Multiplication of ordinary fractions examples. Multiplying fractions

In the middle and high school courses, students covered the topic “Fractions.” However, this concept is much broader than what is given in the learning process. Today, the concept of a fraction is encountered quite often, and not everyone can calculate any expression, for example, multiplying fractions.

What is a fraction?

Historically, fractional numbers arose out of the need to measure. As practice shows, there are often examples of determining the length of a segment and the volume of a rectangular rectangle.

Initially, students are introduced to the concept of a share. For example, if you divide a watermelon into 8 parts, then each person will get one-eighth of the watermelon. This one part of eight is called a share.

A share equal to ½ of any value is called half; ⅓ - third; ¼ - a quarter. Records of the form 5/8, 4/5, 2/4 are called ordinary fractions. A common fraction is divided into a numerator and a denominator. Between them is the fraction bar, or fraction bar. The fractional line can be drawn as either a horizontal or an oblique line. IN in this case it represents the division sign.

The denominator represents how many equal parts the quantity or object is divided into; and the numerator is how many identical shares are taken. The numerator is written above the fraction line, the denominator is written below it.

It is most convenient to show ordinary fractions on a coordinate ray. If a unit segment is divided into 4 equal parts, label each part Latin letter, then the result can be excellent visual material. So, point A shows a share equal to 1/4 of the entire unit segment, and point B marks 2/8 of a given segment.

Types of fractions

Fractions can be ordinary, decimal, and mixed numbers. In addition, fractions can be divided into proper and improper. This classification is more suitable for ordinary fractions.

A proper fraction is a number whose numerator is less than its denominator. Respectively, improper fraction- a number whose numerator is greater than its denominator. The second type is usually written as a mixed number. This expression consists of an integer and a fractional part. For example, 1½. 1 - whole part, ½ - fractional. However, if you need to carry out some manipulations with the expression (dividing or multiplying fractions, reducing or converting them), the mixed number is converted into an improper fraction.

A correct fractional expression is always less than one, and an incorrect one is always greater than or equal to 1.

As for this expression, we mean a record in which any number is represented, the denominator of the fractional expression of which can be expressed in terms of one with several zeros. If the fraction is proper, then the whole part is decimal notation will be equal to zero.

To write a decimal fraction, you must first write the whole part, separate it from the fraction using a comma, and then write the fraction expression. It must be remembered that after the decimal point the numerator must contain the same amount digital characters, how many zeros are in the denominator.

Example. Express the fraction 7 21 / 1000 in decimal notation.

Algorithm for converting an improper fraction to a mixed number and vice versa

It is incorrect to write an improper fraction in the answer to a problem, so it needs to be converted to a mixed number:

  • divide the numerator by the existing denominator;
  • V specific example incomplete quotient - whole;
  • and the remainder is the numerator of the fractional part, with the denominator remaining unchanged.

Example. Convert improper fraction to mixed number: 47 / 5.

Solution. 47: 5. The partial quotient is 9, the remainder = 2. So, 47 / 5 = 9 2 / 5.

Sometimes you need to represent a mixed number as an improper fraction. Then you need to use the following algorithm:

  • the integer part is multiplied by the denominator of the fractional expression;
  • the resulting product is added to the numerator;
  • the result is written in the numerator, the denominator remains unchanged.

Example. Present the number in mixed form as an improper fraction: 9 8 / 10.

Solution. 9 x 10 + 8 = 90 + 8 = 98 is the numerator.

Answer: 98 / 10.

Multiplying fractions

Various algebraic operations can be performed on ordinary fractions. To multiply two numbers, you need to multiply the numerator with the numerator, and the denominator with the denominator. Moreover, multiplying fractions with different denominators is no different from the product fractional numbers with the same denominators.

It happens that after finding the result you need to reduce the fraction. IN mandatory you need to simplify the resulting expression as much as possible. Of course, one cannot say that an improper fraction in an answer is an error, but it is also difficult to call it a correct answer.

Example. Find the product of two ordinary fractions: ½ and 20/18.

As can be seen from the example, after finding the product, a reducible fractional notation is obtained. Both the numerator and the denominator in this case are divided by 4, and the result is the answer 5 / 9.

Multiplying decimal fractions

The product of decimal fractions is quite different from the product of ordinary fractions in its principle. So, multiplying fractions is as follows:

  • two decimal fractions must be written one under the other so that the rightmost digits are one under the other;
  • you need to multiply the written numbers, despite the commas, that is, as natural numbers;
  • count the number of digits after the decimal point in each number;
  • in the result obtained after multiplication, you need to count from the right as many digital symbols as are contained in the sum in both factors after the decimal point, and put a separating sign;
  • if there are fewer numbers in the product, then you need to write as many zeros in front of them to cover this number, put a comma and add the whole part equal to zero.

Example. Calculate the product of two decimal fractions: 2.25 and 3.6.

Solution.

Multiplying mixed fractions

To calculate the product of two mixed fractions, you need to use the rule for multiplying fractions:

  • convert mixed numbers into improper fractions;
  • find the product of the numerators;
  • find the product of denominators;
  • write down the result;
  • simplify the expression as much as possible.

Example. Find the product of 4½ and 6 2/5.

Multiplying a number by a fraction (fractions by a number)

In addition to finding the product of two fractions and mixed numbers, there are tasks where you need to multiply by a fraction.

So, to find the product decimal and a natural number, you need:

  • write the number under the fraction so that the rightmost digits are one above the other;
  • find the product despite the comma;
  • in the resulting result, separate the integer part from the fractional part using a comma, counting from the right the number of digits that are located after the decimal point in the fraction.

To multiply a common fraction by a number, you need to find the product of the numerator and the natural factor. If the answer produces a fraction that can be reduced, it should be converted.

Example. Calculate the product of 5 / 8 and 12.

Solution. 5 / 8 * 12 = (5*12) / 8 = 60 / 8 = 30 / 4 = 15 / 2 = 7 1 / 2.

Answer: 7 1 / 2.

As you can see from the previous example, it was necessary to reduce the resulting result and convert the incorrect fractional expression into a mixed number.

Multiplication of fractions also concerns finding the product of a number in mixed form and a natural factor. To multiply these two numbers, you should multiply the whole part of the mixed factor by the number, multiply the numerator by the same value, and leave the denominator unchanged. If necessary, you need to simplify the resulting result as much as possible.

Example. Find the product of 9 5 / 6 and 9.

Solution. 9 5 / 6 x 9 = 9 x 9 + (5 x 9) / 6 = 81 + 45 / 6 = 81 + 7 3 / 6 = 88 1 / 2.

Answer: 88 1 / 2.

Multiplication by factors of 10, 100, 1000 or 0.1; 0.01; 0.001

The following rule follows from the previous paragraph. To multiply a decimal fraction by 10, 100, 1000, 10000, etc., you need to move the decimal point to the right by as many digits as there are zeros in the factor after the one.

Example 1. Find the product of 0.065 and 1000.

Solution. 0.065 x 1000 = 0065 = 65.

Answer: 65.

Example 2. Find the product of 3.9 and 1000.

Solution. 3.9 x 1000 = 3.900 x 1000 = 3900.

Answer: 3900.

If you need to multiply natural number and 0.1; 0.01; 0.001; 0.0001, etc., you should move the comma in the resulting product to the left by as many digit characters as there are zeros before one. If necessary, a sufficient number of zeros are written before the natural number.

Example 1. Find the product of 56 and 0.01.

Solution. 56 x 0.01 = 0056 = 0.56.

Answer: 0,56.

Example 2. Find the product of 4 and 0.001.

Solution. 4 x 0.001 = 0004 = 0.004.

Answer: 0,004.

So, finding the product of different fractions should not cause any difficulties, except perhaps calculating the result; in this case, you simply cannot do without a calculator.

Multiplying and dividing fractions.

Attention!
There are additional
materials in Special Section 555.
For those who are very "not very..."
And for those who “very much…”)

This operation is much nicer than addition-subtraction! Because it's easier. As a reminder, to multiply a fraction by a fraction, you need to multiply the numerators (this will be the numerator of the result) and the denominators (this will be the denominator). That is:

For example:

Everything is extremely simple. And please don't look for a common denominator! There is no need for him here...

To divide a fraction by a fraction, you need to reverse second(this is important!) fraction and multiply them, i.e.:

For example:

If you come across multiplication or division with integers and fractions, it’s okay. As with addition, we make a fraction from a whole number with one in the denominator - and go ahead! For example:

In high school, you often have to deal with three-story (or even four-story!) fractions. For example:

How can I make this fraction look decent? Yes, very simple! Use two-point division:

But don't forget about the order of division! Unlike multiplication, this is very important here! Of course, we will not confuse 4:2 or 2:4. But it’s easy to make a mistake in a three-story fraction. Please note for example:

In the first case (expression on the left):

In the second (expression on the right):

Do you feel the difference? 4 and 1/9!

What determines the order of division? Either with brackets, or (as here) with the length of horizontal lines. Develop your eye. And if there are no brackets or dashes, like:

then divide and multiply in order, from left to right!

And another very simple and important technique. In actions with degrees, it will be so useful to you! Let's divide one by any fraction, for example, by 13/15:

The shot has turned over! And this always happens. When dividing 1 by any fraction, the result is the same fraction, only upside down.

That's it for operations with fractions. The thing is quite simple, but it gives more than enough errors. Note practical advice, and there will be fewer of them (errors)!

Practical tips:

1. The most important thing when working with fractional expressions is accuracy and attentiveness! These are not general words, not good wishes! This is a dire necessity! Do all calculations on the Unified State Exam as a full-fledged task, focused and clear. It’s better to write two extra lines in your draft than to mess up when doing mental calculations.

2. In examples with different types fractions - go to ordinary fractions.

3. We reduce all fractions until they stop.

4. We reduce multi-level fractional expressions to ordinary ones using division through two points (we follow the order of division!).

5. Divide a unit by a fraction in your head, simply turning the fraction over.

Here are the tasks that you must definitely complete. Answers are given after all tasks. Use the materials on this topic and practical tips. Estimate how many examples you were able to solve correctly. The first time! Without a calculator! And draw the right conclusions...

Remember - the correct answer is received from the second (especially the third) time does not count! Such is the harsh life.

So, solve in exam mode ! This is already preparation for the Unified State Exam, by the way. We solve the example, check it, solve the next one. We decided everything - checked again from first to last. But only Then look at the answers.

Calculate:

Have you decided?

We are looking for answers that match yours. I deliberately wrote them down in disarray, away from temptation, so to speak... Here they are, the answers, written with semicolons.

0; 17/22; 3/4; 2/5; 1; 25.

Now we draw conclusions. If everything worked out, I’m happy for you! Basic calculations with fractions are not your problem! You can do more serious things. If not...

So you have one of two problems. Or both at once.) Lack of knowledge and (or) inattention. But this solvable Problems.

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Let's learn - with interest!)

You can get acquainted with functions and derivatives.

) and denominator by denominator (we get the denominator of the product).

Formula for multiplying fractions:

For example:

Before you begin multiplying numerators and denominators, you need to check whether the fraction can be reduced. If you can reduce the fraction, it will be easier for you to make further calculations.

Dividing a common fraction by a fraction.

Dividing fractions involving natural numbers.

It's not as scary as it seems. As in the case of addition, we convert the integer into a fraction with one in the denominator. For example:

Multiplying mixed fractions.

Rules for multiplying fractions (mixed):

  • convert mixed fractions to improper fractions;
  • multiplying the numerators and denominators of fractions;
  • reduce the fraction;
  • If you get an improper fraction, then we convert the improper fraction into a mixed fraction.

Note! To multiply a mixed fraction by another mixed fraction, you first need to convert them to the form of improper fractions, and then multiply according to the rule for multiplying ordinary fractions.

The second way to multiply a fraction by a natural number.

It may be more convenient to use the second method of multiplying a common fraction by a number.

Note! To multiply a fraction by a natural number, you must divide the denominator of the fraction by this number, and leave the numerator unchanged.

From the example given above, it is clear that this option is more convenient to use when the denominator of a fraction is divided without a remainder by a natural number.

Multistory fractions.

In high school, three-story (or more) fractions are often encountered. Example:

To bring such a fraction to its usual form, use division through 2 points:

Note! When dividing fractions, the order of division is very important. Be careful, it's easy to get confused here.

Note, For example:

When dividing one by any fraction, the result will be the same fraction, only inverted:

Practical tips for multiplying and dividing fractions:

1. The most important thing when working with fractional expressions is accuracy and attentiveness. Do all calculations carefully and accurately, concentratedly and clearly. It's better to write a few extra lines in your draft than to get lost in mental calculations.

2. In tasks with different types of fractions, go to the type of ordinary fractions.

3. We reduce all fractions until it is no longer possible to reduce.

4. We transform multi-level fractional expressions into ordinary ones using division through 2 points.

5. Divide a unit by a fraction in your head, simply turning the fraction over.

In the fifth century BC ancient Greek philosopher Zeno of Elea formulated his famous aporias, the most famous of which is the aporia “Achilles and the Tortoise.” Here's what it sounds like:

Let's say Achilles runs ten times faster than the tortoise and is a thousand steps behind it. During the time it takes Achilles to run this distance, the tortoise will crawl a hundred steps in the same direction. When Achilles runs a hundred steps, the tortoise crawls another ten steps, and so on. The process will continue ad infinitum, Achilles will never catch up with the tortoise.

This reasoning became a logical shock for all subsequent generations. Aristotle, Diogenes, Kant, Hegel, Hilbert... They all considered Zeno's aporia in one way or another. The shock was so strong that " ... discussions continue to this day; the scientific community has not yet been able to come to a common opinion on the essence of paradoxes ... mathematical analysis, set theory, new physical and philosophical approaches were involved in the study of the issue; none of them became a generally accepted solution to the problem..."[Wikipedia, "Zeno's Aporia". Everyone understands that they are being fooled, but no one understands what the deception consists of.

From a mathematical point of view, Zeno in his aporia clearly demonstrated the transition from quantity to . This transition implies application instead of permanent ones. As far as I understand, the mathematical apparatus for using variable units of measurement has either not yet been developed, or it has not been applied to Zeno’s aporia. Applying our usual logic leads us into a trap. We, due to the inertia of thinking, apply constant units of time to the reciprocal value. From a physical point of view, this looks like time slowing down until it stops completely at the moment when Achilles catches up with the turtle. If time stops, Achilles can no longer outrun the tortoise.

If we turn our usual logic around, everything falls into place. Achilles runs at a constant speed. Each subsequent segment of his path is ten times shorter than the previous one. Accordingly, the time spent on overcoming it is ten times less than the previous one. If we apply the concept of “infinity” in this situation, then it would be correct to say “Achilles will catch up with the turtle infinitely quickly.”

How to avoid this logical trap? Remain in constant units of time and do not jump to reciprocals. In Zeno's language it looks like this:

In the time it takes Achilles to run a thousand steps, the tortoise will crawl a hundred steps in the same direction. During the next time interval equal to the first, Achilles will run another thousand steps, and the tortoise will crawl a hundred steps. Now Achilles is eight hundred steps ahead of the tortoise.

This approach adequately describes reality without any logical paradoxes. But this is not a complete solution to the problem. Einstein’s statement about the irresistibility of the speed of light is very similar to Zeno’s aporia “Achilles and the Tortoise”. We still have to study, rethink and solve this problem. And the solution must be sought not in infinitely large numbers, but in units of measurement.

Another interesting aporia of Zeno tells about a flying arrow:

A flying arrow is motionless, since at every moment of time it is at rest, and since it is at rest at every moment of time, it is always at rest.

In this aporia, the logical paradox is overcome very simply - it is enough to clarify that at each moment of time a flying arrow is at rest at different points in space, which, in fact, is motion. Another point needs to be noted here. From one photograph of a car on the road it is impossible to determine either the fact of its movement or the distance to it. To determine whether a car is moving, you need two photographs taken from the same point at different points in time, but you cannot determine the distance from them. To determine the distance to a car, you need two photographs taken from different points in space at one point in time, but from them you cannot determine the fact of movement (of course, you still need additional data for calculations, trigonometry will help you). What I want to point out Special attention, is that two points in time and two points in space are different things that should not be confused, because they provide different opportunities for research.

Wednesday, July 4, 2018

The differences between set and multiset are described very well on Wikipedia. Let's see.

As you can see, “there cannot be two identical elements in a set,” but if there are identical elements in a set, such a set is called a “multiset.” Reasonable beings will never understand such absurd logic. This is the level of talking parrots and trained monkeys, who have no intelligence from the word “completely”. Mathematicians act as ordinary trainers, preaching to us their absurd ideas.

Once upon a time, the engineers who built the bridge were in a boat under the bridge while testing the bridge. If the bridge collapsed, the mediocre engineer died under the rubble of his creation. If the bridge could withstand the load, the talented engineer built other bridges.

No matter how mathematicians hide behind the phrase “mind me, I’m in the house,” or rather, “mathematics studies abstract concepts,” there is one umbilical cord that inextricably connects them with reality. This umbilical cord is money. Let us apply mathematical set theory to mathematicians themselves.

We studied mathematics very well and now we are sitting at the cash register, giving out salaries. So a mathematician comes to us for his money. We count out the entire amount to him and lay it out on our table in different piles, into which we put bills of the same denomination. Then we take one bill from each pile and give the mathematician his “mathematical set of salary.” Let us explain to the mathematician that he will receive the remaining bills only when he proves that a set without identical elements is not equal to a set with identical elements. This is where the fun begins.

First of all, the logic of the deputies will work: “This can be applied to others, but not to me!” Then they will begin to reassure us that bills of the same denomination have different bill numbers, which means they cannot be considered the same elements. Okay, let's count salaries in coins - there are no numbers on the coins. Here the mathematician will begin to frantically remember physics: on different coins there is different quantities dirt, crystal structure and atomic arrangement of each coin is unique...

And now I have the most interest Ask: where is the line beyond which the elements of a multiset turn into elements of a set and vice versa? Such a line does not exist - everything is decided by shamans, science is not even close to lying here.

Look here. We select football stadiums with the same field area. The areas of the fields are the same - which means we have a multiset. But if we look at the names of these same stadiums, we get many, because the names are different. As you can see, the same set of elements is both a set and a multiset. Which is correct? And here the mathematician-shaman-sharpist pulls out an ace of trumps from his sleeve and begins to tell us either about a set or a multiset. In any case, he will convince us that he is right.

To understand how modern shamans operate with set theory, tying it to reality, it is enough to answer one question: how do the elements of one set differ from the elements of another set? I'll show you, without any "conceivable as not a single whole" or "not conceivable as a single whole."

Sunday, March 18, 2018

The sum of the digits of a number is a dance of shamans with a tambourine, which has nothing to do with mathematics. Yes, in mathematics lessons we are taught to find the sum of the digits of a number and use it, but that’s why they are shamans, to teach their descendants their skills and wisdom, otherwise shamans will simply die out.

Do you need proof? Open Wikipedia and try to find the page "Sum of digits of a number." She doesn't exist. There is no formula in mathematics that can be used to find the sum of the digits of any number. After all, numbers are graphic symbols with which we write numbers, and in the language of mathematics the task sounds like this: “Find the sum of graphic symbols representing any number.” Mathematicians cannot solve this problem, but shamans can do it easily.

Let's figure out what and how we do in order to find the sum of the digits of a given number. And so, let us have the number 12345. What needs to be done in order to find the sum of the digits of this number? Let's consider all the steps in order.

1. Write down the number on a piece of paper. What have we done? We have converted the number into a graphical number symbol. This is not a mathematical operation.

2. We cut one resulting picture into several pictures containing individual numbers. Cutting a picture is not a mathematical operation.

3. Convert individual graphic symbols into numbers. This is not a mathematical operation.

4. Add the resulting numbers. Now this is mathematics.

The sum of the digits of the number 12345 is 15. These are the “cutting and sewing courses” taught by shamans that mathematicians use. But that is not all.

From a mathematical point of view, it does not matter in which number system we write a number. So, in different systems In calculus, the sum of the digits of the same number will be different. In mathematics, the number system is indicated as a subscript to the right of the number. WITH a large number 12345 I don’t want to fool my head, let’s look at the number 26 from the article about . Let's write this number in binary, octal, decimal and hexadecimal number systems. We won't look at every step under a microscope; we've already done that. Let's look at the result.

As you can see, in different number systems the sum of the digits of the same number is different. This result has nothing to do with mathematics. It’s the same as if you determined the area of ​​a rectangle in meters and centimeters, you would get completely different results.

Zero looks the same in all number systems and has no sum of digits. This is another argument in favor of the fact that. Question for mathematicians: how is something that is not a number designated in mathematics? What, for mathematicians nothing exists except numbers? I can allow this for shamans, but not for scientists. Reality is not just about numbers.

The result obtained should be considered as proof that number systems are units of measurement for numbers. After all, we cannot compare numbers with different units measurements. If the same actions with different units of measurement of the same quantity lead to different results after comparing them, then this has nothing to do with mathematics.

What is real mathematics? This is when the result mathematical operation does not depend on the size of the number, the unit of measurement used and who performs the action.

Sign on the door He opens the door and says:

Oh! Isn't this the women's restroom?
- Young woman! This is a laboratory for the study of the indephilic holiness of souls during their ascension to heaven! Halo on top and arrow up. What other toilet?

Female... The halo on top and the arrow down are male.

If such a work of design art flashes before your eyes several times a day,

Then it’s not surprising that you suddenly find a strange icon in your car:

Personally, I make an effort to see minus four degrees in a pooping person (one picture) (a composition of several pictures: a minus sign, the number four, a designation of degrees). And I don't think this girl is stupid, no knowledgeable in physics. She just has a strong stereotype of perceiving graphic images. And mathematicians teach us this all the time. Here's an example.

1A is not “minus four degrees” or “one a”. This is "pooping man" or the number "twenty-six" in hexadecimal notation. Those people who constantly work in this number system automatically perceive a number and a letter as one graphic symbol.

We will consider the multiplication of ordinary fractions in several possible options.

Multiplying a common fraction by a fraction

This is the simplest case in which you need to use the following rules for multiplying fractions.

To multiply fraction by fraction, necessary:

  • multiply the numerator of the first fraction by the numerator of the second fraction and write their product into the numerator of the new fraction;
  • multiply the denominator of the first fraction by the denominator of the second fraction and write their product into the denominator of the new fraction;
  • Before multiplying numerators and denominators, check to see if the fractions can be reduced. Reducing fractions in calculations will make your calculations much easier.

    Multiplying a fraction by a natural number

    To make a fraction multiply by a natural number You need to multiply the numerator of the fraction by this number, and leave the denominator of the fraction unchanged.

    If the result of multiplication is an improper fraction, do not forget to turn it into a mixed number, that is, highlight the whole part.

    Multiplying mixed numbers

    To multiply mixed numbers, you must first turn them into improper fractions and then multiply according to the rule for multiplying ordinary fractions.

    Another way to multiply a fraction by a natural number

    Sometimes when making calculations it is more convenient to use another method of multiplying a common fraction by a number.

    To multiply a fraction by a natural number, you need to divide the denominator of the fraction by this number, and leave the numerator the same.

    As can be seen from the example, this version of the rule is more convenient to use if the denominator of the fraction is divisible by a natural number without a remainder.

    Operations with fractions

    Adding fractions with like denominators

    There are two types of addition of fractions:

  • Adding fractions with like denominators
  • Adding fractions with different denominators
  • First, let's learn the addition of fractions with like denominators. Everything is simple here. To add fractions with the same denominators, you need to add their numerators and leave the denominator unchanged. For example, let's add the fractions and . Add the numerators and leave the denominator unchanged:

    This example can be easily understood if we remember the pizza, which is divided into four parts. If you add pizza to pizza, you get pizza:

    Example 2. Add fractions and .

    Again, we add up the numerators and leave the denominator unchanged:

    The answer turned out to be an improper fraction. When the end of the task comes, it is customary to get rid of improper fractions. To get rid of an improper fraction, you need to select the whole part of it. In our case, the whole part is easily isolated - two divided by two equals one:

    This example can be easily understood if we remember about a pizza that is divided into two parts. If you add more pizza to the pizza, you get one whole pizza:

    Example 3. Add fractions and .

    This example can be easily understood if we remember the pizza, which is divided into three parts. If you add more pizza to the pizza, you get pizza:

    Example 4. Find the value of an expression

    This example is solved in exactly the same way as the previous ones. The numerators must be added and the denominator left unchanged:

    Let's try to depict our solution using a drawing. If you add pizzas to a pizza and add more pizzas, you get 1 whole pizza and more pizzas.

    As you can see, there is nothing complicated about adding fractions with the same denominators. It is enough to understand the following rules:

  1. To add fractions with the same denominator, you need to add their numerators and leave the denominator the same;
  2. If the answer turns out to be an improper fraction, then you need to highlight the whole part of it.
  3. Adding fractions with different denominators

    Now let's learn how to add fractions with different denominators. When adding fractions, the denominators of the fractions must be the same. But they are not always the same.

    For example, fractions can be added because they have the same denominators.

    But fractions cannot be added right away, since these fractions different denominators. In such cases, fractions must be reduced to the same (common) denominator.

    There are several ways to reduce fractions to the same denominator. Today we will look at only one of them, since the other methods may seem complicated for a beginner.

    The essence of this method is that first we look for the least common multiple (LCM) of the denominators of both fractions. The LCM is then divided by the denominator of the first fraction to obtain the first additional factor. They do the same with the second fraction - the LCM is divided by the denominator of the second fraction and a second additional factor is obtained.

    The numerators and denominators of the fractions are then multiplied by their additional factors. As a result of these actions, fractions that had different denominators turn into fractions that have the same denominators. And we already know how to add such fractions.

    Example 1. Let's add the fractions and

    These fractions have different denominators, so you need to reduce them to the same (common) denominator.

    First of all, we find the least common multiple of the denominators of both fractions. The denominator of the first fraction is the number 3, and the denominator of the second fraction is the number 2. The least common multiple of these numbers is 6

    LCM (2 and 3) = 6

    Now let's return to fractions and . First, divide the LCM by the denominator of the first fraction and get the first additional factor. LCM is the number 6, and the denominator of the first fraction is the number 3. Divide 6 by 3, we get 2.

    The resulting number 2 is the first additional multiplier. We write it down to the first fraction. To do this, make a small oblique line over the fraction and write down the additional factor found above it:

    We do the same with the second fraction. We divide the LCM by the denominator of the second fraction and get the second additional factor. LCM is the number 6, and the denominator of the second fraction is the number 2. Divide 6 by 2, we get 3.

    The resulting number 3 is the second additional multiplier. We write it down to the second fraction. Again, we make a small oblique line over the second fraction and write down the additional factor found above it:

    Now we have everything ready for addition. It remains to multiply the numerators and denominators of the fractions by their additional factors:

    Look carefully at what we have come to. We came to the conclusion that fractions that had different denominators turned into fractions that had the same denominators. And we already know how to add such fractions. Let's take this example to the end:

    This completes the example. It turns out to add .

    Let's try to depict our solution using a drawing. If you add pizza to a pizza, you get one whole pizza and another sixth of a pizza:

    Reducing fractions to the same (common) denominator can also be depicted using a picture. Reducing the fractions and to a common denominator, we got the fractions and . These two fractions will be represented by the same pieces of pizza. The only difference will be that this time they will be divided into equal shares (reduced to the same denominator).

    The first drawing represents a fraction (four pieces out of six), and the second drawing represents a fraction (three pieces out of six). Adding these pieces we get (seven pieces out of six). This fraction is improper, so we highlighted the whole part of it. As a result, we got (one whole pizza and another sixth pizza).

    Please note that we have described this example in too much detail. IN educational institutions It’s not customary to write in such detail. You need to be able to quickly find the LCM of both denominators and additional factors to them, as well as quickly multiply the found additional factors by your numerators and denominators. If we were at school, we would have to write this example as follows:

    But there is also back side medals. If you do not take detailed notes in the first stages of studying mathematics, then questions of the sort begin to appear. “Where does that number come from?”, “Why do fractions suddenly turn into completely different fractions? «.

    To make it easier to add fractions with different denominators, you can use the following step-by-step instructions:

  4. Find the LCM of the denominators of fractions;
  5. Divide the LCM by the denominator of each fraction and obtain an additional factor for each fraction;
  6. Multiply the numerators and denominators of fractions by their additional factors;
  7. Add fractions that have the same denominators;
  8. If the answer turns out to be an improper fraction, then select its whole part;
  9. Example 2. Find the value of an expression .

    Let's use the diagram we provided above.

    Step 1. Find the LCM for the denominators of the fractions

    Find the LCM for the denominators of both fractions. The denominators of the fractions are the numbers 2, 3 and 4. You need to find the LCM for these numbers:

    Step 2. Divide the LCM by the denominator of each fraction and obtain an additional factor for each fraction

    Divide the LCM by the denominator of the first fraction. LCM is the number 12, and the denominator of the first fraction is the number 2. Divide 12 by 2, we get 6. We got the first additional factor 6. We write it above the first fraction:

    Now we divide the LCM by the denominator of the second fraction. LCM is the number 12, and the denominator of the second fraction is the number 3. Divide 12 by 3, we get 4. We get the second additional factor 4. We write it above the second fraction:

    Now we divide the LCM by the denominator of the third fraction. LCM is the number 12, and the denominator of the third fraction is the number 4. Divide 12 by 4, we get 3. We get the third additional factor 3. We write it above the third fraction:

    Step 3. Multiply the numerators and denominators of the fractions by their additional factors

    We multiply the numerators and denominators by their additional factors:

    Step 4. Add fractions with the same denominators

    We came to the conclusion that fractions that had different denominators turned into fractions that had the same (common) denominators. All that remains is to add these fractions. Add it up:

    The addition didn't fit on one line, so we moved the remaining expression to the next line. This is allowed in mathematics. When an expression does not fit on one line, it is moved to the next line, and it is necessary to put an equal sign (=) at the end of the first line and at the beginning of the new line. The equal sign on the second line indicates that this is a continuation of the expression that was on the first line.

    Step 5. If the answer turns out to be an improper fraction, then highlight its whole part

    Our answer turned out to be an improper fraction. We have to highlight a whole part of it. We highlight:

    We received an answer

    Subtracting fractions with like denominators

    There are two types of subtraction of fractions:

  10. Subtracting fractions with like denominators
  11. Subtracting fractions with different denominators

First, let's learn how to subtract fractions with like denominators. Everything is simple here. To subtract another from one fraction, you need to subtract the numerator of the second fraction from the numerator of the first fraction, but leave the denominator the same.

For example, let's find the value of the expression . To solve this example, you need to subtract the numerator of the second fraction from the numerator of the first fraction, and leave the denominator the same. Let's do this:

This example can be easily understood if we remember the pizza, which is divided into four parts. If you cut pizzas from a pizza, you get pizzas:

Example 2. Find the value of the expression.

Again, from the numerator of the first fraction, subtract the numerator of the second fraction, and leave the denominator the same:

This example can be easily understood if we remember the pizza, which is divided into three parts. If you cut pizzas from a pizza, you get pizzas:

Example 3. Find the value of an expression

This example is solved in exactly the same way as the previous ones. From the numerator of the first fraction you need to subtract the numerators of the remaining fractions:

The answer was an improper fraction. If the example is completed, then it is customary to get rid of the improper fraction. Let's get rid of the improper fraction in the answer. To do this, let’s select its entire part:

As you can see, there is nothing complicated about subtracting fractions with the same denominators. It is enough to understand the following rules:

  • To subtract another from one fraction, you need to subtract the numerator of the second fraction from the numerator of the first fraction, and leave the denominator the same;
  • If the answer turns out to be an improper fraction, then you need to highlight its whole part.
  • Subtracting fractions with different denominators

    For example, you can subtract a fraction from a fraction because the fractions have the same denominators. But you cannot subtract a fraction from a fraction, since these fractions have different denominators. In such cases, fractions must be reduced to the same (common) denominator.

    The common denominator is found using the same principle that we used when adding fractions with different denominators. First of all, find the LCM of the denominators of both fractions. Then the LCM is divided by the denominator of the first fraction and the first additional factor is obtained, which is written above the first fraction. Similarly, the LCM is divided by the denominator of the second fraction and a second additional factor is obtained, which is written above the second fraction.

    The fractions are then multiplied by their additional factors. As a result of these operations, fractions that had different denominators are converted into fractions that have the same denominators. And we already know how to subtract such fractions.

    Example 1. Find the meaning of the expression:

    First we find the LCM of the denominators of both fractions. The denominator of the first fraction is the number 3, and the denominator of the second fraction is the number 4. The least common multiple of these numbers is 12

    LCM (3 and 4) = 12

    Now let's return to fractions and

    Let's find an additional factor for the first fraction. To do this, divide the LCM by the denominator of the first fraction. LCM is the number 12, and the denominator of the first fraction is the number 3. Divide 12 by 3, we get 4. Write a four above the first fraction:

    We do the same with the second fraction. Divide the LCM by the denominator of the second fraction. LCM is the number 12, and the denominator of the second fraction is the number 4. Divide 12 by 4, we get 3. Write a three over the second fraction:

    Now we are ready for subtraction. It remains to multiply the fractions by their additional factors:

    We came to the conclusion that fractions that had different denominators turned into fractions that had the same denominators. And we already know how to subtract such fractions. Let's take this example to the end:

    We received an answer

    Let's try to depict our solution using a drawing. If you cut pizza from a pizza, you get pizza

    This is the detailed version of the solution. If we were at school, we would have to solve this example shorter. Such a solution would look like this:

    Reducing fractions to a common denominator can also be depicted using a picture. Reducing these fractions to a common denominator, we got the fractions and . These fractions will be represented by the same pizza slices, but this time they will be divided into equal shares (reduced to the same denominator):

    The first picture shows a fraction (eight pieces out of twelve), and the second picture shows a fraction (three pieces out of twelve). By cutting three pieces from eight pieces, we get five pieces out of twelve. The fraction describes these five pieces.

    Example 2. Find the value of an expression

    These fractions have different denominators, so first you need to reduce them to the same (common) denominator.

    Let's find the LCM of the denominators of these fractions.

    The denominators of the fractions are the numbers 10, 3 and 5. The least common multiple of these numbers is 30

    LCM(10, 3, 5) = 30

    Now we find additional factors for each fraction. To do this, divide the LCM by the denominator of each fraction.

    Let's find an additional factor for the first fraction. LCM is the number 30, and the denominator of the first fraction is the number 10. Divide 30 by 10, we get the first additional factor 3. We write it above the first fraction:

    Now we find an additional factor for the second fraction. Divide the LCM by the denominator of the second fraction. LCM is the number 30, and the denominator of the second fraction is the number 3. Divide 30 by 3, we get the second additional factor 10. We write it above the second fraction:

    Now we find an additional factor for the third fraction. Divide the LCM by the denominator of the third fraction. LCM is the number 30, and the denominator of the third fraction is the number 5. Divide 30 by 5, we get the third additional factor 6. We write it above the third fraction:

    Now everything is ready for subtraction. It remains to multiply the fractions by their additional factors:

    We came to the conclusion that fractions that had different denominators turned into fractions that had the same (common) denominators. And we already know how to subtract such fractions. Let's finish this example.

    The continuation of the example will not fit on one line, so we move the continuation to the next line. Don't forget about the equal sign (=) on the new line:

    The answer turned out to be a regular fraction, and everything seems to suit us, but it is too cumbersome and ugly. It would be necessary to make it simpler and more aesthetically pleasing. What can be done? You can shorten this fraction. Recall that reducing a fraction is dividing the numerator and denominator by the largest common divisor numerator and denominator.

    To correctly reduce a fraction, you need to divide its numerator and denominator by the greatest common divisor (GCD) of the numbers 20 and 30.

    GCD should not be confused with NOC. The most common mistake of many beginners. GCD is the greatest common divisor. We find it to reduce a fraction.

    And LCM is the least common multiple. We find it in order to bring fractions to the same (common) denominator.

    Now we will find the greatest common divisor (GCD) of the numbers 20 and 30.

    So, we find GCD for numbers 20 and 30:

    GCD (20 and 30) = 10

    Now we return to our example and divide the numerator and denominator of the fraction by 10:

    We received a beautiful answer

    Multiplying a fraction by a number

    To multiply a fraction by a number, you need to multiply the numerator of the given fraction by that number and leave the denominator the same.

    Example 1. Multiply a fraction by the number 1.

    Multiply the numerator of the fraction by the number 1

    The recording can be understood as taking half 1 time. For example, if you take pizza once, you get pizza

    From the laws of multiplication we know that if the multiplicand and the factor are swapped, the product will not change. If the expression is written as , then the product will still be equal to . Again, the rule for multiplying a whole number and a fraction works:

    This notation can be understood as taking half of one. For example, if there is 1 whole pizza and we take half of it, then we will have pizza:

    Example 2. Find the value of an expression

    Multiply the numerator of the fraction by 4

    The expression can be understood as taking two quarters 4 times. For example, if you take 4 pizzas, you will get two whole pizzas

    And if we swap the multiplicand and the multiplier, we get the expression . It will also be equal to 2. This expression can be understood as taking two pizzas from four whole pizzas:

    Multiplying fractions

    To multiply fractions, you need to multiply their numerators and denominators. If the answer turns out to be an improper fraction, you need to highlight the whole part of it.

    Example 1. Find the value of the expression.

    We received an answer. It is advisable to reduce this fraction. The fraction can be reduced by 2. Then the final solution will take the following form:

    The expression can be understood as taking a pizza from half a pizza. Let's say we have half a pizza:

    How to take two thirds from this half? First you need to divide this half into three equal parts:

    And take two from these three pieces:

    We'll make pizza. Remember what pizza looks like when divided into three parts:

    One piece of this pizza and the two pieces we took will have the same dimensions:

    In other words, we are talking about the same size pizza. Therefore the value of the expression is

    Example 2. Find the value of an expression

    Multiply the numerator of the first fraction by the numerator of the second fraction, and the denominator of the first fraction by the denominator of the second fraction:

    The answer was an improper fraction. Let's highlight the whole part of it:

    Example 3. Find the value of an expression

    The answer turned out to be a regular fraction, but it would be good if it was shortened. To reduce this fraction, it must be divided by the gcd of the numerator and denominator. So, let’s find the gcd of numbers 105 and 450:

    GCD for (105 and 150) is 15

    Now we divide the numerator and denominator of our answer by gcd:

    Representing a whole number as a fraction

    Any whole number can be represented as a fraction. For example, the number 5 can be represented as . This will not change the meaning of five, since the expression means “the number five divided by one,” and this, as we know, is equal to five:

    Reciprocal numbers

    Now we will get acquainted with very interesting topic in mathematics. It's called "reverse numbers".

    Definition. Reverse to number a is a number that, when multiplied by a gives one.

    Let's substitute in this definition instead of the variable a number 5 and try to read the definition:

    Reverse to number 5 is a number that, when multiplied by 5 gives one.

    Is it possible to find a number that, when multiplied by 5, gives one? It turns out it is possible. Let's imagine five as a fraction:

    Then multiply this fraction by itself, just swap the numerator and denominator. In other words, multiply a fraction by itself, only upside down:

    What will happen as a result of this? If we continue to solve this example, we get one:

    This means that the inverse of the number 5 is the number , since when you multiply 5 by you get one.

    The reciprocal of a number can also be found for any other integer.

    • the reciprocal of 3 is a fraction
    • the reciprocal of 4 is a fraction
    • You can also find the reciprocal of any other fraction. To do this, just turn it over.

    Loading...Loading...