değildir. İkinci dereceden bir denklemin kökleri formülündeki diskriminant önemli bir rol oynar çünkü çözümlerin sayısını ve türünü belirler. Yani sıfıra eşitse tek bir çözüm olacaktır, pozitifse denklemin iki gerçek kökü vardır ve son olarak negatif bir diskriminant iki karmaşık kök x 1 ve x 2'ye yol açar.

Vieta teoremi veya ikinci dereceden denklemlerin köklerinin bazı özellikleri

16. yüzyılın sonlarında modern cebirin kurucularından biri olan Fransız, ikinci dereceden denklemler üzerinde çalışarak cebirin köklerinin özelliklerini elde edebildi. Matematiksel olarak şu şekilde yazılabilirler:

x 1 + x 2 = -b / a ve x 1 * x 2 = c / a.

Her iki eşitlik de herkes tarafından kolayca elde edilebilir; bunun için, diskriminant formülü ile elde edilen köklerle uygun matematiksel işlemleri yapmanız yeterlidir.

Bu iki ifadenin birleşimi haklı olarak ikinci dereceden bir denklemin kökleri için ikinci formül olarak adlandırılabilir, bu da çözümlerini diskriminant kullanmadan tahmin etmeyi mümkün kılar. Burada her iki ifadenin de her zaman geçerli olmasına rağmen, yalnızca çarpanlarına ayrılabiliyorsa bir denklemi çözmek için bunları kullanmanın uygun olduğuna dikkat edilmelidir.

Edinilen bilgiyi pekiştirme görevi

Makalede tartışılan tüm teknikleri göstereceğimiz bir matematik problemini çözelim. Problemin koşulları şu şekildedir: Çarpımı -13 ve toplamı 4 olan iki sayı bulmanız gerekiyor.

Bu durum bize hemen Vieta teoremini hatırlatıyor; kareköklerin toplamı ve çarpımı formüllerini kullanarak şunu yazıyoruz:

x 1 + x 2 = -b / a = 4;

x 1 * x 2 = c/a = -13.

a = 1 olduğunu varsayarsak b = -4 ve c = -13 olur. Bu katsayılar ikinci dereceden bir denklem oluşturmamızı sağlar:

x 2 - 4x - 13 = 0.

Formülü diskriminantla birlikte kullanalım ve aşağıdaki kökleri elde edelim:

x 1,2 = (4 ± √D)/2, D = 16 - 4 * 1 * (-13) = 68.

Yani sorun √68 sayısını bulmaya indirgenmişti. 68 = 4 * 17 olduğuna dikkat edin, o zaman karekök özelliğini kullanarak şunu elde ederiz: √68 = 2√17.

Şimdi dikkate alınan karekök formülünü kullanalım: a 0 = 4, o zaman:

a 1 = 1/2(4 + 17/4) = 4,125;

a 2 = 1/2(4,125 + 17/4,125) = 4,1231.

Bulunan değerler arasında sadece 0,02 fark olduğu için 3 hesaplamaya gerek yoktur. Böylece √68 = 8,246 olur. Bunu x 1,2 formülünde yerine koyarsak şunu elde ederiz:

x 1 = (4 + 8,246)/2 = 6,123 ve x 2 = (4 - 8,246)/2 = -2,123.

Gördüğümüz gibi bulunan sayıların toplamı gerçekte 4'e eşittir, ancak çarpımlarını bulursak o zaman -12,999'a eşit olacaktır, bu da problemin koşullarını 0,001 doğrulukla karşılar.


Konuyu incelemeye devam ediyoruz " denklem çözme" Doğrusal denklemlerle zaten tanıştık ve onları tanımaya devam ediyoruz ikinci dereceden denklemler.

Öncelikle ikinci dereceden denklemin ne olduğuna, genel şekliyle nasıl yazıldığına bakacağız ve ilgili tanımları vereceğiz. Bundan sonra eksik ikinci dereceden denklemlerin nasıl çözüldüğünü detaylı olarak incelemek için örnekler kullanacağız. Daha sonra tam denklemleri çözmeye geçeceğiz, kök formülü elde edeceğiz, ikinci dereceden bir denklemin diskriminantını öğreneceğiz ve tipik örneklerin çözümlerini ele alacağız. Son olarak kökler ve katsayılar arasındaki bağlantıları izleyelim.

Sayfada gezinme.

İkinci dereceden denklem nedir? Türleri

Öncelikle ikinci dereceden denklemin ne olduğunu açıkça anlamanız gerekir. Bu nedenle, ikinci dereceden denklemler hakkında bir konuşmaya ikinci dereceden bir denklemin tanımı ve ilgili tanımlarla başlamak mantıklıdır. Bundan sonra, ikinci dereceden denklemlerin ana türlerini göz önünde bulundurabilirsiniz: azaltılmış ve azaltılmamış, ayrıca tam ve eksik denklemler.

İkinci dereceden denklemlerin tanımı ve örnekleri

Tanım.

İkinci dereceden denklem formun bir denklemidir a x 2 +b x+c=0 burada x bir değişkendir, a, b ve c bazı sayılardır ve a sıfır değildir.

Hemen ikinci dereceden denklemlere genellikle ikinci dereceden denklemler denildiğini söyleyelim. Bunun nedeni ikinci dereceden denklemin cebirsel denklem ikinci derece.

Belirtilen tanım ikinci dereceden denklem örnekleri vermemizi sağlar. Yani 2 x 2 +6 x+1=0, 0,2 x 2 +2,5 x+0,03=0, vb. Bunlar ikinci dereceden denklemlerdir.

Tanım.

Sayılar a, b ve c denir ikinci dereceden denklemin katsayıları a·x 2 +b·x+c=0 ve a katsayısına birinci veya en yüksek denir veya x 2'nin katsayısı, b ikinci katsayı veya x'in katsayısıdır ve c serbest terimdir .

Örneğin, 5 x 2 −2 x −3=0 formundaki ikinci dereceden bir denklemi ele alalım, burada baş katsayı 5, ikinci katsayı −2 ve serbest terim −3'e eşittir. Lütfen b ve/veya c katsayıları negatif olduğunda, az önce verilen örnekte olduğu gibi, ikinci dereceden denklemin kısa formunun 5 x 2 +(−2 ) yerine 5 x 2 −2 x−3=0 olduğunu unutmayın. ·x+(−3)=0 .

a ve/veya b katsayıları 1 veya −1'e eşit olduğunda, ikinci dereceden denklemde genellikle açıkça mevcut olmadıklarını belirtmekte fayda var; bu da böyle yazmanın özelliklerinden kaynaklanmaktadır. Örneğin, ikinci dereceden y 2 −y+3=0 denkleminde baş katsayı birdir ve y'nin katsayısı −1'e eşittir.

İndirgenmiş ve indirgenmemiş ikinci dereceden denklemler

Baş katsayının değerine bağlı olarak indirgenmiş ve indirgenmemiş ikinci dereceden denklemler ayırt edilir. İlgili tanımları verelim.

Tanım.

Baş katsayısının 1 olduğu ikinci dereceden denklem denir verilen ikinci dereceden denklem. Aksi takdirde ikinci dereceden denklem el değmemiş.

Buna göre bu tanım, ikinci dereceden denklemler x 2 −3·x+1=0, x 2 −x−2/3=0, vb. – verildiğinde, her birinde birinci katsayı bire eşittir. A 5 x 2 −x−1=0, vb. - indirgenmemiş ikinci dereceden denklemler, baş katsayıları 1'den farklıdır.

İndirgenmemiş herhangi bir ikinci dereceden denklemden, her iki tarafı da baş katsayıya bölerek azaltılmış olana gidebilirsiniz. Bu eylem eşdeğer bir dönüşümdür, yani bu şekilde elde edilen indirgenmiş ikinci dereceden denklem, orijinal indirgenmemiş ikinci dereceden denklemle aynı köklere sahiptir veya onun gibi kökleri yoktur.

İndirgenmemiş ikinci dereceden denklemden indirgenmiş denkleme geçişin nasıl gerçekleştirildiğine dair bir örneğe bakalım.

Örnek.

3 x 2 +12 x−7=0 denkleminden karşılık gelen indirgenmiş ikinci dereceden denkleme gidin.

Çözüm.

Orijinal denklemin her iki tarafını da baş katsayı 3'e bölmemiz yeterli, sıfır değil, böylece bu işlemi gerçekleştirebiliriz. Elimizde (3 x 2 +12 x−7):3=0:3 var, bu da aynı, (3 x 2):3+(12 x):3−7:3=0 ve sonra (3: 3) x 2 +(12:3) x−7:3=0, buradan . Orijinaline eşdeğer olan indirgenmiş ikinci dereceden denklemi bu şekilde elde ettik.

Cevap:

Tam ve eksik ikinci dereceden denklemler

İkinci dereceden bir denklemin tanımı a≠0 koşulunu içerir. Bu koşul, a x 2 + b x + c = 0 denkleminin ikinci dereceden olması için gereklidir, çünkü a = 0 olduğunda aslında b x + c = 0 formunda doğrusal bir denklem haline gelir.

B ve c katsayılarına gelince, bunlar hem ayrı ayrı hem de birlikte sıfıra eşit olabilir. Bu durumlarda ikinci dereceden denklem eksik olarak adlandırılır.

Tanım.

İkinci dereceden denklem a x 2 +b x+c=0 denir tamamlanmamış, eğer b, c katsayılarından en az biri sıfıra eşitse.

Sırasıyla

Tanım.

Tam ikinci dereceden denklem tüm katsayıların sıfırdan farklı olduğu bir denklemdir.

Bu tür isimler tesadüfen verilmemiştir. Aşağıdaki tartışmalardan bu açıkça anlaşılacaktır.

b katsayısı sıfırsa ikinci dereceden denklem a·x 2 +0·x+c=0 formunu alır ve a·x 2 +c=0 denklemine eşdeğerdir. Eğer c=0 ise, yani ikinci dereceden denklem a·x 2 +b·x+0=0 biçimindeyse, o zaman a·x 2 +b·x=0 olarak yeniden yazılabilir. Ve b=0 ve c=0 ile ikinci dereceden a·x 2 =0 denklemini elde ederiz. Ortaya çıkan denklemler, sol taraflarında x değişkenli bir terim veya serbest bir terim veya her ikisini birden içermemesi nedeniyle ikinci dereceden denklemin tamamından farklıdır. Dolayısıyla onların adı - tamamlanmamış ikinci dereceden denklemler.

Dolayısıyla x 2 +x+1=0 ve −2 x 2 −5 x+0,2=0 denklemleri ikinci dereceden tam denklem örnekleridir ve x 2 =0, −2 x 2 =0, 5 x 2 +3=0 , −x 2 −5 x=0 tamamlanmamış ikinci dereceden denklemlerdir.

Tamamlanmamış ikinci dereceden denklemleri çözme

Önceki paragrafta yer alan bilgilerden şu anlaşılmaktadır: üç tür tamamlanmamış ikinci dereceden denklem:

  • a·x 2 =0, b=0 ve c=0 katsayıları buna karşılık gelir;
  • a x 2 +c=0 olduğunda b=0 ;
  • ve c=0 olduğunda a·x 2 +b·x=0.

Bu türlerin her birinin tamamlanmamış ikinci dereceden denklemlerinin nasıl çözüldüğünü sırasıyla inceleyelim.

a x 2 =0

b ve c katsayılarının sıfıra eşit olduğu, yani a x 2 =0 formundaki denklemlerle tamamlanmamış ikinci dereceden denklemleri çözmeye başlayalım. a·x 2 =0 denklemi, her iki parçanın da sıfır olmayan bir a sayısına bölünmesiyle orijinalinden elde edilen x 2 =0 denklemine eşdeğerdir. Açıkçası, x 2 =0 denkleminin kökü sıfırdır, çünkü 0 2 =0'dır. Bu denklemin başka kökleri yoktur; bu, sıfırdan farklı herhangi bir p sayısı için p 2 >0 eşitsizliğinin geçerli olduğu gerçeğiyle açıklanır, bu da p≠0 için p 2 =0 eşitliğine asla ulaşılamayacağı anlamına gelir.

Dolayısıyla, tamamlanmamış ikinci dereceden denklem a·x 2 =0'ın tek bir kökü x=0'dır.

Örnek olarak, ikinci dereceden tamamlanmamış −4 x 2 =0 denkleminin çözümünü veriyoruz. x 2 =0 denklemine eşdeğerdir, tek kökü x=0'dır, dolayısıyla orijinal denklemin tek kökü sıfır vardır.

Bu durumda kısa çözüm şu şekilde yazılabilir:
−4 x 2 =0 ,
x2 =0,
x=0 .

a x 2 +c=0

Şimdi b katsayısının sıfır ve c≠0 olduğu, yani a x 2 +c=0 formundaki denklemlerin tamamlanmamış ikinci dereceden denklemlerin nasıl çözüldüğüne bakalım. Bir terimi denklemin bir tarafından diğerine taşımanın zıt işaret, denklemin her iki tarafını da sıfırdan farklı bir sayıya bölmenin yanı sıra eşdeğer bir denklem verir. Bu nedenle, tamamlanmamış ikinci dereceden denklem a x 2 +c=0 için aşağıdaki eşdeğer dönüşümleri gerçekleştirebiliriz:

  • c'yi sağ tarafa hareket ettirin, bu da a x 2 =−c denklemini verir,
  • ve her iki tarafı da a'ya bölersek elde ederiz.

Ortaya çıkan denklem, kökleri hakkında sonuçlar çıkarmamızı sağlar. a ve c değerlerine bağlı olarak ifadenin değeri negatif (örneğin a=1 ve c=2 ise o zaman ) veya pozitif (örneğin a=−2 ve c=6 ise, o zaman ), c≠0 koşuluna göre sıfır değildir. Durumlara ayrı ayrı bakalım.

Eğer ise denklemin kökleri yoktur. Bu ifade, herhangi bir sayının karesinin negatif olmayan bir sayı olduğu gerçeğinden kaynaklanmaktadır. Bundan, herhangi bir p sayısı için eşitliğin doğru olamayacağı sonucu çıkar.

Eğer öyleyse denklemin kökleriyle ilgili durum farklıdır. Bu durumda, eğer hatırlarsak, o zaman denklemin kökü hemen belli olur; sayıdır, çünkü . Aslında sayının aynı zamanda denklemin kökü olduğunu tahmin etmek kolaydır. Bu denklemin örneğin çelişkiyle gösterilebilecek başka kökleri yoktur. Hadi yapalım.

Az önce açıklanan denklemin köklerini x 1 ve -x 1 olarak gösterelim. Denklemin belirtilen x 1 ve −x 1 köklerinden farklı bir kök x 2 daha olduğunu varsayalım. Köklerini x yerine bir denklem haline getirmenin denklemi doğru bir sayısal eşitliğe dönüştürdüğü bilinmektedir. x 1 ve −x 1 için elimizde ve x 2 için elimizde . Sayısal eşitliklerin özellikleri, doğru sayısal eşitliklerin terim terim çıkarma işlemini gerçekleştirmemize olanak tanır, böylece eşitliklerin karşılık gelen kısımlarının çıkarılması x 1 2 −x 2 2 =0 sonucunu verir. Sayılarla yapılan işlemlerin özellikleri, elde edilen eşitliği (x 1 −x 2)·(x 1 +x 2)=0 olarak yeniden yazmamıza olanak tanır. İki sayının çarpımının sıfıra eşit olduğunu ancak ve ancak bunlardan en az birinin sıfıra eşit olması durumunda biliyoruz. Dolayısıyla, elde edilen eşitlikten x 1 −x 2 =0 ve/veya x 1 +x 2 =0, ki bu aynıdır, x 2 =x 1 ve/veya x 2 =−x 1 olur. Yani bir çelişkiye geldik, çünkü başlangıçta x 2 denkleminin kökünün x 1 ve −x 1'den farklı olduğunu söylemiştik. Bu da denklemin ve dışında kökü olmadığını kanıtlar.

Bu paragraftaki bilgileri özetleyelim. Tamamlanmamış ikinci dereceden denklem a x 2 +c=0 aşağıdaki denkleme eşdeğerdir:

  • kökleri yok ise
  • iki kökü vardır ve , if .

a·x 2 +c=0 formundaki tamamlanmamış ikinci dereceden denklemlerin çözümüne ilişkin örnekleri ele alalım.

İkinci dereceden denklem 9 x 2 +7=0 ile başlayalım. Serbest terim denklemin sağ tarafına taşındığında 9 x 2 =−7 formunu alacaktır. Ortaya çıkan denklemin her iki tarafını da 9'a bölerek elde ederiz. Sağ tarafta olduğu ortaya çıktı negatif bir sayı, bu denklemin kökleri yoktur, dolayısıyla orijinal tamamlanmamış ikinci dereceden denklem 9 x 2 +7=0'ın da kökleri yoktur.

Başka bir tamamlanmamış ikinci dereceden denklemi -x 2 +9=0 çözelim. Dokuzunu sağa kaydırıyoruz: −x 2 =−9. Şimdi her iki tarafı da -1'e bölersek x 2 =9 elde ederiz. Sağ tarafta pozitif bir sayı var ve bundan veya sonucunu çıkarıyoruz. Sonra son cevabı yazıyoruz: tamamlanmamış ikinci dereceden denklem −x 2 +9=0'ın iki kökü x=3 veya x=−3'tür.

a x 2 +b x=0

Geriye c=0 için tamamlanmamış ikinci dereceden denklemlerin son tipinin çözümüyle uğraşmak kalıyor. a x 2 + b x = 0 formundaki tamamlanmamış ikinci dereceden denklemleri çözmenize olanak tanır çarpanlara ayırma yöntemi. Açıkçası, denklemin sol tarafında, ortak x faktörünü parantezlerden çıkarmanın yeterli olduğu bir yerde bulunabiliriz. Bu, orijinal tamamlanmamış ikinci dereceden denklemden x·(a·x+b)=0 formundaki eşdeğer bir denkleme geçmemizi sağlar. Ve bu denklem, x=0 ve a·x+b=0 olmak üzere iki denklemden oluşan bir diziye eşdeğerdir; bunlardan ikincisi doğrusaldır ve kökü x=−b/a'dır.

Dolayısıyla, tamamlanmamış ikinci dereceden a·x 2 +b·x=0 denkleminin iki kökü x=0 ve x=−b/a'dır.

Materyali pekiştirmek için çözümü belirli bir örneğe göre analiz edeceğiz.

Örnek.

Denklemi çözün.

Çözüm.

X'i parantezden çıkarmak denklemi verir. x=0 ve iki denkleme eşdeğerdir. Ortaya çıkan doğrusal denklemi çözüyoruz: ve karışık sayıyı şuna bölüyoruz: ortak kesir, bulduk . Bu nedenle orijinal denklemin kökleri x=0 ve .

Gerekli pratiği kazandıktan sonra bu tür denklemlerin çözümleri kısaca yazılabilir:

Cevap:

x=0 , .

Diskriminant, ikinci dereceden bir denklemin kökleri için formül

İkinci dereceden denklemleri çözmek için bir kök formül vardır. Haydi yazalım İkinci dereceden bir denklemin kökleri için formül: , Nerede D=b 2 −4 a c- Lafta ikinci dereceden bir denklemin diskriminantı. Giriş aslında şu anlama gelir.

Kök formülün nasıl elde edildiğini ve ikinci dereceden denklemlerin köklerini bulmada nasıl kullanıldığını bilmek faydalıdır. Bunu çözelim.

İkinci dereceden bir denklemin kökleri için formülün türetilmesi

İkinci dereceden a·x 2 +b·x+c=0 denklemini çözmemiz gerekiyor. Bazı eşdeğer dönüşümler gerçekleştirelim:

  • Bu denklemin her iki tarafını da sıfırdan farklı bir a sayısına bölerek aşağıdaki ikinci dereceden denklemi elde edebiliriz.
  • Şimdi tam bir kare seç sol tarafında: . Bundan sonra denklem şu şekli alacaktır.
  • Bu aşamada son iki terimi ters işaretle sağ tarafa aktarmamız mümkün.
  • Ve sağ taraftaki ifadeyi de dönüştürelim: .

Sonuç olarak, orijinal ikinci dereceden denklem a·x 2 +b·x+c=0'ya eşdeğer bir denkleme ulaşıyoruz.

Önceki paragraflarda benzer formdaki denklemleri incelediğimizde çözmüştük. Bu şunları yapmanızı sağlar aşağıdaki sonuçlar Denklemin kökleriyle ilgili olarak:

  • eğer ise denklemin gerçek çözümü yoktur;
  • eğer ise denklem, tek kökünün görülebildiği formdadır;
  • if , Then or , or ile aynıdır, yani denklemin iki kökü vardır.

Dolayısıyla denklemin köklerinin ve dolayısıyla orijinal ikinci dereceden denklemin varlığı veya yokluğu, sağ taraftaki ifadenin işaretine bağlıdır. Bu ifadenin işareti de payın işaretiyle belirlenir, çünkü 4·a 2 paydası her zaman pozitiftir, yani b 2 −4·a·c ifadesinin işaretiyle. Bu ifadeye b 2 −4 a c adı verildi ikinci dereceden bir denklemin diskriminantı ve mektupla belirlenmiş D. Buradan, diskriminantın özü açıktır - değerine ve işaretine dayanarak, ikinci dereceden denklemin gerçek köklerinin olup olmadığı ve eğer öyleyse, sayıları nedir - bir veya iki olduğu sonucuna varırlar.

Denkleme dönelim ve onu diskriminant gösterimini kullanarak yeniden yazalım: . Ve şu sonuçları çıkarıyoruz:

  • eğer D<0 , то это уравнение не имеет действительных корней;
  • D=0 ise bu denklemin tek kökü vardır;
  • son olarak, eğer D>0 ise denklemin iki kökü vardır veya şeklinde yeniden yazılabilir ve kesirleri genişletip ortak bir paydaya getirdikten sonra elde ederiz.

Böylece, ikinci dereceden denklemin köklerine ilişkin formülleri türettik; bunlar, diskriminant D'nin D=b 2 −4·a·c formülüyle hesaplandığı gibi görünüyor.

Onların yardımıyla, pozitif bir ayrımcıyla ikinci dereceden bir denklemin her iki gerçek kökünü de hesaplayabilirsiniz. Diskriminant sıfıra eşit olduğunda, her iki formül de ikinci dereceden denklemin benzersiz çözümüne karşılık gelen aynı kök değerini verir. Ve negatif bir diskriminantla, ikinci dereceden bir denklemin kökleri için formülü kullanmaya çalışırken, negatif bir sayının karekökünü çıkarmakla karşı karşıya kalırız, bu da bizi kapsamın dışına çıkarır ve Okul müfredatı. Negatif bir diskriminantla, ikinci dereceden denklemin gerçek kökleri yoktur, ancak bir çifti vardır. karmaşık eşlenik elde ettiğimiz aynı kök formülleri kullanılarak bulunabilen kökler.

Kök formülleri kullanarak ikinci dereceden denklemleri çözmek için algoritma

Pratikte ikinci dereceden denklemleri çözerken değerlerini hesaplamak için hemen kök formülü kullanabilirsiniz. Ancak bu daha çok karmaşık kökleri bulmakla ilgilidir.

Bununla birlikte, bir okul cebir dersinde genellikle karmaşık hakkında değil, ikinci dereceden bir denklemin gerçek kökleri hakkında konuşuruz. Bu durumda, ikinci dereceden bir denklemin kökleri için formülleri kullanmadan önce, ilk önce diskriminantın bulunması, negatif olmadığından emin olunması tavsiye edilir (aksi takdirde denklemin gerçek kökleri olmadığı sonucuna varabiliriz), ve ancak o zaman köklerin değerlerini hesaplayın.

Yukarıdaki mantık yazmamıza izin veriyor İkinci dereceden bir denklemi çözmek için algoritma. İkinci dereceden a x 2 +b x+c=0 denklemini çözmek için şunları yapmanız gerekir:

  • D=b 2 −4·a·c diskriminant formülünü kullanarak değerini hesaplayın;
  • diskriminant negatifse ikinci dereceden bir denklemin gerçek kökleri olmadığı sonucuna varır;
  • D=0 ise formülü kullanarak denklemin tek kökünü hesaplayın;
  • Diskriminant pozitifse kök formülünü kullanarak ikinci dereceden bir denklemin iki gerçek kökünü bulun.

Burada, eğer diskriminant sıfıra eşitse formülü de kullanabileceğinizi not ediyoruz; ile aynı değeri verecektir.

İkinci dereceden denklemleri çözmek için algoritmayı kullanma örneklerine geçebilirsiniz.

İkinci dereceden denklemleri çözme örnekleri

Pozitif, negatif ve sıfır diskriminantlı ikinci dereceden üç denklemin çözümlerini ele alalım. Çözümlerini ele aldıktan sonra, benzetme yoluyla başka herhangi bir ikinci dereceden denklemi çözmek mümkün olacaktır. Hadi başlayalım.

Örnek.

x 2 +2·x−6=0 denkleminin köklerini bulun.

Çözüm.

Bu durumda ikinci dereceden denklemin şu katsayılarına sahibiz: a=1, b=2 ve c=−6. Algoritmaya göre, öncelikle diskriminant hesaplamanız gerekir; bunu yapmak için belirtilen a, b ve c'yi diskriminant formülünde yerine koyarız, D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28. 28>0 yani diskriminant sıfırdan büyük olduğundan ikinci dereceden denklemin iki gerçek kökü vardır. Bunları kök formülü kullanarak bulalım, şunu elde ederiz, burada aşağıdaki işlemleri yaparak elde edilen ifadeleri basitleştirebilirsiniz. çarpanı kök işaretinin ötesine taşıma ardından fraksiyonun azaltılması gelir:

Cevap:

Bir sonraki tipik örneğe geçelim.

Örnek.

−4 x 2 +28 x−49=0 ikinci dereceden denklemi çözün.

Çözüm.

Diskriminantı bularak başlıyoruz: D=28 2 −4·(−4)·(−49)=784−784=0. Dolayısıyla bu ikinci dereceden denklemin tek bir kökü vardır ve bunu şöyle buluruz:

Cevap:

x=3,5.

Geriye ikinci dereceden denklemleri negatif bir diskriminantla çözmeyi düşünmek kalıyor.

Örnek.

5·y 2 +6·y+2=0 denklemini çözün.

Çözüm.

İkinci dereceden denklemin katsayıları şunlardır: a=5, b=6 ve c=2. Bu değerleri diskriminant formülüne koyarsak, D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4. Diskriminant negatiftir, dolayısıyla bu ikinci dereceden denklemin gerçek kökleri yoktur.

Karmaşık kökler belirtmeniz gerekiyorsa şunu kullanın: bilinen formülİkinci dereceden bir denklemin kökleri ve gerçekleştirilmesi karmaşık sayılarla işlemler:

Cevap:

gerçek kökler yoktur, karmaşık kökler şunlardır: .

İkinci dereceden bir denklemin diskriminantının negatif olması durumunda, okulda genellikle gerçek köklerin olmadığını ve karmaşık köklerin bulunmadığını belirten bir cevabı hemen yazdıklarını bir kez daha belirtelim.

Çift ikinci katsayılar için kök formül

D=b 2 −4·a·c olan ikinci dereceden bir denklemin köklerine ilişkin formül, x için çift katsayılı (veya sadece bir katsayı örneğin 2·n veya 14·ln5=2·7·ln5 şeklindedir. Hadi onu dışarı çıkaralım.

Diyelim ki a x 2 +2 n x+c=0 formundaki ikinci dereceden bir denklemi çözmemiz gerekiyor. Bildiğimiz formülü kullanarak köklerini bulalım. Bunu yapmak için diskriminantı hesaplıyoruz D=(2 n) 2 −4 a c=4 n 2 −4 a c=4 (n 2 −a c) ve sonra kök formülü kullanırız:

n 2 −a c ifadesini D 1 olarak gösterelim (bazen D "olarak gösterilir). Daha sonra ikinci katsayı 2 n ile ele alınan ikinci dereceden denklemin kökleri için formül şu şekli alacaktır: , burada D 1 =n 2 −a·c.

D=4·D 1 veya D 1 =D/4 olduğunu görmek kolaydır. Başka bir deyişle D 1 diskriminantın dördüncü kısmıdır. D 1'in işaretinin D'nin işaretiyle aynı olduğu açıktır. Yani D 1 işareti aynı zamanda ikinci dereceden bir denklemin köklerinin varlığının veya yokluğunun bir göstergesidir.

Yani, ikinci katsayısı 2·n olan ikinci dereceden bir denklemi çözmek için şunu yapmanız gerekir:

  • D 1 =n 2 −a·c'yi hesaplayın;
  • Eğer D 1<0 , то сделать вывод, что действительных корней нет;
  • D 1 =0 ise aşağıdaki formülü kullanarak denklemin tek kökünü hesaplayın;
  • D 1 >0 ise formülü kullanarak iki gerçek kökü bulun.

Bu paragrafta elde edilen kök formülü kullanarak örneği çözmeyi düşünelim.

Örnek.

5 x 2 −6 x −32=0 ikinci dereceden denklemi çözün.

Çözüm.

Bu denklemin ikinci katsayısı 2·(−3) olarak gösterilebilir. Yani, orijinal ikinci dereceden denklemi 5 x 2 +2 (−3) x−32=0, burada a=5, n=−3 ve c=−32 biçiminde yeniden yazabilir ve denklemin dördüncü kısmını hesaplayabilirsiniz. ayrımcı: D 1 =n 2 −a·c=(−3) 2 −5·(−32)=9+160=169. Değeri pozitif olduğundan denklemin iki reel kökü vardır. Bunları uygun kök formülünü kullanarak bulalım:

İkinci dereceden bir denklemin kökleri için olağan formülü kullanmanın mümkün olduğunu ancak bu durumda daha fazla hesaplama işinin yapılması gerekeceğini unutmayın.

Cevap:

İkinci dereceden denklemlerin formunun basitleştirilmesi

Bazen ikinci dereceden bir denklemin köklerini formüller kullanarak hesaplamaya başlamadan önce şu soruyu sormaktan zarar gelmez: "Bu denklemin biçimini basitleştirmek mümkün mü?" Hesaplamalar açısından ikinci dereceden 11 x 2 −4 x−6=0 denklemini çözmenin 1100 x 2 −400 x−600=0 yerine daha kolay olacağı konusunda hemfikir olun.

Tipik olarak ikinci dereceden bir denklemin biçimini basitleştirmek, her iki tarafın belirli bir sayıyla çarpılması veya bölünmesiyle elde edilir. Örneğin önceki paragrafta 1100 x 2 −400 x −600=0 denklemini her iki tarafı da 100'e bölerek basitleştirmek mümkündü.

Benzer bir dönüşüm, katsayıları olmayan ikinci dereceden denklemlerle gerçekleştirilir. Bu durumda denklemin her iki tarafı genellikle katsayılarının mutlak değerlerine bölünür. Örneğin ikinci dereceden 12 x 2 −42 x+48=0 denklemini ele alalım. katsayılarının mutlak değerleri: OBEB(12, 42, 48)= OBEB(12, 42), 48)= OBEB(6, 48)=6. Orijinal ikinci dereceden denklemin her iki tarafını da 6'ya bölerek eşdeğer ikinci dereceden denklem 2 x 2 −7 x+8=0'a ulaşırız.

İkinci dereceden bir denklemin her iki tarafının çarpılması genellikle kesirli katsayılardan kurtulmak için yapılır. Bu durumda çarpma, katsayılarının paydaları tarafından gerçekleştirilir. Örneğin, ikinci dereceden denklemin her iki tarafı da LCM(6, 3, 1)=6 ile çarpılırsa, daha basit olan x 2 +4·x−18=0 formunu alacaktır.

Bu noktanın sonucunda, ikinci dereceden bir denklemin en yüksek katsayısındaki eksiden neredeyse her zaman tüm terimlerin işaretlerini değiştirerek kurtulduklarını görüyoruz; bu, her iki tarafı da -1 ile çarpmaya (veya bölmeye) karşılık gelir. Örneğin, genellikle −2 x 2 −3 x+7=0 ikinci dereceden denklemden 2 x 2 +3 x−7=0 çözümüne geçilir.

İkinci dereceden bir denklemin kökleri ve katsayıları arasındaki ilişki

İkinci dereceden bir denklemin kökleri formülü, denklemin köklerini katsayıları aracılığıyla ifade eder. Kök formülüne dayanarak kökler ve katsayılar arasındaki diğer ilişkileri elde edebilirsiniz.

Vieta teoreminin en iyi bilinen ve uygulanabilir formülleri ve şeklindedir. Özellikle verilen ikinci dereceden denklem için köklerin toplamı ters işaretli ikinci katsayıya, köklerin çarpımı ise serbest terime eşittir. Örneğin ikinci dereceden 3 x 2 −7 x + 22 = 0 denkleminin formuna bakarak köklerinin toplamının 7/3, köklerin çarpımının ise 22 olduğunu hemen söyleyebiliriz. /3.

Önceden yazılmış formülleri kullanarak, ikinci dereceden denklemin kökleri ve katsayıları arasında bir dizi başka bağlantı elde edebilirsiniz. Örneğin, ikinci dereceden bir denklemin köklerinin karelerinin toplamını katsayıları aracılığıyla ifade edebilirsiniz: .

Kaynakça.

  • Cebir: ders kitabı 8. sınıf için. Genel Eğitim kurumlar / [Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova]; tarafından düzenlendi S. A. Telyakovsky. - 16. baskı. - M.: Eğitim, 2008. - 271 s. : hasta. - ISBN 978-5-09-019243-9.
  • Mordkoviç A.G. Cebir. 8. sınıf. Saat 14.00'te 1. Bölüm: Öğrenciler için ders kitabı Eğitim Kurumları/ A. G. Mordkovich. - 11. baskı, silindi. - M.: Mnemosyne, 2009. - 215 s.: hasta. ISBN 978-5-346-01155-2.

", yani birinci dereceden denklemler. Bu derste bakacağız ikinci dereceden denklem denir ve nasıl çözüleceği.

İkinci dereceden denklem nedir?

Önemli!

Bir denklemin derecesi bilinmeyenin bulunduğu en yüksek dereceye göre belirlenir.

Bilinmeyenlerin maksimum gücü “2” ise ikinci dereceden bir denkleminiz olur.

İkinci dereceden denklem örnekleri

  • 5x2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0,25x = 0
  • x 2 − 8 = 0

Önemli! İkinci dereceden bir denklemin genel formu şöyle görünür:

bir x 2 + b x + c = 0

“a”, “b” ve “c” sayıları verilmiştir.
  • “a” birinci veya en yüksek katsayıdır;
  • “b” ikinci katsayıdır;
  • “c” ücretsiz bir üyedir.

“a”, “b” ve “c”yi bulmak için denkleminizi “ax 2 + bx + c = 0” ikinci dereceden denklemin genel formuyla karşılaştırmanız gerekir.

İkinci dereceden denklemlerde "a", "b" ve "c" katsayılarını belirlemeye çalışalım.

5x2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Denklem Oranlar
  • bir = 5
  • b = −14
  • c = 17
  • a = −7
  • b = −13
  • c = 8
1
3
= 0
  • a = −1
  • b = 1
  • c =
    1
    3
x 2 + 0,25x = 0
  • bir = 1
  • b = 0,25
  • c = 0
x 2 − 8 = 0
  • bir = 1
  • b = 0
  • c = −8

İkinci Dereceden Denklemler Nasıl Çözülür?

İkinci dereceden denklemlerin çözümünde doğrusal denklemlerden farklı olarak özel bir yöntem kullanılır. kökleri bulma formülü.

Hatırlamak!

İkinci dereceden bir denklemi çözmek için ihtiyacınız olan:

  • ikinci dereceden denklemi şuna indirgeyin: Genel görünüm"ax 2 + bx + c = 0". Yani sağ tarafta sadece “0” kalmalı;
  • kökler için formülü kullanın:

İkinci dereceden bir denklemin köklerini bulmak için formülün nasıl kullanılacağına ilişkin bir örneğe bakalım. İkinci dereceden bir denklem çözelim.

X 2 - 3x - 4 = 0


"x 2 − 3x − 4 = 0" denklemi zaten "ax 2 + bx + c = 0" genel formuna indirgenmiştir ve ek basitleştirme gerektirmez. Bunu çözmek için uygulamamız yeterli İkinci dereceden bir denklemin köklerini bulma formülü.

Bu denklem için “a”, “b” ve “c” katsayılarını belirleyelim.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

Herhangi bir ikinci dereceden denklemi çözmek için kullanılabilir.

“x 1;2 =” formülünde radikal ifade sıklıkla değiştirilir
“D” harfine “b 2 − 4ac” denir ve diskriminant olarak adlandırılır. Ayrımcı kavramı “Ayrımcı nedir” dersinde daha ayrıntılı olarak tartışılmaktadır.

İkinci dereceden denklemin başka bir örneğine bakalım.

x 2 + 9 + x = 7x

Bu formda “a”, “b” ve “c” katsayılarını belirlemek oldukça zordur. Öncelikle denklemi “ax 2 + bx + c = 0” genel formuna indirgeyelim.

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0
x 2 − 6x + 9 = 0

Artık kökler için formülü kullanabilirsiniz.

X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x =

6
2

x = 3
Cevap: x = 3

İkinci dereceden denklemlerin köklerinin olmadığı zamanlar vardır. Bu durum, formülün kök altında negatif bir sayı içerdiğinde ortaya çıkar.

Umarım bu makaleyi inceledikten sonra ikinci dereceden tam bir denklemin köklerini nasıl bulacağınızı öğreneceksiniz.

Diskriminant kullanılarak yalnızca tam ikinci dereceden denklemler çözülür; tamamlanmamış ikinci dereceden denklemleri çözmek için, "Eksik ikinci dereceden denklemleri çözme" makalesinde bulacağınız diğer yöntemler kullanılır.

Hangi ikinci dereceden denklemlere tam denir? Bu ax 2 + b x + c = 0 formundaki denklemler a, b ve c katsayılarının sıfıra eşit olmadığı durumda. Dolayısıyla ikinci dereceden bir denklemi tam olarak çözmek için diskriminant D'yi hesaplamamız gerekir.

D = b 2 – 4ac.

Diskriminantın değerine bağlı olarak cevabı yazacağız.

Diskriminant negatif bir sayı ise (D< 0),то корней нет.

Diskriminant sıfır ise x = (-b)/2a olur. Diskriminant pozitif bir sayı olduğunda (D > 0),

bu durumda x 1 = (-b - √D)/2a ve x 2 = (-b + √D)/2a olur.

Örneğin. Denklemi çözün x 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Cevap: 2.

Denklem 2'yi Çöz x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Cevap: Kök yok.

Denklem 2'yi Çöz x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3,5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Cevap: – 3.5; 1.

Şimdi Şekil 1'deki diyagramı kullanarak tam ikinci dereceden denklemlerin çözümünü hayal edelim.

Bu formülleri kullanarak herhangi bir tam ikinci dereceden denklemi çözebilirsiniz. Sadece dikkatli olman gerekiyor denklem standart formun bir polinomu olarak yazılmıştır

A x 2 + bx + c, aksi halde hata yapabilirsiniz. Örneğin, x + 3 + 2x 2 = 0 denklemini yazarken yanlışlıkla şuna karar verebilirsiniz:

a = 1, b = 3 ve c = 2. O halde

D = 3 2 – 4 1 2 = 1 ve bu durumda denklemin iki kökü vardır. Ve bu doğru değil. (Yukarıdaki örnek 2'nin çözümüne bakın).

Bu nedenle, eğer denklem standart formda bir polinom olarak yazılmamışsa, öncelikle ikinci dereceden denklemin tamamı standart formda bir polinom olarak yazılmalıdır (en büyük üssü olan monom ilk önce gelmelidir, yani A x 2 , daha azıyla bx ve sonra ücretsiz bir üye İle.

İkinci dereceden ikinci dereceden denklemi ve çift katsayılı ikinci dereceden denklemi çözerken, diğer formülleri kullanabilirsiniz. Gelin bu formülleri tanıyalım. Tam ikinci dereceden bir denklemde ikinci terimin çift katsayısı varsa (b = 2k), o zaman denklemi Şekil 2'deki şemada gösterilen formülleri kullanarak çözebilirsiniz.

Tam bir ikinci dereceden denklem, eğer katsayı x 2 bire eşittir ve denklem şu şekli alır: x 2 + piksel + q = 0. Böyle bir denklem çözüm için verilebileceği gibi denklemin tüm katsayılarının katsayıya bölünmesiyle de elde edilebilir. A, ayakta x 2 .

Şekil 3, indirgenmiş kareyi çözmek için bir diyagramı göstermektedir
denklemler. Bu makalede tartışılan formüllerin uygulanmasına bir örnek verelim.

Örnek. Denklemi çözün

3x 2 + 6x – 6 = 0.

Bu denklemi Şekil 1'deki diyagramda gösterilen formülleri kullanarak çözelim.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3))))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3))))/6 = –1 + √3

Cevap: –1 – √3; –1 + √3

Bu denklemde x'in katsayısının çift sayı olduğunu fark edebilirsiniz, yani b = 6 veya b = 2k, dolayısıyla k = 3. O halde denklemi, şekil D'deki diyagramda gösterilen formülleri kullanarak çözmeye çalışalım. 1 = 3 2 – 3 · (– 6) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Cevap: –1 – √3; –1 + √3. Bu ikinci dereceden denklemdeki tüm katsayıların 3'e bölünebilir olduğunu fark edip bölme işlemini gerçekleştirerek indirgenmiş ikinci dereceden denklemi elde ederiz x 2 + 2x – 2 = 0 Bu denklemi indirgenmiş ikinci dereceden denklem formüllerini kullanarak çözün
denklemler şekil 3.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Cevap: –1 – √3; –1 + √3.

Görüldüğü gibi bu denklemi çözerken çeşitli formüller aynı cevabı aldık. Bu nedenle, Şekil 1'deki diyagramda gösterilen formüllere tamamen hakim olduğunuzda, her zaman herhangi bir ikinci dereceden denklemi tam olarak çözebileceksiniz.

blog.site, materyalin tamamını veya bir kısmını kopyalarken, orijinal kaynağa bir bağlantı gereklidir.

İkinci dereceden denklem ax 2 + bx + c = 0 verilsin.
y = ax 2 + bx + c fonksiyonunun grafiğinin bir parabol olduğu teoremini kanıtladığımızda, § 13'te gerçekleştirdiğimiz dönüşümlerin aynısını ikinci dereceden üçlü ax 2 + bx + c'ye uygulayalım.
Sahibiz

Genellikle b 2 - 4ac ifadesi D harfiyle gösterilir ve ikinci dereceden ax 2 + bx + c = 0 denkleminin diskriminantı (veya ikinci dereceden trinomial ax + bx + c'nin diskriminantı) olarak adlandırılır.

Böylece

Bu, ikinci dereceden ax 2 + onlar + c = O denkleminin şu şekilde yeniden yazılabileceği anlamına gelir:


İkinci dereceden herhangi bir denklem, ikinci dereceden bir denklemin kök sayısını belirlemek ve bu kökleri bulmak için, şimdi göreceğimiz gibi uygun olan (1) formuna dönüştürülebilir.


Kanıt. Eğer D< 0, то правая часть уравнения (1) — отрицательное число; в то же время Sol Taraf denklem (1), x'in herhangi bir değeri için negatif olmayan değerler alır. Bu, denklem (1)'i sağlayacak tek bir x değerinin olmadığı ve dolayısıyla denklem (1)'in kökleri olmadığı anlamına gelir.

Örnek 1. 2x 2 + 4x + 7 = 0 denklemini çözün.
Çözüm. Burada a = 2, b = 4, c = 7,
D = b 2 -4ac = 4 2 . 4. 2. 7 = 16-56 = -40.
D'den beri< 0, то по теореме 1 данное квадратное уравнение не имеет корней.


Kanıt. D = 0 ise denklem (1) şu şekli alır:

denklemin tek köküdür.

Not 1. X = -'nin, y = ax 2 + onlar + c fonksiyonunun grafiği olarak görev yapan parabolün tepe noktasının apsisi olduğunu hatırlıyor musunuz? Neden bu
değerinin ikinci dereceden denklem ax 2 + onlar + c - 0'ın tek kökü olduğu ortaya çıktı. “Tabut” basitçe açılıyor: Eğer D 0 ise, o zaman, daha önce belirlediğimiz gibi,

Aynı fonksiyonun grafiği bir noktada tepe noktasına sahip bir paraboldür (bkz. örneğin Şekil 98). Bu, parabolün tepe noktasının apsisi ile ikinci dereceden denklemin D = 0 için tek kökünün aynı sayı olduğu anlamına gelir.

Örnek 2. 4x 2 - 20x + 25 = 0 denklemini çözün.
Çözüm. Burada a = 4, b = -20, c = 25, D = b 2 - 4ac = (-20) 2 - 4. 4. 25 = 400 - 400 = 0.

D = 0 olduğundan, Teorem 2'ye göre bu ikinci dereceden denklemin bir kökü vardır. Bu kök formülle bulunur

Cevap: 2.5.

Not 2. 4x 2 - 20x +25'in tam kare olduğuna dikkat edin: 4x 2 - 20x + 25 = (2x - 5) 2.
Bunu hemen fark etmiş olsaydık denklemi şu şekilde çözerdik: (2x - 5) 2 = 0 yani 2x - 5 = 0, buradan x = 2,5 sonucunu elde ederiz. Genel olarak, eğer D = 0 ise, o zaman

ax 2 + bx + c = - bunu daha önce Açıklama 1'de belirtmiştik.
D > 0 ise ikinci dereceden ax 2 + bx + c = 0 denkleminin iki kökü vardır ve bunlar aşağıdaki formüllerle bulunur


Kanıt. İkinci dereceden denklem ax 2 + b x + c = 0'ı (1) formunda yeniden yazalım.

Hadi koyalım
Koşula göre D > 0, yani denklemin sağ tarafı pozitif bir sayıdır. Daha sonra denklem (2)'den şunu elde ederiz:


Dolayısıyla verilen ikinci dereceden denklemin iki kökü vardır:

Not 3. Matematikte, tanıtılan terimin mecazi anlamda gündelik bir arka plana sahip olmaması nadiren olur. Yeni bir şey alalım
kavram - ayırt edici. “Ayrımcılık” sözcüğünü unutmayın. Bu ne anlama geliyor? Bu, bazılarının aşağılanması ve bazılarının yükseltilmesi anlamına gelir, yani. farklı tutum
çeşitli kişilere. Her iki kelime de (ayrımcı ve ayrımcılık) Latince diskriminans - "ayrımcı" kelimesinden gelmektedir. Diskriminant ikinci dereceden denklemleri kök sayısına göre ayırır.

Örnek 3. 3x 2 + 8x - 11 = 0 denklemini çözün.
Çözüm. Burada a = 3, b = 8, c = - 11,
D = b 2 - 4ac = 8 2 - 4. 3. (-11) = 64 + 132 = 196.
D > 0 olduğundan, Teorem 3'e göre bu ikinci dereceden denklemin iki kökü vardır. Bu kökler formül (3)'e göre bulunur.


Aslında şu kuralı geliştirdik:

Denklemi çözme kuralı
balta 2 + bx + c = 0

Bu kural evrenseldir; hem tam hem de eksik ikinci dereceden denklemler için geçerlidir. Ancak tamamlanmamış ikinci dereceden denklemler genellikle bu kural kullanılarak çözülmez; önceki paragrafta yaptığımız gibi çözmek daha uygundur.

Örnek 4. Denklemleri çözün:

a) x 2 + 3x - 5 = 0; b) - 9x2 + 6x - 1 = 0; c) 2x 2 -x + 3,5 = 0.

Çözüm a) Burada a = 1, b = 3, c = - 5,
D = b 2 - 4ac = Z 2 - 4. 1. (- 5) = 9 + 20 = 29.

D > 0 olduğundan bu ikinci dereceden denklemin iki kökü vardır. Bu kökleri formülleri kullanarak buluyoruz (3)

B) Deneyimlerin gösterdiği gibi, baş katsayının pozitif olduğu ikinci dereceden denklemlerle uğraşmak daha uygundur. Bu nedenle önce denklemin her iki tarafını da -1 ile çarparsak, şunu elde ederiz:

9x2 - 6x + 1 = 0.
Burada a = 9, b = -6, c = 1, D = b 2 - 4ac = 36 - 36 = 0.
D = 0 olduğundan bu ikinci dereceden denklemin tek kökü vardır. Bu kök x = - formülüyle bulunur. Araç,

Bu denklem farklı şekilde çözülebilir: çünkü
9x 2 - 6x + 1 = (Зх - IJ, o zaman (Зх - I) 2 = 0 denklemini elde ederiz, buradan Зх - 1 = 0'ı buluruz, yani x = .

c) Burada a = 2, b = - 1, c = 3,5, D = b 2 - 4ac = 1 - 4. 2. 3,5= 1 - 28 = - 27. D'den beri< 0, то данное квадратное уравнение не имеет корней.

Matematikçiler pratik ve ekonomik insanlardır. İkinci dereceden bir denklemi çözmek için neden bu kadar uzun bir kural kullandıklarını söylüyorlar, hemen genel bir formül yazmak daha iyidir:

Diskriminant D = b 2 - 4ac'nin negatif bir sayı olduğu ortaya çıkarsa, yazılı formül mantıklı değildir (karekök işaretinin altında negatif bir sayı vardır), bu da köklerin olmadığı anlamına gelir. Diskriminantın sıfıra eşit olduğu ortaya çıkarsa, o zaman şunu elde ederiz:

Yani, bir kök (bu durumda ikinci dereceden denklemin iki özdeş kökü olduğunu da söylüyorlar:

Son olarak, b 2 - 4ac > 0 olduğu ortaya çıkarsa, yukarıda belirtilen aynı formüller (3) kullanılarak hesaplanan iki kök x 1 ve x 2 elde ederiz.

Bu durumda sayının kendisi pozitiftir (herhangi bir Kare kök pozitif bir sayıdan) ve önündeki çift işaret, bir durumda (x 1'i bulurken) bu pozitif sayının - b sayısına eklendiği ve başka bir durumda (x 2'yi bulurken) bu pozitif sayının şu şekilde olduğu anlamına gelir: kaldırıldı
numaradan okuyun - b.

Seçme özgürlüğünüz var. Yukarıda formüle edilen kuralı kullanarak ikinci dereceden denklemi ayrıntılı olarak çözmek ister misiniz? İsterseniz hemen formül (4)'ü yazın ve ondan gerekli sonuçları çıkarmak için kullanın.

Örnek 5. Denklemleri çözün:

Çözüm, a) Elbette ki (4) veya (3) numaralı formülleri kullanabilirsiniz. bu durumda Peki tam sayılarla uğraşmak daha kolay ve en önemlisi daha zevkliyken neden kesirlerle işler yapılıyor? Paydalardan kurtulalım. Bunu yapmak için denklemin her iki tarafını da 12 ile, yani denklemin katsayıları görevi gören kesirlerin en küçük ortak paydasıyla çarpmanız gerekir. Aldık


dolayısıyla 8x 2 + 10x - 7 = 0.

Şimdi formül (4)’ü kullanalım


B) Yine kesirli katsayıları olan bir denklemimiz var: a = 3, b = - 0,2, c = 2,77. Denklemin her iki tarafını da 100 ile çarpalım, sonra tamsayı katsayılı bir denklem elde edelim:
300x 2 - 20x + 277 = 0.
Daha sonra formül (4)'ü kullanıyoruz:

Basit bir hesaplama, diskriminantın (radikal ifade) negatif bir sayı olduğunu gösterir. Bu, denklemin köklerinin olmadığı anlamına gelir.

Örnek 6. Denklemi çözün
Çözüm. Burada önceki örnekten farklı olarak kısaltılmış formül (4) yerine kurala göre hareket edilmesi tercih edilmektedir.

a = 5, b = -, c = 1, D = b 2 - 4ac = (-) 2 - 4'ümüz var. 5. 1 = 60 - 20 = 40. D > 0 olduğundan, ikinci dereceden denklemin iki kökü vardır ve bunu (3) formülünü kullanarak arayacağız.

Örnek 7. Denklemi çözün
x 2 - (2p + 1)x + (p 2 +p-2) = 0

Çözüm. Bu ikinci dereceden denklem, katsayıların belirli sayılar değil, harf ifadeleri olması nedeniyle şimdiye kadar ele alınan tüm ikinci dereceden denklemlerden farklıdır. Bu tür denklemlere harf katsayılı denklemler veya parametreli denklemler denir. Bu durumda p parametresi (harf) denklemin ikinci katsayısına ve serbest terimine dahil edilir.
Diskriminantı bulalım:


Örnek 8. px 2 + (1 - p) x - 1 = 0 denklemini çözün.
Çözüm. Bu aynı zamanda p parametreli bir denklemdir, ancak önceki örnekten farklı olarak (4) veya (3) formülleri kullanılarak hemen çözülemez. Gerçek şu ki, belirtilen formüller ikinci dereceden denklemlere uygulanabilir, ancak bunu belirli bir denklem için henüz söyleyemeyiz. Gerçekten de p = 0 ise ne olur? Daha sonra
denklem 0 formunu alacaktır. x 2 + (1-0)x- 1 = 0, yani x - 1 = 0, bundan x = 1 elde ederiz. Şimdi, eğer bundan eminseniz, ikinci dereceden denklemin kökleri için formülleri uygulayabilirsiniz. denklem:



Yükleniyor...Yükleniyor...