Хроматин в зависимости от локализации в ядре. Клеточное ядро. Митоз. Наследственность - основное свойство живой материи

Общая характеристика интерфазного ядра

Ядро - это важнейшая составная часть клетки, которая имеется практически во всех клетках многоклеточных организмов. Большинство клеток имеет одно ядро, но бывают двуядерные и многоядерные клетки (например, поперечно-полосатые мышечные волокна). Двуядерность и многоядерность обусловлены функциональными особенностями или патологическим состоянием клеток. Форма и размеры ядра очень изменчивы и зависят от вида организма, типа, возраста и функционального состояния клетки. В среднем объем ядра составляет приблизительно 10% от общего объема клетки. Чаще всего ядро имеет округлую или овальную форму размером от 3 до 10 мкм в диаметре. Минимальный размер ядра составляет 1 мкм (у некоторых простейших), максимальный - 1 мм (яйцеклетки некоторых рыб и земноводных). В некоторых случаях наблюдается зависимость формы ядра от формы клетки. Ядро обычно занимает центральное положение, но в дифференцированных клетках может быть смещено к периферийному участку клетки. В ядре сосредоточена практически вся ДНК эукариотической клетки.

Основными функциями ядра являются:

1) Хранение и передача генетической информации;



2) Регуляция синтеза белка, обмена веществ и энергии в клетке.

Таким образом, ядро является не только вместилищем генетического материала, но и местом, где этот материал функционирует и воспроизводится. Поэтому нарушение любой из этих функций приведет к гибели клетки. Все это указывает на ведущее значение ядерных структур в процессах синтеза нуклеиновых кислот и белков.

БЛЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯЯ

Ядро. Хроматин, гетерохроматин, эухроматин.

Ядро (лат. nucleus) - это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтеза белка. Ядро состоит из хромати́на, я́дрышка, кариопла́змы (или нуклеоплазмы) и ядерной оболочки. В клеточном ядре происходит репликация (или редуплика́ция) - удвоение молекул ДНК, а также транскрипция - синтез молекул РНК на молекуле ДНК. Синтезированные в ядре молекулы РНК модифицируются, после чего выходят в цитоплазму. Образование обеих субъединиц рибосом происходит в специальных образованиях клеточного ядра - ядрышках. Таким образом, ядро клетки является не только вместилищем генетической информации, но и местом, где этот материал функционирует и воспроизводится.

Ядро неделящейся, интерфазной клетки обычно одно на клетку (хотя встречаются и многоядерные клетки). Ядро состоит из хроматина, ядрышка, кариоплазмы (нуклеоплазмы) и ядерной оболочки, отделяющей его от цитоплазмы (рис. 17).

Хроматин

При наблюдении живых или фиксированных клеток внутри ядра выявляются зоны плотного вещества, которые хорошо воспринимают разные красители, особенно основные. Благодаря такой способности хорошо окрашиваться этот компонент ядра и получил название «хроматин» (от греч. chroma - цвет, краска). В состав хроматина входит ДНК в комплексе с белком. Такими же свойствами обладают и хромосомы, которые отчетливо видны во время митотического деления клеток. В неделящихся (интерфазных) клетках хроматин, выявляемый в световом микроскопе, может более или менее равномерно заполнять объем ядра или же располагаться отдельными глыбками.

Хроматин интерфазных ядер представляет собой хромосомы, которые, однако, теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной. Зоны полной деконденсации их участков морфологи называют эухроматином (euchromatinum). При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина, иногда называемого гетерохроматином (heterochromatinum). Степень деконденсации хромосомного материала - хроматина в интерфазе может отражать функциональную нагрузку этой структуры. Чем «диффузнее» распределен хроматин в интерфазном ядре (т.е. чем больше эухроматина), тем интенсивнее в нем синтетические процессы.

Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных хромосом. В этот период хромосомы не выполняют никаких синтетических функций, в них не происходит включения предшественников ДНК и РНК.

Таким образом, хромосомы клеток могут находиться в двух структурно-функциональных состояниях: в активном, рабочем, частично или полностью деконденсированном, когда с их участием в интерфазном ядре происходят процессы транскрипции и редупликации, и в неактивном, в состоянии метаболического покоя при максимальной их конденсированности, когда они выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Хроматин

Огромная длина молекул ДНК эукариот предопределила появление специальных механизмов хранения, репликации и реализации генетического материала. Хроматином называют молекулы хромосомной ДНК в комплексе со специфическими белками, необходимыми для осуществления этих процессов. Основную массу составляют «белки хранения», так называемые гистоны. Из этих белков построены нуклеосомы - структуры, на которые намотаны нити молекул ДНК. Нуклеосомы располагаются довольно регулярно, так что образующаяся структура напоминает бусы. Нуклеосома состоит из белков четырех типов: H2A, H2B, H3 и H4. В одну нуклеосому входят по два белка каждого типа - всего восемь белков. Гистон H1, более крупный чем другие гистоны, связывается с ДНК в месте ее входа на нуклеосому. Нуклеосома вместе с H1 называется хроматосомой.

Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно, его называют конденсированным или гетерохроматином , он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине, не транскрибируется, обычно это состояние характерно для незначимых или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки. Если хроматин упакован неплотно, его называют эу- или интерхроматином . Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов - ацетилированием и фосфорилированием.

Считается, что в ядре существуют так называемые функциональные домены хроматина(ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». К сожалению, вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядерной ламины.

2. Хроматин

Хроматин - это окрашенные основными красителями многочисленные гранулы, из которых сформированы хромосомы. Хромосомы же образованы комплексом нуклеопротеинов, содержащих нуклеиновые кислоты и белки. Различают два вида хроматина в находящихся в интерфазе ядрах клеток человека - дисперсный, слабо окрашенный хроматин (эухроматин), сформированный длинными, тонкими, переплетенными волокнами, метаболически очень активный и конденсированный хроматин (гетерохроматин), соответствующий районам хромосом, не вовлеченным в процессы контроля метаболической активности. Для зрелых клеток (например, крови) характерны ядра богатые плотным, конденсированным хроматином, лежащим глыбками. В ядрах соматических клеток женщин он представлен глыбкой хроматина, сближенного с мембраной ядра: это женский половой хроматин (или тельца Барра), представляющий собой конденсированную Х-хромосому. Мужской половой хроматин представлен в ядрах мужских соматических клеток глыбкой, светящейся при окраске флюорохромами. Определение полового хроматина используется, например, для установления пола ребенка по клеткам, полученным из околоплодной жидкости беременной женщины.

Биохимические исследования в генетике - важный способ изучения основных её элементов - хромосом и генов. В данной статье мы рассмотрим, что такое хроматин, выясним его строение и функции в клетке.

Наследственность - основное свойство живой материи

К главным процессам, характеризующим организмы, живущие на Земле, относятся дыхание, питание, рост, выделение и размножение. Последняя функция является наиболее значимой для сохранения жизни на нашей планете. Как не вспомнить, что первой заповедью, данной Богом Адаму и Еве была следующая: «Плодитесь и размножайтесь». На уровне клетки генеративная функция выполняется нуклеиновыми кислотами (составляющее вещество хромосом). Эти структуры будут рассмотрены нами в дальнейшем.

Добавим также, что сохранение и передача наследственной информации потомкам осуществляется по единому механизму, который совершенно не зависит от уровня организации особи, то есть и для вируса, и для бактерий, и для человека он универсален.

Что является веществом наследственности

В данной работе мы изучаем хроматин, строение и функции которого напрямую зависят от организации молекул нуклеиновых кислот. Швейцарским ученым Мишером в 1869 году в ядрах клеток иммунной системы были обнаружены соединения, проявляющие свойства кислот, названные им сначала нуклеином, а затем нуклеиновыми кислотами. С точки зрения химии, это высокомолекулярные соединения - полимеры. Их мономерами являются нуклеотиды, имеющие следующее строение: пуриновое или пиримидиновое основание, пентоза и остаток Ученые установили, что в клетках могут присутствовать два вида и РНК. Они входят в комплекс с белками и образуют вещество хромосом. Так же как и белки, нуклеиновые кислоты имеют несколько уровней пространственной организации.

В 1953 году лауреатами Нобелевской премии Уотсоном и Криком было расшифровано строение ДНК. Она представляет собой молекулу, состоящую из двух цепей, соединенных между собой водородными связями, возникающими между азотистыми основаниями по принципу комплементарности (напротив аденина располагается тиминовое основание, напротив цитозина - гуаниновое). Хроматин, строение и функции которого мы изучаем, содержит молекулы дезоксирибонуклеиновой и рибонуклеиновой кислоты различной конфигурации. На этом вопросе мы остановимся более подробно в разделе «Уровни организации хроматина».

Локализация вещества наследственности в клетке

ДНК присутствует в таких цитоструктурах, как ядро, а также в органеллах, способных к делению - митохондриях и хлоропластах. Это связано с тем, что данные органоиды выполняют важнейшие функции в клетке: а также синтез глюкозы и образование кислорода в клетках растений. На синтетической стадии жизненного цикла материнские органеллы удваиваются. Таким образом, дочерние клетки в результате митоза (деления соматических клеток) или мейоза (образования яйцеклеток и сперматозоидов) получают необходимый арсенал клеточных структур, обеспечивающих клетки питательными веществами и энергией.

Рибонуклеиновая кислота состоит из одной цепи и имеет меньшую молекулярную массу, чем ДНК. Она содержится как в ядре, так и в гиалоплазме, а также входит в состав многих клеточных органоидов: рибосом, митохондрий, эндоплазматической сети, пластид. Хроматин в этих органеллах связан с белками-гистонами и входит в состав плазмид - кольцевых замкнутых молекул ДНК.

Хроматин и его структура

Итак, мы установили, что нуклеиновые кислоты содержатся в веществе хромосом - структурных единицах наследственности. Их хроматин под электронным микроскопом имеет вид гранул или нитевидных образований. Он содержит, кроме ДНК, еще и молекулы РНК, а также белки, проявляющие основные свойства и названные гистонами. Все вышеперечисленные нуклеосом. Они содержатся в хромосомах ядра и называются фибриллами (нити-соленоиды). Подводя итог всему вышесказанному, определим, что такое хроматин. Это комплексное соединение и специальных белков - гистонов. На них, как на катушки, накручиваются двухцепочечные молекулы ДНК, образуя нуклеосомы.

Уровни организации хроматина

Вещество наследственности имеет различную структуру, которая зависит от многих факторов. Например, от того, какую стадию жизненного цикла переживает клетка: период деления (метоз или мейоз), пресинтетический или синтетический период интерфазы. Из формы соленоида, или фибриллы, как наиболее простой, происходит дальнейшая компактизация хроматина. Гетерохроматин - более плотное состояние, образуется в интронных участках хромосомы, на которых невозможна транскрипция. В период покоя клетки - интерфазы, когда отсутствует процесс деления, - гетерохроматин располагается в кариоплазме ядра по периферии, вблизи его мембраны. Уплотнение ядерного содержимого происходит в постсинтетическую стадию жизненного цикла клетки, то есть непосредственно перед делением.

От чего зависит конденсация вещества наследственности

Продолжая изучать вопрос "что такое хроматин", ученые установили, что его уплотнение зависит от белков-гистонов, входящих наряду с молекулами ДНК и РНК в состав нуклеосом. Они состоят из белков четырёх видов, называемых коровыми и линкерными. В момент транскрипции (считывание информации с генов с помощью РНК) вещество наследственности слабо конденсировано и носит название эухроматина.

В настоящее время особенности распределения молекул ДНК, связанных с гистоновыми белками, продолжают изучаться. Например, ученые выяснили, что хроматин различных локусов одной и той же хромосомы отличается уровнем конденсации. Например, в местах прикрепления к хромосоме нитей веретена деления, называемых центромерами, он более плотный, чем в теломерных участках - концевых локусах.

Гены-регуляторы и состав хроматина

В концепции регуляции генной активности, созданной французскими генетиками Жакобом и Моно, дается представление о существовании участков дезоксирибонуклеиновой кислоты, в которых нет информации о структурах белков. Они выполняют чисто бюрократические - управленческие функции. Называясь генами-регуляторами, эти части хромосом, как правило, в своей структуре лишены белков-гистонов. Хроматин, определение которого было проведено методом секвенирования, получил название открытого.

В ходе дальнейших исследований было установлено, что в этих локусах расположены последовательности нуклеотидов, препятствующие присоединению к молекулам ДНК белковых частиц. Такие участки содержат регуляторные гены: промоторы, эхансеры, активаторы. Компактизация хроматина в них высока, а длина этих участков в среднем составляет около 300 нм. Существует определения открытого хроматина в изолированных ядрах, при котором используют фермент ДНК-азу. Он очень быстро расщепляет локусы хромосом, лишенные белков-гистонов. Хроматин в этих участках был назван сверхчувствительным.

Роль вещества наследственности

Комплексы, включающие ДНК, РНК и белок, называемые хроматином, участвуют в онтогенезе клеток и изменяют свой состав в зависимости от типа ткани, а также от стадии развития организма в целом. Например, в эпителиальных клетках кожи такие гены, как эхансер и промотор, заблокированы белками-репрессорами, а эти же регуляторные гены в секреторных клетках эпителия кишечника активны и находятся в зоне открытого хроматина. Ученые-генетики установили, что на долю ДНК, не кодирующей белки, приходится более 95 % всего генома человека. Это значит, что управляющих генов намного больше, чем тех, которые ответственны за синтез пептидов. Внедрение таких методов, как ДНК-чипы и секвенирование, позволило выяснить, что такое хроматин, и, как следствие, провести картирование генома человека.

Исследования хроматина очень важны в таких отраслях науки, как генетика человека и медицинская генетика. Это связано с резко возросшим уровнем появления наследственных заболеваний - как генных, так и хромосомных. Раннее выявление этих синдромов повышает процент положительных прогнозов при их лечении.

Кариоплазма

Кариоплазма (ядерный сок, нуклеоплазма) - основная внутренняя среда ядра, она занимает все пространство между ядрышком, хроматином, мембранами, всевозможными включениями и другими структурами. Кариоплазма под электронным микроскопом имеет вид гомогенной или мелкозернистой массы с низкой электронной плотностью. В ней во взвешенном состоянии находятся рибосомы, микротельца, глобулины и различные продукты метаболизма.

Вязкость ядерного сока примерно такая же, как вязкость основного вещества цитоплазмы. Кислотность ядерного сока, определенная путем микроинъекции индикаторов в ядро, оказалась несколько выше, чем у цитоплазмы.

Кроме того, в ядерном соке содержатся ферменты, участвующие в синтезе нуклеиновых кислот в ядре и рибосомы. Ядерный сок не окрашивается основными красителями, поэтому его называют ахроматиновым веществом, или кариолимфой, в отличие от участков, способных окрашиваться, - хроматина.

Хроматин

Главный компонент ядер -- хроматин, является структурой, выполняющей генетическую функцию клетки, в хроматиновой ДНК заложена практически вся генетическая информация.

Эукариотические хромосомы, выглядят как резко очерченные структуры только непосредственно до и во время митоза - процесса деления ядра в соматических клетках. В покоящихся, неделящихся эукариотических клетках хромосомный материал, называемый хроматином, выглядит нечетко и как бы беспорядочно распределен по всему ядру. Однако, когда клетка готовится к делению, хроматин уплотняется и собирается в свойственное данному виду число хорошо различимых хромосом.

Хроматин был выделен из ядер и проанализирован. Он состоит из очень тонких волокон. Главными компонентами хроматина являются ДНК и белки, среди которых основную массу составляют гистоны и негистоновые белки.В среднем в хроматине около 40% приходится на ДНК и около 60% - на белки, среди которых специфические ядерные белки-гистоны составляют от 40 до 80% от всех белков, входящих в состав выделенного хроматина. Кроме того, в состав хроматиновой фракциям входят мембранные компоненты, РНК, углеводы, липиды, гликопротеиды.

Хроматиновые волокна в хромосоме свернуты и образуют множество узелков и петель. ДНК в хроматине очень прочно связана с белками, называемыми гистонами, функция которых состоит в упаковке и упорядочении ДНК в структурные единицы - нуклеосомы. В хроматине содержится также ряд негистоновых белков. В отличие от эукариотических, бактериальные хромосомы не содержат гистонов; в их состав входит лишь небольшое количество белков, способствующих образованию петель и конденсации (уплотнению) ДНК.

При наблюдении многих живых клеток, особенно растительных, или же клеток после фиксации и окраски внутри ядра выявляются зоны плотного вещества, которое хорошо окрашиваются разными красителями, особенно основными. Способность хроматина воспринимать основные (щелочные) красители указывает на его кислотные свойства, которые определяются тем, что в состав хроматина входит ДНК в комплексе с белками. Такими же свойствами окрашиваемости и содержанием ДНК обладают и хромосомы, которые можно наблюдать во время митотического деления клеток.

В отличие от прокариотических клеток ДНК-содержащий материал хроматина эукариот может пребывать в двух альтернативных состояниях: деконденсированном в интерфазе и в максимально уплотненном во время митоза, в составе митотических хромосом.

В неделящихся (интерфазных) клетках хроматин может равномерно заполнять объем ядра или же располагаться отдельными сгустками (хромоцентры). Нередко он особенно четко обнаруживается на периферии ядра (пристеночный, маргинальный, примембранный хроматин) или образует внутри ядра переплетения довольно толстых (около 0,3 мкм) и длинных тяжей в виде внутриядерной сети.

Хроматин интерфазных ядер представляет собой несущие ДНК тельца (хромосомы), которые теряют в это время свою компактную форму, разрыхляются, деконденсируются. Степень такой деконденсации хромосом может быть различной в ядрах разных клеток. Когда хромосома или ее участок полностью деконденсированы, эти зоны называют диффузным хроматином. При неполном разрыхлении хромосом в интерфазном ядре видны участки конденсированного хроматина (иногда называемого гетерохроматином). Многочисленными работами показано, что степень деконденсации хромосомного материала -- хроматина, в интерфазе может отражать функциональную нагрузку этой структуры. Чем более диффузен хроматин интерфазного ядра, тем выше в нем синтетические процессы. При синтезе РНК меняется структура хроматина. Падение синтеза ДНК и РНК в клетках обычно сопровождается увеличением зон конденсированного хроматина.

Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде телец -- хромосом. В этот период хромосомы не несут никаких синтетических нагрузок, в них не происходит включения предшественников ДНК и РНК.

Исходя из этого, можно считать, что хромосомы клеток могут находиться в двух структурно-функциональных состояниях: в рабочем, частично или полностью деконденсированном, когда с их участием в интерфазном ядре происходят процессы транскрипции и редупликации, и в неактивном - в состоянии метаболического покоя при максимальной их конденсации, когда они выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Эухроматин и гетерохроматин

Степень структуризации, конденсации хроматина в интерфазных ядрах может быть выражена в разной мере. Так, в интенсивно делящихся и в мало специализированных клетках ядра имеют диффузную структуру, в них кроме узкого периферического ободка конденсированного хроматина встречается небольшое число мелких хромоцентров, основная же часть ядра занята диффузным, деконденсированным хроматином. В то же время в высокоспециализированных клетках или в клетках, заканчивающих свой жизненный цикл, хроматин представлен в виде массивного периферического слоя и крупных хромоцентров, блоков конденсированного хроматина. Чем больше в ядре доля конденсированного хроматина, тем меньше метаболическая активность ядра. При естественной или экспериментальной инактивации ядер происходит прогрессивная конденсация хроматина и, наоборот, при активации ядер увеличивается доля диффузного хроматина.

Однако при метаболической активации не всякие участки конденсированного хроматина могут переходить в диффузную форму. Еще в начале 1930-х годов Э. Гейтцем было замечено, что в интерфазных ядрах существуют постоянные участки конденсированного хроматина, наличие которого не зависит от степени дифференцированности ткани или от функциональной активности клеток. Такие участки получили название гетерохроматина, в отличие от остальной массы хроматина - эухроматина (собственно хроматина). По этим представлениям, гетерохроматин - компактные участки хромосом, которые в профазе появляются раньше других частей в составе митотических хромосом и в телофазе не деконденсируются, переходя в интерфазное ядро в виде интенсивно красящихся плотных структур (хромоцентров). Постоянно конденсированными зонами чаще всего являются центромерные и теломерные участки хромосом. Кроме них постоянно конденсированными могут быть некоторые участки, входящие в состав плечей хромосом -- вставочный, или интеркалярный, гетерохроматин, который в ядрах также представлен в виде хромоцентров. Такие постоянно конденсированные участки хромосом в интерфазных ядрах сейчас принято называть конститутивным (постоянным) гетерохроматином. Необходимо отметить, что участки конститутивного гетерохроматина обладают целым рядом особенностей, которые отличают его от остального хроматина. Конститутивный гетерохроматин генетически не активен; он не транскрибируется, реплицируется позже всего остального хроматина, в его состав входит особая (сателлитная) ДНК, обогащенная высокоповторяющимися последовательностями нуклеотидов, он локализован в центромерных, теломерных и интеркалярных зонах митотических хромосом. Доля конститутивного хроматина может быть неодинаковой у разных объектов. Функциональное значение конститутивного гетерохроматина до конца не выяснено. Предполагается, что он несет ряд важных функций, связанных со спариванием гомологов в мейозе, со структуризацией интерфазного ядра, с некоторыми регуляторными функциями.

Вся остальная, основная масса хроматина ядра может менять степень своей компактизации в зависимости от функциональной активности, она относится к эухроматину. Эухроматические неактивные участки, которые находятся в конденсированном состоянии, стали называть факультативным гетерохроматином, подчеркивая необязательность такого его состояния.

В дифференцированных клетках всего лишь около 10% генов находится в активном состоянии, остальные гены инактивированы и входят в состав конденсированного хроматина (факультативный гетерохроматин). Это обстоятельство объясняет, почему большая часть хроматина ядра структурирована.

ДНК хроматина

В препарате хроматина на долю ДНК приходится обычно 30-40%. Эта ДНК представляет собой двухцепочечную спиральную молекулу, подобную чистой выделенной ДНК в водных растворах. ДНК хроматина обладает молекулярной массой 7-9·106. В составе хромосом длина индивидуальных линейных (в отличие от прокариотических хромосом) молекул ДНК может достигать сотен микрометров и даже нескольких сантиметров. Общее количество ДНК, входящее в ядерные структуры клеток, в геном организмов, колеблется.

ДНК эукариотических клеток гетерогенна по составу, содержит несколько классов последовательностей нуклеотидов: часто повторяющиеся последовательности (>106 раз), входящие во фракцию сателлитной ДНК и не транскрибирующиеся; фракция умеренно повторяющихся последовательностей (102--105), представляющих блоки истинных генов, а также короткие последовательности, разбросанные по всему геному; фракция уникальных последовательностей, несущая информацию для большинства белков клетки. Все эти классы нуклеотидов связаны в единую гигантскую ковалентную цепь ДНК.

Основные белки хроматина - гистоны

В клеточном ядре ведущая роль в организации расположения ДНК, в ее компактизации и регулировании функциональных нагрузок принадлежит ядерным белкам. Белки в составе хроматина очень разнообразны, но их можно разделить на две группы: гистоны и негистоновые белки. На долю гистонов приходится до 80% всех белков хроматина. Их взаимодействие с ДНК происходит за счет солевых или ионных связей и неспецифично в отношении состава или последовательностей нуклеотидов в молекуле ДНК. В эукариотической клетке содержится всего 5--7 типов молекул гистонов. В отличие от гистонов так называемые негистоновые белки большей частью специфически взаимодействуют с определенными последовательностями молекул ДНК, очень велико разнообразие типов белков, входящих в эту группу (несколько сотен), велико разнообразие функций, которые они выполняют.

Гистоны - белки, характерные только для хроматина, - обладают рядом особых качеств. Это основные или щелочные белки, свойства которых определяются относительно высоким содержанием таких основных аминокислот, как лизин и аргинин. Именно положительные заряды на аминогруппах лизина и аргинина обусловливают соленую или электростатическую связь этих белков с отрицательными зарядами на фосфатных группах ДНК.

Гистоны - относительно небольшие по молекулярной массе белки. Классы гистонов отличаются друг от друга по содержанию разных основных аминокислот. Для гистонов всех классов характерно кластерное распределение основных аминокислот -- лизина и аргинина, на N- и С-концах молекул. Срединные участки молекул гистонов образуют несколько (3-4) б-спиральных участков, которые компактизуются в глобулярную структуру в изотонических условиях. Богатые положительными зарядами неспирализованные концы белковых молекул гистонов и осуществляют их связь друг с другом и с ДНК.

В процессе жизнедеятельности клеток могут происходить посттрансляционные изменения (модификации) гистонов: ацетилирование и метилирование некоторых остатков лизина, что приводит к потере числа положительных зарядов, и фосфорилирование сериновых остатков, приводящее к появлению отрицательного заряда. Ацетилирование и фосфорилирование гистонов могут быть обратимыми. Эти модификации значительно меняют свойства гистонов, их способность связываться с ДНК.

Гистоны синтезируются в цитоплазме, транспортируются в ядро и связываются с ДНК во время ее репликации в S-периоде, т.е. синтезы гистонов и ДНК синхронизированы. При прекращении клеткой синтеза ДНК гистоновые информационные РНК за несколько минут распадаются и синтез гистонов останавливается. Включившиеся в хроматин гистоны очень стабильны, имеют низкую скорость замены.

Функции белков гистонов

1. Количественное и качественное состояние гистонов влияет на степень компактности и активности хроматина.

2. Структурная -- компактизирующая -- роль гистонов в организации хроматина.

Для того чтобы огромные сантиметровые молекулы ДНК уложить по длине хромосомы, имеющей размер всего несколько микрометров, молекула ДНК должна быть скручена, компактизована с плотностью упаковки, равной 1: 10 000. В процессе компактизации ДНК существуют несколько уровней упаковки, первые из которых прямо определяются взаимодействием гистонов с ДНК

Почти вся ДНК клетки заключена в ядре. ДНК - это длинный линейный полимер, содержащий много миллионов нуклеотидов. Четыре типа нуклеотидов ДНК, различаются азотистыми основаниями . Нуклеотиды располагаются в последовательности, которая преставляет собой кодовую форму записи наследственной информации.
Для реализации этой информации она переписывается, или транскрибируется в более короткие цепи и-РНК. Символами генетического кода в и-РНК служат тройки нуклеотидов - кодоны . Каждый кодон обозначает одну из аминокислот. Каждой молекуле ДНК соответствует отдельная хромосома, а вся генетическая информация, хранящаяся в хромосомах организма, называется геном .
Геном высших организмов содержит избыточное количество ДНК, это не связано со сложностью организма. Известно, что геном человека содержит ДНК в 700 раз больше, чем бактерия кишечная палочка. В то же время геном некоторых земноводных и растений в 30 раз больше, чем геном человека. У позвоночных более чем 90% ДНК не имеет существенного значения. Информация, хранящаяся в ДНК, организуется, считывается и реплицируется разнообразными белками.
Основными структурными белками ядра являются белки-гистоны , характерные только для эукариотических клеток. Гистоны - небольшие сильноосновные белки. Это свойство связано с тем, что они обогащены основными аминокислотами - лизином и аргинином. Гистоны характеризует также отсутствие триптофана. Они относятся к наиболее консервативным из всех известных белков, например, Н4 у коровы и гороха отличает всего два аминокислотных остатка. Комплекс белков с ДНК в клеточных ядрах эукариот обозначается как хроматин.
При наблюдении клеток с помощью светового микроскопа хроматин выявляется в ядрах как зоны плотного вещества, хорошо окрашивающиеся основными красителями. Углубленное изучение структуры хроматина началось в 1974 г., когда супругами Адой и Дональдом Олинс была описана его основная структурная единица, она была названа нуклеосомой.
Нуклеосомы позволяют более компактно уложить длинную цепь молекулы ДНК. Так, в каждой хромосоме человека длина нити ДНК в тысячи раз превышает размер ядра. На электронных фотографиях нуклеосома имеет вид дисковидной частицы, имеющей диаметр около 11 нм. Ее сердцевиной является комплекс из восьми молекул гистонов, в котором четыре гистона Н2А, Н2В, Н3 и Н4 представлены двумя молекулами каждый. Эти гистоны образуют внутреннюю часть нуклеосомы - гистоновый кор. На гистоновый кор накручена молекула ДНК, содержащая 146 пар нуклеотидов. Она образует два неполных витка вокруг гистонового кора нуклеосомы, на один виток приходится 83 нуклеотидных пары. Каждая нуклеосома отделена от следующей линкерной последовательностью ДНК, длина которой может составлять до 80 нуклеотидов. Такая структура напоминает бусы на нитке.
Расчет показывает, что ДНК человека, имеющая 6х10 9 нуклеотидных пар, должна содержать 3х10 7 нуклеосом. В живых клетках хроматин редко имеет такой вид. Нуклеосомы связаны друг с другом в еще более компактные структуры. Большая часть хроматина имеет вид фибрилл диаметром 30 нм. Такая упаковка осуществляется с помощью еще одного гистона Н1. На каждую нуклеосому приходится одна молекула Н1, которая стягивает линкерный участок в тех точках, где ДНК входит на гистоновый кор и выходит с него.
Упаковка ДНК значительно уменьшает ее длину. Тем не менее средняя длина хроматиновой нити одной хромосомы на этой стадии должна превышать размеры ядра в 100 раз.
Структура хроматина более высокого порядка представляет собой серию петель, каждая из них содержит примерно от 20 до 100 тысяч пар нуклеотидов. В основании петли располагается сайт-специфический ДНК-связывающий белок. Такие белки узнают определенные нуклеотидные последовательности (сайты) двух отстоящих участков хроматиновой нити и сближают их.

text_fields

text_fields

arrow_upward

Ядро - центральный элемент клетки. Его оперативное удаление дискоординирует функции цитоплазмы. Ядро играет главную роль в передаче наследственных признаков и синтезе белков. Передача генетической информации от одной клетки к другой обеспечивается дезоксирибонуклеиновой кислотой (ДНК), содержащейся в хромосомах. Удвоение ДНК предшествует клеточному делению. Масса ядра в клетках разных тканей различна и составляет, например, 10-18% от массы гепатоцита, 60% - в лимфоидных клетках. В интерфазе (межмитотическом периоде) ядро представлено четырьмя элементами: хроматином, нуклеолой (ядрышком), нуклеоплазмой и ядерной мембраной.

Хроматин

text_fields

text_fields

arrow_upward

Хроматин - это окрашенные основными красителями многочисленные гранулы, из которых сформированы хромосомы. Хромосомы же образованы комплексом нуклеопротеинов, содержащих нуклеиновые кислоты и белки. Различают два вида хроматина в находящихся в интерфазе ядрах клеток человека - дисперсный, слабо окрашенный хроматин (эухроматин), сформированный длинными, тонкими, переплетенными волокнами, метаболически очень активный и конденсированный хроматин (гетерохроматин), соответствующий районам хромосом, не вовлеченным в процессы контроля метаболической активности.

Для зрелых клеток (например, крови) характерны ядра богатые плотным, конденсированным хроматином, лежащим глыбками. В ядрах соматических клеток женщин он представлен глыбкой хроматина, сближенного с мембраной ядра: это женский половой хроматин (или тельца Барра), представляющий собой конденсированную Х-хромосому. Мужской половой хроматин представлен в ядрах мужских соматических клеток глыбкой, светящейся при окраске флюорохромами. Определение полового хроматина используется, например, для установления пола ребенка по клеткам, полученным из околоплодной жидкости беременной женщины.

Ядрышко

text_fields

text_fields

arrow_upward

Ядрышко - внутриядерная структура сферической формы, не имеющая мембраны. Оно развито во всех клетках, отличающихся высокой активностью белкового синтеза, что связано с образованием в нем субъединиц цитоплазмы, рРНК. Например, ядрышки обнаруживаются в ядрах способных к делению клеток - лимфобластах, миелобластах и др.

Мембрана ядра

text_fields

text_fields

arrow_upward

Мембрана ядра представлена двумя листами, просвет между которыми соединен с полостью эндоплазматического ретикулума. Мембрана имеет отверстия (ядерные поры) приблизительно до 100 нм в диаметре, через которые свободно проходят макромолекулы (рибо-нуклеазы, РНК). Вместе с тем, ядерная мембрана и поры поддерживают микросреду ядра, обеспечивая избирательный обмен различных веществ между ядром и цитоплазмой. В малодифференцированной клетке поры занимают до 10% поверхности ядра, но с созреванием клетки их суммарная поверхность уменьшается.

Нуклеоплазма (ядерный сок)

text_fields

text_fields

arrow_upward

Нуклеоплазма (ядерный сок) представляет собой коллоидный раствор, содержащий белки, который обеспечивает обмен метаболитов и быстрое перемещение молекул РНК к ядерным порам. Количество нуклеоплазмы уменьшается при созревании или старении клетки.

Деление клеток. Митоз.

text_fields

text_fields

arrow_upward

Митоз (рис. 1.5) занимает лишь часть клеточного цикла. В клетках млекопитающих фаза митоза (М) длится около часа.

За нею следует постмитотическая пауза (G1) , для которой характерна высокая активность биосинтеза белков в клетке, реализуются процессы транскрипции и трансляции. Продолжительность паузы около 10 часов, но это время значительно варьирует и зависит от влияния регулирующих факторов, стимулирующих и тормозящих деление клеток, от снабжения их питательными веществами.

Следующая фаза клеточного цикла характеризуется синтезом (репликацией) ДНК (фаза S) и занимает около 9 часов. Далее следует премитотическая фаза G2, продолжающаяся около 4 часов. Таким образом, весь клеточный цикл длится около 24 часов:

Клетки могут находиться также в фазе покоя - Go, длительно оставаясь вне клеточного цикла. Например, у человека до 90% стволовых кроветворных клеток находится в фазе Go, но их переход из Go в G1 ускоряется при возрастании потребностей в клетках крови.

Высокая чувствительность клеток к регулирующим их деление факторам в фазе G1 объясняется синтезом на мембранах клеток в этот период рецепторов гормонов, стимулирующих и ингибирующих факторов. Например, деление эритроидных клеток костного мозга в фазе G, стимулирует гормон эритропоэтин. Тормозит этот процесс ингибитор эритропоэза - вещество снижающее продукцию эритроцитов в случае уменьшения потребностей тканей в кислороде (глава 6).

Передача информации ядру о взаимодействии рецепторов мембраны со стимулятором деления клетки включает синтез ДНК, т.е. фазу S . В результате количество ДНК в клетке из диплоидного, 2N, переходит в тетраплоидное - 4N. В фазе G2 синтезируются структуры, необходимые для митоза, в частности, белки митотического веретена.

В фазе М происходит распределение идентичного генетического материала между двумя дочерними клетками. Собственно фаза М подразделяется на четыре периода: профазу, метафазу, анафазу и телофазу (рис.1.5.).

Профаза характеризуется конденсацией ДНК хромосом, образующих две хроматиды, каждая из которых представляет собой одну из двух идентичных молекул ДНК. Нуклеола и ядерная оболочка исчезают. Центриоли, представленные тонкими микротрубочками расходятся к двум полюсам клетки, образуя митотическое веретено.

В метафазу хромосомы располагаются в центре клетки, образуя метафазную пластинку, В эту фазу морфология каждой хромосомы наиболее отчетлива, что используется на практике для исследования хромосомного набора клетки.

Анафаза характеризуется движением хроматид, «растаскиваемых» волокнами митотического веретена к противоположным полюсам клетки.

Телофаза характеризуется образованием ядерной мембраны вокруг дочернего набора хромосом. Знание особенностей клеточного цикла используется на практике, например, при создании цитостатических веществ для лечения лейкозов. Так, свойство винкристина быть ядом для митотического веретена используется для остановки митоза лейкозных клеток.

Дифференциация клеток

text_fields

text_fields

arrow_upward

Дифференциация клеток - есть приобретение клеткой специализированных функций, связанное с появлением в ней структур, обес-печивающих выполнение этих функций (например, синтез и накопление гемоглобина в эритроцитах характеризует их дифференциацию в эритроциты). Дифференциация связана с генетически запрограм-мированным торможением (репрессией) функций одних участков генома и активацией других.

Loading...Loading...