Типы окислительно восстановительных систем. Окислительно-восстановительные процессы. окислительно-восстановительные потенциалы. Виды окислительно-восстановительных реакций

В формировании химических свойств почв окислительно-восстановительные процессы занимают одно из ведущих мест. Важнейшими факторами, определяющими окислительно-восстановительное состояние почвенных горизонтов, является кислород почвенного воздуха и почвенных растворов, окисные и закисные соединения железа, марганца, азота, серы, органическое вещество, микроорганизмы.

Реакции окисления и восстановления всегда протекают одновременно. Окисление одного вещества, участвующего в реакции, сопровождается восстановлением другого вещества.

Под окислительно-восстановительными процессами понимается процессы, в которые в качестве возможной стадии входит переход электронов от одной частицы вещества к другой. Окисление является реакцией, при которой происходит присоединение кислорода к веществу или потеря веществом водорода или электронов. Восстановление - это потеря веществом кислорода, присоединение к веществу водорода или электронов.

Способность почвы вступать в окислительно-восстановительные реакции измеряется с помощью окислительно-восстановительного потенциала (ОВП).

Окислительно-восстановительный потенциал по отношению к водороду называют Eh. Эта величина зависит от концентрации и соотношения окислителей и восстановителей, образующихся в процессе почвообразования. Благодаря существованию в почвенных горизонтах определенных окислительно-восстановительных систем, можно определить разность потенциалов (Eh) в милливольтах при помощи пары электродов, погруженных в почву. Величины Eh в различных типах почв и почвенных горизонтах изменяются в пределах 100-800 мв, иногда имеет и отрицательные значения. Величина Eh существенно зависят от кислотно-щелочных условий среды, растительности и микроорганизмов.

В почвенных условиях значительная часть участвующих в окислительно-восстановительных реакциях компонентов представлена твердыми фазами. В реакциях с участием твердых фаз почва будет проявлять высокую буферность до тех пор, пока эти компоненты не прореагируют. Буферность - это способность почвы противостоять изменению ОВП при любых внешних воздействиях. Это понятие характеризует устойчивость окислительно-восстановительных систем почвы в природных динамических условиях и ее можно назвать динамической буферностью. В природной обстановке с малыми скоростями реагируют гумусовые вещества, минералы гидроокислов железа.

Почвы содержат большой набор окислительно-восстановительных систем: Fe3+ - Fe2+, Mn2+ - Mn3+ - Mn4+, Cu+ - Cu2+, Co2+ - Co3+, NO3‾ - NO2‾ - NН3‾, S6‾ - S2‾.

Различают обратимые и необратимые окислительно-восстановительные системы. Обратимыми являются такие системы, которые в процессе изменения окислительно-восстановительного режима не меняют суммарный запас компонентов. Необратимые системы в процессе изменения окислительно-восстановительного режима утрачивают часть веществ. Эти вещества переходят в газообразное состояние или выпадают в осадок. Как правило, в почвах преобладают необратимые системы.

К обратимым окислительно-восстановительные системам относятся:

Система Fe3+ ⇆Fe2+. Эта система занимает особое место среди обра-тимых систем. Она чутко реагирует на малейшие изменения окислительно-восстановительной обстановки. Растворимость соединений трехвалентного железа крайне низкая. Миграция соединений железа возможна главным образом в форме соединений двухвалентного железа в условиях повышенной кислотности и пониженного Eh.

Система Mn2+ ⇆ Mn4+. Данная система является крайне чуткой к измене-нию ОВП. Соединения четырехвалентного марганца нерастворимы в условиях, характерных для почвенных горизонтов. Обменный марганец двухвалентен. Концентрация ионов двухвалентного марганца при повышении кислотности и понижении Eh возрастает в десятки тысяч раз. Миграция соединений марганца в ходе почвообразовательных процессов в вертикальном и горизонтальном направлениях сходна с миграцией соединений железа.

К необратимым окислительно-восстановительным системам относятся:

Система NO3 → NO2 → NО → N. Процесс нитрификации и накопления нитратов происходит в условиях окислительного режима и при высоких Eh 400-500 мв. Увлажнение почвы снижает Eh и способствует развитию процессов денитрификации.

Система сульфаты ⇆ сульфиды. Данная окислительно-восстановительная система играет большую роль во всех почвах, где присутствуют сернокислые соли. При участии микроорганизмов система сульфаты - сульфиды в присутствии органического вещества и недостатке кислорода сдвигается в сторону сульфидов. Происходит процесс восстановления сульфатов до сернистых металлов:

Na2SO4 + 2C = Na2S + CO2

Под действием присутствующей в почве углекислоты сернистые металлы легко разлагаются и образуют бикарбонаты и карбонаты щелочных и щелочно-земельных металлов. При этом происходит процесс восстановления сульфатов:

Na2S + H2CO3 = Na2CO3 + H2S

Однако в почвенном растворе содержание элементов с переменной валентностью достаточно мало. Поэтому почвенный раствор обладает невысокими ОВ-емкостью и буферностью, а величина Eh неустойчива.

Более существенное влияние на ОВ-процессы в почвах оказывает раство-ренный в почвенном растворе кислород, почвенная микрофлора и вода.

Почти все почвенные реакции происходят в водной среде, а сама вода мо-жет выступать и в качестве окислителя, и в качестве восстановителя.

По особенностям протекания окислительно-восстановительных процессов выделяется три ряда почв: 1) автоморфные почвы с преобладанием окислительной среды, 2) почвы с восстановительной глеевой обстановкой, 3) почвы с восстановительной сероводородной обстановкой.

С ОВ-процессами тесно связаны превращения растительных остатков, на-копление и состав образующихся органических веществ, и как следствие, формирование профиля почвы.

такой процесс взаимодействия между двумя веществами, при котором протекает обратимая реакция окисления одного вещества за счет восстановления другого и в среде образуется смесь окисленных и восстановленных ионов, напр. - Fe"" и Fe", Sn" и Sn"" и т. д. Уровень интенсивности окислительно-восстановительной системы определяется величиной окислительно-восстановительного потенциала Eh, которую выражают в вольтах, по отношению к потенциалу нормального водородного электрода.

Чем более положителен потенциал системы, тем более окислительными свойствами она обладает. Потенциалы, которые получаются в системах, содержащих равные концентрации окисленного и восстановленного иона, наз. нормальными.

О. о.-в. с. по величине нормальных потенциалов могут быть расположены в ряд, причем каждая система является окислителем по отношению к системе, обладающей более отрицательным нормальным потенциалом, и восстановителем по отношению к системе с более положительным нормальным потенциалом. Окислительно-восстановительные системы играют большую роль при минералообразовании, преобразовании органических веществ в осадочных породах и т. д.

Эквивалент вещества или Эквивалент - это реальная или условная частица, которая может присоединять, высвобождать или другим способом быть эквивалентна катионуводорода в ионообменных реакциях или электрону в окислительно-восстановительных реакциях .

Например, в реакции:

NaOH + HCl = NaCl + H 2 O

эквивалентом будет реальная частица - ион Na + , в реакции

эквивалентом будет являться мнимая частица ½Zn(OH) 2 .

Под эквивалентом вещества также часто подразумевается количество эквивалентов вещества или эквивалентное количество вещества - число моль вещества эквивалентное одному моль катионов водорода в рассматриваемой реакции.

[править]Эквивалентная масса

Эквивалентная масса - это масса одного эквивалента данного вещества.

[править]Эквивалентная молярная масса вещества

Молярная масса эквивалентов обычно обозначается как или . Отношение эквивалентной молярной массы вещества к его собственно молярной массе называетсяфактором эквивалентности (обозначается обычно как ).

Молярная масса эквивалентов вещества - масса одного моля эквивалентов, равная произведению фактора эквивалентности на молярную массу этого вещества.

M экв = f экв ×M


[править]Фактор эквивалентности

Отношение эквивалентной молярной массы к его собственной молярной массе называется фактором эквивалентности (обозначается обычно как ).

[править]Число эквивалентности

Число эквивалентности z представляет собой небольшое положительное целое число, равное числу эквивалентов некоторого вещества, содержащихся в 1 моль этого вещества. Фактор эквивалентности связан с числом эквивалентности z следующим соотношением: =1/z.

Например, в реакции:

Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O

Эквивалентом является частица ½Zn(OH) 2 . Число ½ есть фактор эквивалентности , z в данном случае равно 2

* - для инертных газов Z = 1

Фактор эквивалентности помогает сформулировать закон эквивалентности.

[править]Закон эквивалентов

В результате работ И. В. Рихтера (1792-1800) был открыт закон эквивалентов:

§ все вещества реагируют в эквивалентных отношениях.

§ формула, выражающая Закон эквивалентов: m 1 Э 2 =m 2 Э 1

§ Электрохимический эквивалент - количество вещества, которое должно выделиться на электроде, согласно закону Фарадея, при прохождении через электролит единицы количества электричества:

§ где - постоянная Фарадея.

§ Постоя́нная Фараде́я , - физическая постоянная, определяющая соотношение между электрохимическими и физическими свойствами вещества.

§ Постоянная Фарадея равна Кл·моль −1 .

§ Постоянная Фарадея входит в качестве константы во второй закон Фарадея (закон электролиза).

§ Численно постоянная Фарадея равна электрическому заряду, при прохождении которого через электролит на электроде выделяется (1/z) моль вещества A в формуле:

где:
- количество электронов, участвующих в ходе реакции.

§ Для постоянной Фарадея справедливо следующее соотношение:

§ где - элементарный заряд, а - число Авогадро.

Изото́пы (от др.-греч. ισος - «равный» , «одинаковый» , и τόπος - «место» ) - разновидности атомов (и ядер) одного химического элемента с разным количеством нейтронов в ядре. Название связано с тем, что изотопы находятся в одном и том же месте (в одной клетке) таблицы Менделеева. Химические свойства атома зависят практически только от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём) и почти не зависит от его массового числа A (то есть суммарного числа протонов Z и нейтронов N ). Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левогоиндекса, означающего массовое число (например, 12 C, 222 Rn). Можно также написать название элемента с добавлением через дефис массового числа (например, углерод-12, радон-222). Некоторые изотопы имеют традиционные собственные названия (например, дейтерий,актинон).

Пример изотопов: 16 8 O, 17 8 O, 18 8 O - три стабильных изотопа кислорода.

[править]Терминология

Основная позиция ИЮПАК состоит в том, что правильным термином в единственном числе для обозначения атомов (или ядер) одного химического элемента с одинаковой атомной массой является нуклид, а термин изотопы допускается применять для обозначения совокупности нуклидов одного элемента. Термин изотопы был предложен и применялся изначально во множественном числе, поскольку для сравнения необходимо минимум две разновидности атомов. В дальнейшем в практику широко вошло также употребление термина в единственном числе - изотоп . Кроме того, термин во множественном числе часто применяется для обозначения любой совокупности нуклидов, а не только одного элемента, что также некорректно. В настоящее время позиции международных научных организаций не приведены к единообразию и термин изотоп продолжает широко применяться, в том числе и в официальных материалах различных подразделений ИЮПАК и ИЮПАП. Это один из примеров того, как смысл термина, изначально в него заложенный, перестаёт соответствовать понятию, для обозначения которого этот термин используется (другой хрестоматийный пример - атом, который, в противоречии с названием, не является неделимым).

[править]История открытия изотопов

Первое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906-07 выяснилось, что продукт радиоактивного распада урана - ионий и продукт радиоактивного распадатория - радиоторий, имеют те же химические свойства, что и торий, но отличаются от него атомной массой и характеристиками радиоактивного распада. Было обнаружено позднее, что у всех трёх продуктов одинаковы оптические и рентгеновские спектры. Такие вещества, идентичные по химическим свойствам, но различные по массе атомов и некоторым физическим свойствам, по предложению английского учёного Ф. Содди, стали называть изотопами.

[править]Изотопы в природе

Считается, что изотопный состав элементов на Земле одинаков во всех материалах. Некоторые физические процессы в природе приводят к нарушению изотопного состава элементов (природное фракционирование изотопов, характерное для лёгких элементов, а также изотопные сдвиги при распаде природных долгоживущих изотопов). Постепенное накопление в минералах ядер - продуктов распада некоторых долгоживущих нуклидов используется в ядерной геохронологии.

[править]Применение изотопов человеком

В технологической деятельности люди научились изменять изотопный состав элементов для получения каких-либо специфических свойств материалов. Например, 235 Uспособен к цепной реакции деления тепловыми нейтронами и может использоваться в качестве топлива для ядерных реакторов или ядерного оружия. Однако в природном уране лишь 0,72 % этого нуклида, тогда как цепная реакция практически осуществима лишь при содержании 235 U не менее 3 %. В связи с близостью физико-химических свойств изотопов тяжёлых элементов, процедура изотопного обогащения урана является крайне сложной технологической задачей, которая доступна лишь десятку государств в мире. Во многих отраслях науки и техники (например, в радиоиммунном анализе) используются изотопные метки.

Константа диссоциации - вид константы равновесия, которая показывает склонность большого объекта диссоциировать (разделяться) обратимым образом на маленькие объекты, как например когда комплекс распадается на составляющие молекулы, или когда соль разделяется в водном растворе на ионы. Константа диссоциации обычно обозначается K d и обратна константе ассоциации. В случае с солями, константу диссоциации иногда называют константой ионизации.

В общей реакции

где комплекс A x B y разбивается на x единиц A и y единиц B, константа диссоциации определяется так:

где [A], [B] и - концентрации A, B и комплекса A x B y соответственно.

[править]Определение

Электролитическая диссоциация слабых электролитов, согласно теории Аррениуса, является обратимой реакцией, то есть схематически её можно представить уравнениями (для одновалентных ионов:):

KA ↔ K + + A − ,

§ KA - недиссоциированное соединение;

§ K + - катион;

§ A − - анион.

Константу равновесия такой реакции можно выразить уравнением:

, (1)

§ - концентрация недиссоциированного соединения в растворе;

§ - концентрация катионов в растворе;

§ - концентрация анионов в растворе.

Константу равновесия применительно к реакции диссоциации называют константой диссоциации .

[править]Диссоциация электролитов с многовалентными ионами

В случае диссоциации электролитов с многовалентными ионами, диссоциация происходит по ступеням, причём для каждой ступени существует собственное значение константы диссоциации.

Пример: Диссоциация многоосновной (борной) кислоты [источник не указан 332 дня ] :

I стадия: H 3 BO 3 ↔ H + + H 2 BO 3 − ,

II стадия: H 2 BO 3 − ↔ H + + HBO 3 2− ,

III стадия: HBO 3 2− ↔ H + + BO 3 3− ,

Первая степень диссоциации для таких электролитов всегда много больше последующих, что означает, что диссоциация таких соединений идёт главным образом по первой стадии.

[править]Связь константы диссоциации и степени диссоциации

Исходя из определения степени диссоциации, для электролита КА в реакции диссоциации = = α·c, = c - α·c = c·(1 - α), где α - степени диссоциацииэлектролита.

, (2)

Это выражение называют законом разбавления Оствальда. При очень малых α (α<<1) K=cα² и

таким образом, при увеличении концентрации электролита степень диссоциации уменьшается, при уменьшении - возрастает. Подробнее связь константы диссоциации и степени диссоциации описана в статье Закон разбавления Оствальда.

[править]Отличие экспериментальных результатов от модели Аррениуса, вывод константы диссоциации через активности

Вышеприведённые выкладки базируются на теории Аррениуса, которая является слишком грубой, не учитывающей факторы электростатического взаимодействия ионов. Отклонения от идеального состояния в растворах электролитов возникают при очень малых концентрациях, так как межионные силы обратно пропорциональны квадрату расстояния между центрами ионов, в то время как межмолекулярные силы обратно пропорциональны седьмой степени расстояния, то есть межионные силы даже в разведённых растворах оказываются намного больше межмолекулярных.

Льюис показал, что для реальных растворов можно сохранить простые уравнения (см. выше), если вместо концентраций ионов вводить её функцию, так называемуюактивность . Активность (a) соотносится с концентрацией (c) через поправочный коэффициент γ, называемый коэффициентом активности:

a = γc

Таким образом, выражение для константы равновесия, по Аррениусу описываемое уравнением (1), по Льюису будет выглядеть:

§ ;

§ ;

В теории Льюиса связь между константой и степенью диссоциации (в теории Аррениуса записываемая уравнением (2) выражается соотношением:

Если никаких других влияний, отклоняющих раствор от идеального состояния нет, то недиссоциированные молекулы ведут себя как идеальные газы и γ KA = 1, а истинное выражение закона разбавления Оствальда примет вид:

§ - средний коэффициент активности электролита.

При c→0 и γ→1 вышеприведённое уравнение закона разбавления Оствальда принимает вид (2). Чем сильнее диссоциирует электролит, тем быстрее значение коэффициента активности γ отклоняется от единицы, и тем быстрее наступает нарушение классического закона разведения.

[править]Константа диссоциации сильных электролитов

Сильные электролиты диссоциируют практически нацело (реакция необратимая), поэтому в знаменателе выражения для константы диссоциации стоит ноль, и всё выражение стремится к бесконечности. Таким образом, для сильных электролитов термин «константа диссоциации» лишён смысла.

[править]Примеры расчётов

[править]Диссоциация воды

Вода представляет собой слабый электролит, диссоциирующий в соответствии с уравнением

Константа диссоциации воды при 25 °C составляет

Считая, что в большинстве растворов вода находится в молекулярном виде (концентрация ионов H + и OH − мала), и учитывая, что молярная масса воды составляет 18,0153 г/моль, а плотность при температуре 25 °C - 997,07 г/л, чистой воде соответствует концентрация = 55,346 моль/л. Поэтому предыдущее уравнение можно переписать в виде

Применение приближённой формулы даёт ошибку около 15 %:

Исходя из найденного значения степени диссоциации найдём pH раствора:

Степень диссоциации - величина, характеризующая состояние равновесия в реакции диссоциации в гомогенных (однородных) системах.

Степень диссоциации α равна отношению числа диссоциированных молекул n к сумме n + N , где N - число недиссоциированных молекул. Часто α выражают в процентах. Степень диссоциации зависит как от природы растворённого электролита, так и от концентрации раствора.

[править]Пример

Для уксусной кислоты CH 3 COOH величина α равна 4% (в 0,01М растворе). Это значит, что в водном растворе кислоты лишь 4 из каждых 100 молекул диссоциированы, то есть находятся в виде ионов Н + и СН 3 СОО − , остальные же 96 молекул не диссоциированы.

[править]Методы определения

§ по электропроводности раствора

§ по понижению температуры замерзания

[править]Мнимая степень диссоциации

Поскольку сильные электролиты диссоциируют практически полностью, можно было бы ожидать для них изотонический коэффициент, равный количеству ионов (или поляризованных атомов) в формульной единице (молекуле). Однако в действительности этот коэффициент всегда меньше определённого по формуле. Например, изотонический коэффициент для 0,05-моляльного раствора NaCl равен 1,9 вместо 2,0, (для раствора сульфата магния той же концентрации и вовсе i = 1,3). Это объясняеттеория сильных электролитов, разработанная в 1923 году П. Дебаем и Э. Хюккелем: передвижение ионов в растворе затруднено образовавшейся оболочкой сольватации. К тому же, ионы взаимодействуют и между собой: разноимённо заряженные притягиваются, а одноимённо заряженные - отталкиваются; силы взаимного притяжения приводят к образованию групп ионов, перемещающихся по раствору совместно. Такие группы называют ионными ассоциатами или ионными па́рами . Соответственно, раствор ведёт себя так, будто содержит меньше частиц, чем на самом деле, ведь свобода их перемещения ограничена. Наиболее очевиден пример, касающийся электропроводностирастворов λ , которая возрастает с разбавлением раствора. Через отношение реальной электропроводности к таковой при бесконечном разбавлении определяют мнимую степень диссоциации сильных электролитов, также обозначаемую через α :

,

где n img - мнимое, а n disslv. - реальное количество частиц в растворе.

Арендный блок

Окислительно-восстановительными называются реакции, протекающие с изменением степени окисления двух или более веществ.

Степень окисления – это условный заряд на атоме, если считать, что молекула создана по ионному механизму (или – это количество принятых или отданных электронов).

Восстановители – атомы, молекулы, ионы – отдающие электроны.

Окислители - атомы, молекулы, ионы – принимающие электроны.

Восстановители участвуют в процессе окисления, повышая свою степень окисления.

Окислители - участвуют в процессе восстановления, понижая свою степень окисления.

Виды окислительно-восстановительных реакций

1. Межмолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например:

Н2S + Cl2 S + 2HCl

2. Внутримолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:

2H2O → 2H2 + O2

3. Диспропорционирование (самоокисление-самовосстановление) - реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:

Cl2 + H2O HClO + HCl

4. Репропорционирование (конпропорционирование , контрдиспропорционирование) - реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления:

Типы окислительно-восстановительных реакций в организме человека.

Реакция дегидрирования: SH2 + HAD+= S + HADH+H+

Потеря электрона:O20 + 1eO2-

Перенос 2Н+ от восстановленного субстрата на молекулярный кислород:SH2 + O20 +2e= S + H2O

Присоединение кислорода к субстрату: SH2 + 1/2O20 +2e= HO - S -H

Механизм возникновения электродного и редокс-потенциалов. Уравнения Нернста-Петерса .

Мерой окислительно-восстановительной способности веществ служат окислительно-восстановительные потенциалы. Рассмотрим механизм возникновения потенциала. При погружении химически активного металла (Zn, Al) в раствор его соли, например Zn в раствор ZnSO4, происходят дополнительное растворение металла в результате процесса окисления, образование пары, двойного электрического слоя на поверхности металла и возникновение потенциала пары Zn2+/Zn°.

Металл, погруженный в раствор своей соли, например цинк в растворе сульфата цинка, называют электродом первого рода. Это двухфазный электрод, который заряжается отрицательно. Потенциал образуется в результате реакции окисления (рис. 8.1). При погружении в раствор своей соли малоактивных металлов (Cu) наблюдается противоположный процесс. На границе металла с раствором соли происходит осаждение металла в результате процесса восстановления иона, обладающего высокой акцепторной способностью к электрону, что обусловлено высоким зарядом ядра и малым радиусом иона. Электрод заряжается положительно, в приэлектродном пространстве избыточные анионы соли формируют второй слой, возникает электродный потенциал пары Cu2+/Cu°. Потенциал образуется в результате процесса восстановления (рис. 8.2). Механизм, величина и знак электродного потенциала определяются строением атомов участников электродного процесса.

Итак, потенциал, который возникает на границе раздела металла с раствором в результате окислительного и восстановительного процессов, протекающих с участием металла (электрода) и образованием двойного электрического слоя называют электродным потенциалом .

Если отводить электроны с цинковой пластины на медную, то равновесие на пластинках нарушается. Для этого соединим цинковую и медную пластины, погруженные в растворы их солей, металлическим проводником, приэлектродные растворы - электролитным мостиком (трубка с раствором K2SO4), чтобы замкнуть цепь. На цинковом электроде протекает полуреакция окисления:

а на медном - полуреакция восстановления:

Электрический ток обусловлен суммарной окислительно-восстановительной реакцией:

В цепи появляется электрический ток. Причиной возникновения и протекания электрического тока (ЭДС) в гальваническом элементе является разность электродных потенциалов (Е) - рис. 8.3.

Рис. 8.3. Схема электрической цепи гальванического элемента

Гальванический элемент - это система, в которой химическая энергия окислительно-восстановительного процесса превращается в электрическую. Химическая цепь гальванического элемента обычно записывается в виде краткой схемы, где слева помещают более отрицательный электрод, указывают пару, образующуюся на этом электроде, вертикальной чертой, показывают скачок потенциала. Две черты обозначают границу между растворами. Заряд электрода указывается в круглых скобках: (-) Zn°|Zn2+||Cu2+|Cu° (+) - схема химической цепи гальванического элемента.

Окислительно-восстановительные потенциалы пары зависят от природы участников электродного процесса и соотношения равновесных концентраций окисленной и восстановленной форм участников электродного процесса в растворе, температуры раствора и описываются уравнением Нернста.

Количественной характеристикой окислительно-восстановительной системы является редокс-потенциал , возникающий на границе раздела фаз платина - водный раствор. Величина потенциала в единицах СИ измеряется в вольтах (В) и рассчитывается по уравнению Нернста-Петерса:

где а(Oх) и a(Red) - активность окисленной и восстановленной форм соответственно; R - универсальная газовая постоянная; Т - термодинамическая температура, К; F - постоянная Фарадея (96 500 Кл/моль); n - число электронов, принимающих участие в элементарном редокс-процессе; а - активность ионов гидроксония; m - стехиометрический коэффициент перед ионом водорода в полуреакции. Величина φ° - стандартный редокс-потенциал, т.е. потенциал, измеренный при условиях а(Oх) = a(Red) = a(H+) = 1 и данной температуре.

Стандартный потенциал системы 2Н+/Н2 принят равным 0 В. Стандартные потенциалы являются справочными величинами, табулируются при температуре 298К. Сильнокислая среда не характерна для биологических систем, поэтому для характеристики процессов, протекающих в живых системах, чаще используют формальный потенциал, определяемый при условии а(Oх) = a(Red), pH 7,4 и температуре 310К (физиологический уровень). При записи потенциала пара указывается в виде дроби, причем окислитель записывается в числителе, а восстановитель в знаменателе.

Для 25 °С (298К) после подстановки постоянных величин (R = = 8,31 Дж/моль град; F = 96 500 Кл/моль) уравнение Нернста принимает следующий вид:

где φ°- стандартный окислительно-восстановительный потенциал пары, В; со.фю и св.ф. - произведение равновесных концентраций окисленной и восстановленной форм соответственно; х и у - стехиометрические коэффициенты в уравнении полуреакций.

Электродный потенциал образуется на поверхности металлической пластины, погруженной в раствор ее соли, и зависит только от концентрации окисленной формы [Мn+], так как концентрация восстановленной формы не изменяется. Зависимость электродного потенциала от концентрации одноименного с ним иона определяется уравнением:

где [Мn+] - равновесная концентрация иона металла; n - число электронов, участвующих в полуреакции, и соответствует степени окисления иона металла.

Редокс-системы делят на два типа:

1) в системе осуществляется только перенос электронов Fe3+ + ē = = Fe2+, Sn2+ - 2ē = Sn4+. Это изолированное окислительно-восстановительное равновесие;

2) системы, когда перенос электронов дополняется переносом протонов, т.е. наблюдается совмещенное равновесие разных типов: протолитическое (кислотно-основное) и окислительно-восстановительное с возможной конкуренцией двух частиц протонов и электронов. В биологических системах важные редокс-системы относятся к этому типу.

Примером системы второго типа является процесс утилизации перекиси водорода в организме: Н2О2 + 2Н+ + 2ē ↔ 2Н2О, а также восстановление в кислой среде многих окислителей, содержащих кислород: CrО42-, Cr2О72-, MnО4-. Например, MnО4- + 8Н+ + 5ē = = Mn2+ + 4Н2О. В данной полуреакции участвуют электроны и протоны. Расчет потенциала пары ведут по формуле:

В более широком круге сопряженных пар окисленная и восстановленная формы пары находятся в растворе в различной степени окисления (MnО4-/Mn2+). В качестве измерительного электрода

в данном случае применяют электрод из инертного материала (Pt). Электрод не является участником электродного процесса и играет роль только переносчика электронов.

Потенциал, образующийся за счет окислительно-восстановительного процесса, происходящего в растворе, называют окислительно-восстановительным потенциалом.

Измерение его выполняют на окислительно-восстановительном электроде - это инертный металл, находящийся в растворе, содержащем окисленную и восстановленную формы пары. Например, при измерении Еo пары Fe3+/Fe2+ применяют окислительно-восстановительный электрод - платиновый измерительный электрод. Электрод сравнения - водородный, потенциал пары которого известен.

Реакция, протекающая в гальваническом элементе:

Схема химической цепи: (-)Pt|(H2°), H+||Fe3+, Fe2+|Pt(+).

Итак, окислительно-восстановительный потенциал (ОВП) – это потенциал системы, в которой активности окислительной и восстановительной форм данного вещества равны единице. ОВП измеряется с помощью окислительно-восстановительных электродов в сочетании со стандартными электродами сравнения.

В каждой окислительно-восстановительной реакции есть своя редокс-пара – эта пара имеет вещество в окисленной и восстановленной форме (Fe+3/Fe+2).

Количественной мерой активности редокс-пары является величина ее ОВП.

ОВПпары>>>окислитель

ОВПпары<<<восстановитель

ОВП зависит от:

Природы редокс-пары,

Концентрации

Температуры

Сравнительная сила окислителей и восстановителей. Прогнозирование направления редокс-процессов по величинам редокс-потенциалов .

Окислительно-восстановительный потенциал является мерой окислительно-восстановительной способности веществ. Значение стандартных потенциалов пар указаны в справочных таблицах.

Стандартные потенциалы электродов (Е°), выступающих как восстановители по отношению к водороду, имеют знак “-”, а знак “+” имеют стандартные потенциалы электродов, являющихся окислителями.

Металлы, расположенные в порядке возрастания их стандартных электродных потенциалов, образуют так называемыйэлектрохимический ряд напряжений металлов: Li, Rb, К, Ва, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au.

В ряду редокс-потенциалов отмечают следующие закономерности.

1. Если стандартный редокс-потенциал пары отрицателен, например φ°(Zn2+(р)/Zn°(т)) = -0,76 В, то по отношению к водородной паре, потенциал которой выше, данная пара выступает в качестве восстановителя. Потенциал образуется по первому механизму (реакции окисления).

2. Если потенциал пары положителен, например φ°(Сu2+(р)/ Cu(т)) = +0,345 В по отношению к водородной или другой сопряженной паре, потенциал которой ниже, данная пара является окислителем. Потенциал данной пары образуется по второму механизму (реакции восстановления).

3. Чем выше алгебраическая величина стандартного потенциала пары, тем выше окислительная способность окисленной формы и ниже восстановительная способность восстановленной формы этой пары. Снижение величины положительного потенциала и возрастание отрицательного соответствует падению окислительной и росту восстановительной активности. Например:

Сопоставление значений стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?

Разность между стандартными окислительными потенциалами окисленной и восстановленной полупар называют электродвижущей силой (ЭДС).

Е0 = Еок- Евосст

Количественным критерием оценки возможности протекания той или иной окислительно-восстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

Для установления возможности самопроизвольного протекания в стандартных условиях ОВР необходимо:

G0298= - п F E0

Е> 0 G< 0 - самопроизвольно

Е < 0 G> 0 - обратно

Е = 0 G = 0 - химическое равновесие

Физико-химические принципы транспорта электронов в электронотранспортной цепи митохондрий .

Все типы окислительно-восстановительных процессов происходят при окислении субстратов в митохондриях, на внутренних мембранах которых размещаются ансамбли из ферментов – дегидрогеназ, коферментов (НАД+, ФАД, УБХ), серии цитохромов b, с1, c и фермента – цитохромоксидазы. Они образуют систему клеточной дыхательной цепи, с помощью которой происходит эстафетная передача протонов и электронов от субстрата к молекулам кислорода, доставленным гемоглобином к клетке.

Каждый компонент дыхательной цепи характеризуется определённым значением окислительно-восстановительного потенциала. Движение электронов по дыхательной цепи происходит ступенчато от веществ с низким потенциалом (-0,32 В) к веществам с более высоким потенциалом (+0,82 В), поскольку любое соединение может отдать электроны только соединению с более высоким окислительно-восстановительным потенциалом (таблица 1).

Таблица 1

Стандартные редокс-потенциалы биомолекул дыхательной цепи

СИСТЕМА

ПОЛУРЕАКЦИЯ

РЕДОКС-ПОТЕНЦИАЛ, В

НАД+/НАД×Н

НАД+ + Н+ + 2 ē → НАД×Н

ФАД/ФАД×Н2

ФАД+ + 2Н+ + 2 ē → ФАД×Н2

УБХ/ УБХ×Н2

УБХ+ 2Н+ + 2 ē → УБХ×Н2

цитохром b

цитохром с1

цитохром с

цитохром а + а3

О2 + 4 Н+ + 4 ē → 2 Н2О

Цепь тканевого дыхания можно представить в виде схемы:

В результате биологического окисления (дегидрирования) два атома водорода (в виде двух протонов и двух электронов) от субстрата поступают в дыхательную цепь. Сначала происходит эстафетная передача протона и пары электронов молекуле НАД+, превращающейся в восстановленную форму НАД× Н, затем системе флавиновых оснований (ФАД/ФАД× Н2 или ФМН/ФМН× Н2), следующим акцептором двух протонов и двух электронов является убихинон (УБХ). Далее происходит передача только электронов: два электрона от УБХ× Н2 принимают на себя последовательно цитохромы в соответствии с величинами их редокс-потенциалов (табл. 1). Последний из компонентов – цитохромоксидаза переносит электроны непосредственно молекуле кислорода. Восстановленный кислород с двумя протонами, полученными от УБХ× Н2 образует молекулу воды.

1/2 О2 + 2Н+ + 2 ē → Н2О

Необходимо отметить, что каждая молекула кислорода взаимодействует с двумя электронотранспортными цепями, поскольку в структуре цитохромов возможен только одноэлектронный перенос Fe3+ → Fe2+.

Химия комплексных соединений Типы окислительно-восстановительных (редокс) реакций в организме человека. Окислительно-восстановительными называются реакции, протекающие с изменением степени окисления двух или более веществ.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Различают три основных типа окислительно-восстановительных реакций:

1. Межмолекулярные (межмолекулярного окисления - восстановления).

К этому типу относятся наиболее многочисленные реакции, в которых атомы элемента окислителя и элемента восстановителя находятся в составе разных молекул веществ. Рассмотренные выше реакции относятся к этому типу.

2.Внутримолекулярные (внутримолекулярного окисления - восстановления).

К ним относятся реакции, в которых окислитель и восстановитель в виде атомов разных элементов находятся в составе одной и той же молекулы. По такому типу протекают реакции термического разложения соединений, например:

2KCIO 3 = 2KCI + 3O 2 .

3. Диспропорционирования (самоокисления - самовосстановления).

Это такие реакции, в которых окислителем и восстановителем является один и тот же элемент в одной и той же промежуточной степени окисления, которая в результате протекания реакции одновременно как снижается, так и повышается. Например:

3CI 0 2 + 6 KOH = 5 KCI + KCIO 3 + 3H 2 O,

3HCIO = HCIO 3 + 2HCI.

Окислительно-восстановительные реакции играют важную роль в природе и технике. В качестве примеров ОВР, протекающих в природных биологических системах, можно привести реакцию фотосинтеза у растений и процессы дыхания у животных и человека. Процессы горения топлива, протекающие в топках котлов тепловых электростанций и в двигателях внутреннего сгорания, являются примером ОВР.

ОВР используются при получении металлов, органических и неорганических соединений, проводят очистку различных веществ, природных и сточных вод.

9.5. Окислительно – восстановительные (электродные) потенциалы

Мерой окислительно – восстановительной способности веществ служат их электродные или окислительно – восстановительные потенциалы j ox / Red (редокс-потенциалы).1 Окислительно – восстановительный потенциал характеризует окислительно – восстановительную систему, состоящую из окисленной формы вещества (Ох), восстановленной формы (Red) и электронов. Принято записывать окислительно-восстановительные системы в виде обратимых реакций восстановления:

Ох + ne - D Red.

Механизм возникновения электродного потенциала . Механизм возникновения электродного или окислительно-восстановительного потенциала поясним на примере металла, погруженного в раствор, содержащий его ионы. Все металлы имеют кристаллическое строение. Кристаллическая решетка металла состоит из положительно заряженных ионов Me n + и свободных валентных электронов (электронный газ). В отсутствие водного раствора выход катионов металла из решетки металла невозможен, т.к. этот процесс требует больших энергетических затрат. При погружении металла в водный раствор соли, содержащей в своем составе катионы металла, полярные молекулы воды, соответственно ориентируясь у поверхности металла (электрода), взаимодействуют с поверхностными катионами металла (рис. 9.1).


В результате взаимодействия происходит окисление металла и его гидратированные ионы переходят в раствор, оставляя в металле электроны:

Ме (к) + m Н 2 Оокисление Ме n+ *m Н 2 О(р)+ nе-

Металл становится заряженным отрицательно, а раствор - положительно. Положительно заряженные ионы из раствора притягиваются к отрицательно заряженной поверхности металла (Ме). На границе металл - раствор возникает двойной электрический слой (рис.9.2). Разность потенциалов, возникающая между металлом и раствором, называется электродным потенциалом или окислительно - восстановительным потенциалом электрода φ Ме n + /Ме (φ Ox / Red в общем случае). Металл, погруженный в раствор собственной соли, является электродом (раздел 10.1). Условное обозначение металлического электрода Ме/Ме n + отражает участников электродного процесса.

По мере перехода ионов в раствор растет отрицательный заряд поверхности металла и положительный заряд раствора, что препятствует окислению (ионизации) металла.

Параллельно с процессом окисления протекает обратная реакция - восстановление ионов металла из раствора до атомов (осаждение металла) с потерей гидратной оболочки на поверхности металла:

Ме n+ * m Н 2 О(р) + nе- восстановление Ме(к) + m Н 2 О.

С увеличением разности потенциалов между электродом и раствором скорость прямой реакции падает, а обратной реакции растет. При некотором значении электродного потенциала скорость процесса окисления будет равна скорости процесса восстановления, устанавливается равновесие:

Ме n + * m Н 2 О (р) + nе - D Ме (к) + m Н 2 О.

Для упрощения гидратационную воду обычно в уравнение реакции не включают и оно записывается в виде

Ме n + (р) + nе - D Ме (к)

или в общем виде для любых других окислительно-восстановительных систем:

Ох + ne - D Red.

Потенциал, устанавливающийся в условиях равновесия электродной реакции, называется равновесным электродным потенциалом. В рассмотренном случае процесс ионизации в растворе термодинамически возможен, и поверхность металла заряжается отрицательно. Для некоторых металлов (менее активных) термодинамически более вероятным является процесс восстановления гидратированных ионов до металла, тогда их поверхность заряжается положительно, а слой прилегающего электролита - отрицательно.

Устройство водородного электрода. Абсолютные значения электродных потенциалов измерить нельзя, поэтому для характеристики электродных процессов пользуются их относительными значениями. Для этого находят разность потенциалов измеряемого электрода и электрода сравнения, потенциал которого условно принимают равным нулю. В качестве электрода сравнения часто применяется стандартный водородный электрод, относящийся к газовым электродам. В общем случае газовые электроды состоят из металлического проводника, контактирующего одновременно с газом и раствором, содержащим окисленную или восстановленную форму элемента, входящего в состав газа. Металлический проводник служит для подвода и отвода электронов и, кроме того, является катализатором электродной реакции. Металлический проводник не должен посылать в раствор собственные ионы. Удовлетворяют этим условиям платина и платиновые металлы.

Водородный электрод (рис. 9.3) представляет собой платиновую пластинку, покрытую тонким слоем рыхлой пористой пластины (для увеличения поверхности электрода) и опущенную в водный раствор серной кислоты с активностью (концентрацией) ионов Н + , равной единице.

Через раствор серной кислоты пропускают водород под атмосферным давлением. Платина (Pt) – инертный металл, который практически не взаимодействует с растворителем, растворами (не посылает свои ионы в раствор), но он способен адсорбировать молекулы, атомы, ионы других веществ. При контакте платины с молекулярным водородом происходит адсорбция водорода на платине. Адсорбированный водород, взаимодействуя с молекулами воды, переходит в раствор в виде ионов, оставляя в платине электроны. При этом платина заряжается отрицательно, а раствор – положительно. Возникает разность потенциалов между платиной и раствором. Наряду с переходом ионов в раствор идет обратный процесс – восстановление ионов Н + из раствора с образованием молекул водорода. Равновесие на водородном электроде можно представить уравнением

2Н + + 2е - D Н 2 .

Условное обозначение водородного электрода H 2 , Pt│H + . Потенциал водородного электрода в стандартных условиях (Т = 298 К, Р Н2 = 101,3 кПа, [Н + ]=1 моль/л, т.е. рН=0) принят условно равным нулю: j 0 2Н + / Н2 = 0 В.

Стандартные электродные потенциалы. Электродные потенциалы, измеренные по отношению к стандартному водородному электроду при стандартных условиях (Т=298К; для растворённых веществ концентрация (активность) С Red = С ох = 1 моль/л или для металлов С Ме n + = 1 моль/л, а для газообразных веществ Р=101,3 кПа), называют стандартными электродными потенциалами и обозначают j 0 О x / Red . Это справочные величины.

Окислительная способность веществ тем выше, чем больше алгебраическая величина их стандартного электродного (окислительно-восстановительного) потенциала. Напротив, чем меньше величина стандартного электродного потенциала реагирующего вещества, тем сильнее выражены его восстановительные свойства. Например, сравнение стандартных потенциалов систем

F 2 (г.) + 2e - D 2F(p.) j 0 = 2,87 В

H 2 (r.)+ 2e - D 2H (р.) j 0 = -2,25 В

показывает, что у молекул F 2 сильно выражена окислительная тенденция, а у ионов H- восстановительная.

Ряд напряжений металлов. Располагая металлы в ряд по мере возрастания алгебраической величины их стандартных электродных потенциалов, получают так называемый «Ряд стандартных электродных потенциалов» или «Ряд напряжений», или «Ряд активности металлов».

Положение металла в «Ряду стандартных электродных потенциалов» характеризует восстановительную способность атомов металла, а также окислительные свойства ионов металла в водных растворах при стандартных условиях. Чем меньше значение алгебраической величины стандартного электродного потенциала, тем большими восстановительными свойствами обладает данный металл в виде простого вещества, и тем слабее проявляют окислительные свойства его ионы и наоборот.

Например, литий (Li), имеющий самый низкий стандартный потенциал, относится к наиболее сильным восстановителям, а золото (Au), имеющее самое высокое значение стандартного потенциала, является очень слабым восстановителем и окисляется лишь при взаимодействии с очень сильными окислителями. Из данных «Ряда напряжений» видно, что ионы лития (Li +), калия (К +), кальция (Са 2+) и т.д. - самые слабые окислители, а к наиболее сильным окислителям принадлежат ионы ртути (Нg 2+), серебра (Аg +), палладия (Pd 2+), платины (Pt 2+), золота (Аu 3+ , Аu +).

Уравнение Нернста. Электродные потенциалы не являются неизменными. Они зависят от соотношения концентраций (активностей) окисленной и восстановленной форм вещества, от температуры, природы растворенного вещества и растворителя, рН среды и др. Эта зависимость описывается уравнением Нернста:

,

где j 0 О x / Red – стандартный электродный потенциал процесса; R – универсальная газовая постоянная; T – абсолютная температура; n - число электронов, участвующих в электродном процессе; а ох, а Red – активности (концентрации) окисленной и восстановленной форм вещества в электродной реакции; x и у – стехиометрические коэффициенты в уравнении электродной реакции; F- постоянная Фарадея.

Для случая, когда электроды металлические и устанавливающиеся на них равновесия описываются в общем виде

Ме n + + nе - D Ме,

уравнение Нернста можно упростить, приняв во внимание, что для твердых веществ активность постоянна и равна единице. Для 298 К, после подстановки а Ме =1 моль/л, x=y=1 и значений постоянных величин R=8,314 Дж/ К*моль; F = 96485 Кл / моль, заменяя активность а Ме n + на молярную концентрацию ионов металла в растворе С Ме n + и введя множитель 2,303 (переход к десятичным логарифмам), получим уравнение Нернста в виде

j Ме n + / Ме = j 0 Ме n + / Ме + lg С Ме n + .

Различают реакции межмолекулярные, внутримолекулярные и самоокисления–самовосстановления (или диспропорционирования) :

Если окислителем и восстановителем являются элементы, входящие в состав разных соединений, то реакцию называют межмолекулярной.

Пример: Na 2 S O 3 + O 2  Na 2 SO 4

вос–ль ок–ль

Если окислителем и восстановителем являются элементы, входящие в состав одного и того же соединения, то реакцию называют внутримолекулярной.

Пример: (N H 4) 2 Cr 2 O 7  N 2 + Cr 2 O 3 + H 2 O.

в–ль о–ль

Если окислителем и восстановителем является один и тот же элемент, при этом часть его атомов окисляется, а другая - восстанавливается, то реакцию называют самоокислением–самовосстановлением .

Пример: H 3 P O 3  H 3 P O 4 + P H 3

в–ль/о–ль

Такая классификация реакций оказывается удобной при определении потенциальных окислителя и восстановителя среди заданных веществ.

4 Определение возможности окислительно-восстановительных

реакций по степеням окисления элементов

Необходимым условием для взаимодействия веществ по окислительно–восстановительному типу является наличие потенциальных окислителя и восстановителя. Определение их рассмотрено выше, теперь покажем, как применить эти свойства для анализа возможности окислительно–восстановительной реакции (для водных растворов).

Примеры

1) HNO 3 + PbO 2  ... - реакция не идет, т.к. нет

о–ль о–ль потенциального восстановителя;

2) Zn + KI ... - реакция не идет, т.к. нет

в–ль в–ль потенциального окислителя;

3) KNO 2 +KBiO 3 +H 2 SO 4  ...- реакция возможна, если при этом

в–ль о–ль KNO 2 будет восстановителем;

4) KNO 2 + KI +H 2 SO 4  ... - реакция возможна, если при этом

о – ль в – ль KNO 2 будет окислителем;

5) KNO 2 + H 2 O 2  ... - реакция возможна, если при этом

в – ль о – ль H 2 O 2 будет окислителем, а KNO 2

Восстановителем (или наоборот);

6) KNO 2  ... - возможна реакция

о – ль / в – ль диспропорционирования

Наличие потенциальных окислителя и восстановителя является необходимым, но недостаточным условием для протекания реакции. Так, в рассмотренных выше примерах только в пятом можно сказать, что какая–то из двух возможных реакций произойдет; в остальных случаях необходима дополнительная информация: будет ли эта реакция энергетически выгодной.

5 Выбор окислителя (восстановителя) с помощью таблиц электродных потенциалов. Определение преимущественного направления окислительно-восстановительных реакций

Самопроизвольно протекают реакции, в результате которых уменьшается энергия Гиббса (G х.р. < 0). Для окислительно–восстановительных реакций G х.р. = - nFE 0 , где Е 0 - разность стандартных электродных потенциалов окислительной и восстановительной систем (E 0 = E 0 ок. – E 0 восст.) , F - число Фарадея (96500 Кулон/моль), n - число электронов, участвующих в элементарной реакции; E часто называют ЭДС реакции. Очевидно, что G 0 х.р. < 0, если E 0 х.р. >0.

в–ль о–ль сочетание двух

полуреакций:

Zn  Zn 2+ и Cu 2+  Cu;

первая из них, включающая восстановитель (Zn) и его окисленную форму (Zn 2+), называется восстановительной системой, вторая, включающая окислитель (Cu 2+) и его восстановленную форму (Cu), - окислительной системой.

Каждая из этих полуреакций характеризуется величиной электродного потенциала, которые обозначают, соответственно,

E восст. = E 0 Zn 2+ / Zn и E ок. = E 0 Cu 2+ / Cu .

Стандартные величины E 0 приводятся в справочниках:

E 0 Zn 2+ / Zn = - 0,77 В, E 0 Cu 2+ / Cu = + 0,34 В.

ЭДС =.E 0 = E 0 ок. – E 0 восст. = E 0 Cu 2+ / Cu - E 0 Zn 2+ / Zn =0,34 – (–0,77) = 1,1В.

Очевидно, что E 0 > 0 (и, соответственно, G 0 < 0), если E 0 ок. > E 0 восст. , т.е. окислительно–восстановительная реакция протекает в направлении, для которого электродный потенциал окислительной системы больше электродного потенциала восстановительной системы.

С помощью этого критерия можно определить, какая реакция, прямая или обратная, протекает преимущественно, а также выбрать окислитель (или восстановитель) для заданного вещества.

В рассмотренном выше примере E 0 ок. > E 0 восст. , следовательно, в стандартных условиях ионы меди можно восстановить металлическим цинком (что соответствует положению этих металлов в электрохимическом ряду)

Примеры

1. Определить, можно ли ионами Fe 3+ .окислить йодид–ионы.

Решение:

а) напишем схему возможной реакции: I – + Fe 3+  I 2 + Fe 2+ ,

в–ль о–ль

б) напишем полуреакции для окислительной и восстановительной систем и соответствующие им электродные потенциалы:

Fe 3+ + 2e –  Fe 2+ E 0 = + 0,77 B - окислительная система,

2I –  I 2 + 2e – E 0 = + 0,54 B - восстановительная система;

в) сравнив потенциалы этих систем, сделаем вывод, что заданная реакция возможна (в стандартных условиях).

2. Подобрать окислители (не менее трёх) для заданного превращения вещества и выбрать из них тот, при котором реакция протекает наиболее полно: Cr(OH) 3  CrO 4 2 – .

Решение:

а) найдем в справочнике E 0 CrO 4 2 – / Cr (OH)3 = - 0,13 В,

б) выберем с помощью справочника подходящие окислители (их потенциалы должны быть большими, чем - 0,13 В), при этом ориентируемся на наиболее типичные, “недефицитные” окислители (галогены - простые вещества, перекись водорода, перманганат калия и т.п.).

При этом окажется, что если превращению Br 2  2Br – соответствует один потенциал E 0 =+1,1 В, то для перманганат–ионов и перекиси водорода возможны варианты: E 0 MnO 4 – / Mn 2+ = + 1,51 B - в кислой среде,

E 0 MnO 4 – / MnO 2 = + 0,60 B - в нейтральной среде,

E 0 MnO 4 – / MnO 4 2 – = + 0,56 B - в щелочной среде,

E 0 H 2 O 2 / H 2 O = + 1,77 B - в кислой среде,

E 0 H 2 O 2/ OH – = + 0,88 B - в щелочной среде.

Учитывая, что заданный условием гидроксид хрома – амфотерный и поэтому существует только в слабощелочной или нейтральной среде, из выбранных окислителей подходят:

E 0 MnO4 – /MnO2 = + 0,60 B и. E 0 Br2 /Br – = + 1,1 B..

в) последнее условие, выбор оптимального окислителя из нескольких, решается на основании того, что реакция протекает тем полнее, чем отрицательнее для неё G 0 , что в свою очередь определяется величиной E 0:

Чем больше алгебраически величина E 0 , тем более полно протекает окислительно–восстановительная реакция, тем больше выход продуктов.

Из рассмотренных выше окислителей E 0 будет наибольшей для брома (Br 2).

Loading...Loading...