Arithmetic progression difference formula examples. How to find the sum of an arithmetic progression: formulas and an example of their use

Sum of an arithmetic progression.

Sum arithmetic progression- it’s a simple thing. Both in meaning and in formula. But there are all sorts of tasks on this topic. From basic to quite solid.

First, let's understand the meaning and formula of the amount. And then we'll decide. For your own pleasure.) The meaning of the amount is as simple as a moo. To find the sum of an arithmetic progression, you just need to carefully add all its terms. If these terms are few, you can add without any formulas. But if there is a lot, or a lot... addition is annoying.) In this case, the formula comes to the rescue.

The formula for the amount is simple:

Let's figure out what kind of letters are included in the formula. This will clear things up a lot.

S n - the sum of an arithmetic progression. Addition result everyone members, with first By last. It is important. They add up exactly All members in a row, without skipping or skipping. And, precisely, starting from first. In problems like finding the sum of the third and eighth terms, or the sum of terms from the fifth to the twentieth - direct application formulas will disappoint.)

a 1 - first member of the progression. Everything is clear here, it's simple first row number.

a n- last member of the progression. The last number of the series. Not a very familiar name, but when applied to the amount, it’s very suitable. Then you will see for yourself.

n - number of the last member. It is important to understand that in the formula this number coincides with the number of added terms.

Let's define the concept last member a n. Tricky question: which member will be the last one if given endless arithmetic progression?)

To answer confidently, you need to understand the elementary meaning of arithmetic progression and... read the task carefully!)

In the task of finding the sum of an arithmetic progression, the last term always appears (directly or indirectly), which should be limited. Otherwise, a final, specific amount simply doesn't exist. For the solution, it does not matter whether the progression is given: finite or infinite. It doesn’t matter how it is given: a series of numbers, or a formula for the nth term.

The most important thing is to understand that the formula works from the first term of the progression to the term with number n. Actually, the full name of the formula looks like this: the sum of the first n terms of an arithmetic progression. The number of these very first members, i.e. n, is determined solely by the task. In a task, all this valuable information is often encrypted, yes... But never mind, in the examples below we reveal these secrets.)

Examples of tasks on the sum of an arithmetic progression.

First of all, helpful information:

The main difficulty in tasks involving the sum of an arithmetic progression is correct definition elements of the formula.

The task writers encrypt these very elements with boundless imagination.) The main thing here is not to be afraid. Understanding the essence of the elements, it is enough to simply decipher them. Let's look at a few examples in detail. Let's start with a task based on a real GIA.

1. The arithmetic progression is given by the condition: a n = 2n-3.5. Find the sum of its first 10 terms.

Good job. Easy.) To determine the amount using the formula, what do we need to know? First member a 1, last term a n, yes the number of the last member n.

Where can I get the last member's number? n? Yes, right there, on condition! It says: find the sum first 10 members. Well, what number will it be with? last, tenth member?) You won’t believe it, his number is tenth!) Therefore, instead of a n We will substitute into the formula a 10, and instead n- ten. I repeat, the number of the last member coincides with the number of members.

It remains to determine a 1 And a 10. This is easily calculated using the formula for the nth term, which is given in the problem statement. Don't know how to do this? Attend the previous lesson, without this there is no way.

a 1= 2 1 - 3.5 = -1.5

a 10=2·10 - 3.5 =16.5

S n = S 10.

We have found out the meaning of all elements of the formula for the sum of an arithmetic progression. All that remains is to substitute them and count:

That's it. Answer: 75.

Another task based on the GIA. A little more complicated:

2. Given an arithmetic progression (a n), the difference of which is 3.7; a 1 =2.3. Find the sum of its first 15 terms.

We immediately write the sum formula:

This formula allows us to find the value of any term by its number. We look for a simple substitution:

a 15 = 2.3 + (15-1) 3.7 = 54.1

It remains to substitute all the elements into the formula for the sum of an arithmetic progression and calculate the answer:

Answer: 423.

By the way, if in the sum formula instead of a n We simply substitute the formula for the nth term and get:

Let us present similar ones and obtain a new formula for the sum of terms of an arithmetic progression:

As you can see, it is not required here nth term a n. In some problems this formula helps a lot, yes... You can remember this formula. Or you can simply display it at the right time, like here. After all, you always need to remember the formula for the sum and the formula for the nth term.)

Now the task in the form of a short encryption):

3. Find the sum of all positive two-digit numbers that are multiples of three.

Wow! Neither your first member, nor your last, nor progression at all... How to live!?

You will have to think with your head and pull out all the elements of the sum of the arithmetic progression from the condition. We know what two-digit numbers are. They consist of two numbers.) What two-digit number will be first? 10, presumably.) A last thing double digit number? 99, of course! The three-digit ones will follow him...

Multiples of three... Hm... These are numbers that are divisible by three, here! Ten is not divisible by three, 11 is not divisible... 12... is divisible! So, something is emerging. You can already write down a series according to the conditions of the problem:

12, 15, 18, 21, ... 96, 99.

Will this series be an arithmetic progression? Certainly! Each term differs from the previous one by strictly three. If you add 2 or 4 to a term, say, the result, i.e. the new number is no longer divisible by 3. You can immediately determine the difference of the arithmetic progression: d = 3. It will come in handy!)

So, we can safely write down some progression parameters:

What will the number be? n last member? Anyone who thinks that 99 is fatally mistaken... The numbers always go in a row, but our members jump over three. They don't match.

There are two solutions here. One way is for the super hardworking. You can write down the progression, the entire series of numbers, and count the number of members with your finger.) The second way is for the thoughtful. You need to remember the formula for the nth term. If we apply the formula to our problem, we find that 99 is the thirtieth term of the progression. Those. n = 30.

Let's look at the formula for the sum of an arithmetic progression:

We look and rejoice.) We pulled out from the problem statement everything necessary to calculate the amount:

a 1= 12.

a 30= 99.

S n = S 30.

All that remains is elementary arithmetic. We substitute the numbers into the formula and calculate:

Answer: 1665

Another type of popular puzzle:

4. Given an arithmetic progression:

-21,5; -20; -18,5; -17; ...

Find the sum of terms from twentieth to thirty-four.

We look at the formula for the amount and... we get upset.) The formula, let me remind you, calculates the amount from the first member. And in the problem you need to calculate the sum since the twentieth... The formula won't work.

You can, of course, write out the entire progression in a series, and add terms from 20 to 34. But... it’s somehow stupid and takes a long time, right?)

There is a more elegant solution. Let's divide our series into two parts. The first part will be from the first term to the nineteenth. Second part - from twenty to thirty-four. It is clear that if we calculate the sum of the terms of the first part S 1-19, let's add it with the sum of the terms of the second part S 20-34, we get the sum of the progression from the first term to the thirty-fourth S 1-34. Like this:

S 1-19 + S 20-34 = S 1-34

From this we can see that find the sum S 20-34 can be done by simple subtraction

S 20-34 = S 1-34 - S 1-19

Both amounts on the right side are considered from the first member, i.e. the standard sum formula is quite applicable to them. Let's get started?

We extract the progression parameters from the problem statement:

d = 1.5.

a 1= -21,5.

To calculate the sums of the first 19 and first 34 terms, we will need the 19th and 34th terms. We calculate them using the formula for the nth term, as in problem 2:

a 19= -21.5 +(19-1) 1.5 = 5.5

a 34= -21.5 +(34-1) 1.5 = 28

There's nothing left. From the sum of 34 terms subtract the sum of 19 terms:

S 20-34 = S 1-34 - S 1-19 = 110.5 - (-152) = 262.5

Answer: 262.5

One important note! There is a very useful trick in solving this problem. Instead of direct calculation what you need (S 20-34), we counted something that would seem not to be needed - S 1-19. And then they determined S 20-34, throwing away from full result unnecessary. This kind of “feint with your ears” often saves you in wicked problems.)

In this lesson, we looked at problems for which it is enough to understand the meaning of the sum of an arithmetic progression. Well, you need to know a couple of formulas.)

Practical advice:

When solving any problem involving the sum of an arithmetic progression, I recommend immediately writing out the two main formulas from this topic.

Formula for the nth term:

These formulas will immediately tell you what to look for and in what direction to think in order to solve the problem. Helps.

And now the tasks for independent solution.

5. Find the sum of all two-digit numbers that are not divisible by three.

Cool?) The hint is hidden in the note to problem 4. Well, problem 3 will help.

6. The arithmetic progression is given by the condition: a 1 = -5.5; a n+1 = a n +0.5. Find the sum of its first 24 terms.

Unusual?) This is a recurrent formula. You can read about it in the previous lesson. Don’t ignore the link, such problems are often found in the State Academy of Sciences.

7. Vasya saved up money for the holiday. As much as 4550 rubles! And I decided to give my favorite person (myself) a few days of happiness). Live beautifully without denying yourself anything. Spend 500 rubles on the first day, and on each subsequent day spend 50 rubles more than the previous one! Until the money runs out. How many days of happiness did Vasya have?

Is it difficult?) The additional formula from problem 2 will help.

Answers (in disarray): 7, 3240, 6.

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Let's learn - with interest!)

You can get acquainted with functions and derivatives.

Or arithmetic is a type of ordered numerical sequence, the properties of which are studied in a school algebra course. This article discusses in detail the question of how to find the sum of an arithmetic progression.

What kind of progression is this?

Before moving on to the question (how to find the sum of an arithmetic progression), it is worth understanding what we are talking about.

Any sequence of real numbers that is obtained by adding (subtracting) some value from each previous number is called an algebraic (arithmetic) progression. This definition, when translated into mathematical language, takes the form:

Here i is the serial number of the element of the row a i. Thus, knowing just one starting number, you can easily restore the entire series. The parameter d in the formula is called the progression difference.

It can be easily shown that for the series of numbers under consideration the following equality holds:

a n = a 1 + d * (n - 1).

That is, to find the value of the nth element in order, you should add the difference d to the first element a 1 n-1 times.

What is the sum of an arithmetic progression: formula

Before giving the formula for the indicated amount, it is worth considering a simple special case. The progression is given natural numbers from 1 to 10, you need to find their sum. Since there are few terms in the progression (10), it is possible to solve the problem head-on, that is, sum all the elements in order.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

It is worth considering one interesting thing: since each term differs from the next one by the same value d = 1, then pairwise summation of the first with the tenth, the second with the ninth, and so on will give the same result. Really:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

As you can see, there are only 5 of these sums, that is, exactly two times less than the number of elements of the series. Then multiplying the number of sums (5) by the result of each sum (11), you will arrive at the result obtained in the first example.

If we generalize these arguments, we can write the following expression:

S n = n * (a 1 + a n) / 2.

This expression shows that it is not at all necessary to sum all the elements in a row; it is enough to know the value of the first a 1 and the last a n , as well as total number n terms.

It is believed that Gauss was the first to think of this equality when he was looking for a solution to a given problem. school teacher task: sum the first 100 integers.

Sum of elements from m to n: formula

The formula given in the previous paragraph answers the question of how to find the sum of an arithmetic progression (the first elements), but often in problems it is necessary to sum a series of numbers in the middle of the progression. How to do it?

The easiest way to answer this question is by considering the following example: let it be necessary to find the sum of terms from the m-th to the n-th. To solve the problem, you should represent the given segment from m to n of the progression as a new number series. In this view mth term a m will be first, and a n will be numbered n-(m-1). In this case, applying the standard formula for the sum, the following expression will be obtained:

S m n = (n - m + 1) * (a m + a n) / 2.

Example of using formulas

Knowing how to find the sum of an arithmetic progression, it is worth considering a simple example of using the above formulas.

Below is a numerical sequence, you should find the sum of its terms, starting from the 5th and ending with the 12th:

The given numbers indicate that the difference d is equal to 3. Using the expression for the nth element, you can find the values ​​of the 5th and 12th terms of the progression. It turns out:

a 5 = a 1 + d * 4 = -4 + 3 * 4 = 8;

a 12 = a 1 + d * 11 = -4 + 3 * 11 = 29.

Knowing the values ​​of the numbers at the ends of the algebraic progression under consideration, as well as knowing what numbers in the series they occupy, you can use the formula for the sum obtained in the previous paragraph. It will turn out:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

It is worth noting that this value could be obtained differently: first find the sum of the first 12 elements using the standard formula, then calculate the sum of the first 4 elements using the same formula, then subtract the second from the first sum.

Online calculator.
Solving an arithmetic progression.
Given: a n , d, n
Find: a 1

This mathematical program finds \(a_1\) of an arithmetic progression based on user-specified numbers \(a_n, d\) and \(n\).
The numbers \(a_n\) and \(d\) can be specified not only as integers, but also as fractions. Moreover, the fractional number can be entered in the form of a decimal fraction (\(2.5\)) and in the form common fraction(\(-5\frac(2)(7)\)).

The program not only gives the answer to the problem, but also displays the process of finding a solution.

This online calculator may be useful for high school students in preparing for tests and exams, when testing knowledge before the Unified State Exam, for parents to control the solution of many problems in mathematics and algebra. Or maybe it’s too expensive for you to hire a tutor or buy new textbooks? Or do you just want to get it done as quickly as possible? homework in mathematics or algebra? In this case, you can also use our programs with detailed solutions.

This way you can spend your own training and/or training their younger brothers or sisters, while the level of education in the area of ​​\u200b\u200bthe problems being solved increases.

If you are not familiar with the rules for entering numbers, we recommend that you familiarize yourself with them.

Rules for entering numbers

The numbers \(a_n\) and \(d\) can be specified not only as integers, but also as fractions.
The number \(n\) can only be a positive integer.

Rules for entering decimal fractions.
The integer and fractional parts in decimal fractions can be separated by either a period or a comma.
For example, you can enter decimals so 2.5 or so 2.5

Rules for entering ordinary fractions.
Only a whole number can act as the numerator, denominator and integer part of a fraction.

The denominator cannot be negative.

When entering a numerical fraction, the numerator is separated from the denominator by a division sign: /
Input:
Result: \(-\frac(2)(3)\)

Whole part separated from the fraction by an ampersand: &
Input:
Result: \(-1\frac(2)(3)\)

Enter numbers a n , d, n


Find a 1

It was discovered that some scripts necessary to solve this problem were not loaded, and the program may not work.
You may have AdBlock enabled.
In this case, disable it and refresh the page.

JavaScript is disabled in your browser.
For the solution to appear, you need to enable JavaScript.
Here are instructions on how to enable JavaScript in your browser.

Because There are a lot of people willing to solve the problem, your request has been queued.
In a few seconds the solution will appear below.
Please wait sec...


If you noticed an error in the solution, then you can write about this in the Feedback Form.
Do not forget indicate which task you decide what enter in the fields.



Our games, puzzles, emulators:

A little theory.

Number sequence

IN everyday practice numbering of various items is often used to indicate the order in which they are arranged. For example, the houses on each street are numbered. In the library, reader's subscriptions are numbered and then arranged in the order of assigned numbers in special card files.

In a savings bank, using the depositor’s personal account number, you can easily find this account and see what deposit is on it. Let account No. 1 contain a deposit of a1 rubles, account No. 2 contain a deposit of a2 rubles, etc. It turns out number sequence
a 1 , a 2 , a 3 , ..., a N
where N is the number of all accounts. Here, each natural number n from 1 to N is associated with a number a n.

Also studied in mathematics infinite number sequences:
a 1 , a 2 , a 3 , ..., a n , ... .
The number a 1 is called first term of the sequence, number a 2 - second term of the sequence, number a 3 - third term of the sequence etc.
The number a n is called nth (nth) member of the sequence, and the natural number n is its number.

For example, in the sequence of squares of natural numbers 1, 4, 9, 16, 25, ..., n 2, (n + 1) 2, ... and 1 = 1 is the first term of the sequence; and n = n 2 is nth term sequences; a n+1 = (n + 1) 2 is the (n + 1)th (n plus first) term of the sequence. Often a sequence can be specified by the formula of its nth term. For example, the formula \(a_n=\frac(1)(n), \; n \in \mathbb(N) \) defines the sequence \(1, \; \frac(1)(2) , \; \frac( 1)(3) , \; \frac(1)(4) , \dots,\frac(1)(n) , \dots \)

Arithmetic progression

The length of the year is approximately 365 days. More exact value is equal to \(365\frac(1)(4)\) days, so every four years an error of one day accumulates.

To account for this error, a day is added to every fourth year, and the extended year is called a leap year.

For example, in the third millennium, leap years are the years 2004, 2008, 2012, 2016, ....

In this sequence, each member, starting from the second, is equal to the previous one, added to the same number 4. Such sequences are called arithmetic progressions.

Definition.
The number sequence a 1, a 2, a 3, ..., a n, ... is called arithmetic progression, if for all natural n the equality
\(a_(n+1) = a_n+d, \)
where d is some number.

From this formula it follows that a n+1 - a n = d. The number d is called the difference arithmetic progression.

By definition of an arithmetic progression we have:
\(a_(n+1)=a_n+d, \quad a_(n-1)=a_n-d, \)
where
\(a_n= \frac(a_(n-1) +a_(n+1))(2) \), where \(n>1 \)

Thus, each term of an arithmetic progression, starting from the second, is equal to the arithmetic mean of its two adjacent terms. This explains the name "arithmetic" progression.

Note that if a 1 and d are given, then the remaining terms of the arithmetic progression can be calculated using the recurrent formula a n+1 = a n + d. In this way it is not difficult to calculate the first few terms of the progression, however, for example, a 100 will already require a lot of calculations. Typically, the nth term formula is used for this. By definition of arithmetic progression
\(a_2=a_1+d, \)
\(a_3=a_2+d=a_1+2d, \)
\(a_4=a_3+d=a_1+3d \)
etc.
At all,
\(a_n=a_1+(n-1)d, \)
since the nth term of an arithmetic progression is obtained from the first term by adding (n-1) times the number d.
This formula is called formula for the nth term of an arithmetic progression.

Sum of the first n terms of an arithmetic progression

Find the sum of all natural numbers from 1 to 100.
Let's write this amount in two ways:
S = l + 2 + 3 + ... + 99 + 100,
S = 100 + 99 + 98 + ... + 2 + 1.
Let's add these equalities term by term:
2S = 101 + 101 + 101 + ... + 101 + 101.
This sum has 100 terms
Therefore, 2S = 101 * 100, hence S = 101 * 50 = 5050.

Let us now consider an arbitrary arithmetic progression
a 1 , a 2 , a 3 , ..., a n , ...
Let S n be the sum of the first n terms of this progression:
S n = a 1 , a 2 , a 3 , ..., a n
Then the sum of the first n terms of an arithmetic progression is equal to
\(S_n = n \cdot \frac(a_1+a_n)(2) \)

Since \(a_n=a_1+(n-1)d\), then replacing a n in this formula we get another formula for finding sum of the first n terms of an arithmetic progression:
\(S_n = n \cdot \frac(2a_1+(n-1)d)(2) \)

Books (textbooks) Abstracts of the Unified State Examination and the Unified State Examination tests online Games, puzzles Plotting graphs of functions Spelling dictionary of the Russian language Dictionary of youth slang Catalog of Russian schools Catalog of secondary educational institutions of Russia Catalog of Russian universities List of tasks

When studying algebra in secondary school(9th grade) one of important topics is the study of number sequences, which include progressions - geometric and arithmetic. In this article we will look at an arithmetic progression and examples with solutions.

What is an arithmetic progression?

To understand this, it is necessary to define the progression in question, as well as provide the basic formulas that will be used later in solving problems.

Arithmetic or is a set of ordered rational numbers, each member of which differs from the previous one by some constant value. This value is called the difference. That is, knowing any member of an ordered series of numbers and the difference, you can restore the entire arithmetic progression.

Let's give an example. The following sequence of numbers will be an arithmetic progression: 4, 8, 12, 16, ..., since the difference in this case is 4 (8 - 4 = 12 - 8 = 16 - 12). But the set of numbers 3, 5, 8, 12, 17 can no longer be attributed to the type of progression under consideration, since the difference for it is not a constant value (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Important Formulas

Let us now present the basic formulas that will be needed to solve problems using arithmetic progression. Let us denote by the symbol a n the nth member of the sequence, where n is an integer. We denote the difference Latin letter d. Then the following expressions are valid:

  1. To determine the value of the nth term, the following formula is suitable: a n = (n-1)*d+a 1 .
  2. To determine the sum of the first n terms: S n = (a n +a 1)*n/2.

To understand any examples of arithmetic progression with solutions in 9th grade, it is enough to remember these two formulas, since any problems of the type under consideration are based on their use. You should also remember that the progression difference is determined by the formula: d = a n - a n-1.

Example #1: finding an unknown term

Let's give a simple example of an arithmetic progression and the formulas that need to be used to solve it.

Let the sequence 10, 8, 6, 4, ... be given, you need to find five terms in it.

From the conditions of the problem it already follows that the first 4 terms are known. The fifth can be defined in two ways:

  1. Let's first calculate the difference. We have: d = 8 - 10 = -2. Similarly, you could take any two other members standing next to each other. For example, d = 4 - 6 = -2. Since it is known that d = a n - a n-1, then d = a 5 - a 4, from which we get: a 5 = a 4 + d. Let's substitute known values: a 5 = 4 + (-2) = 2.
  2. The second method also requires knowledge of the difference of the progression in question, so you first need to determine it as shown above (d = -2). Knowing that the first term a 1 = 10, we use the formula for the n number of the sequence. We have: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Substituting n = 5 into the last expression, we get: a 5 = 12-2 * 5 = 2.

As you can see, both solutions led to the same result. Note that in this example the progression difference d is a negative value. Such sequences are called decreasing, since each next term is less than the previous one.

Example #2: progression difference

Now let's complicate the problem a little, give an example of how to find the difference of an arithmetic progression.

It is known that in some algebraic progression the 1st term is equal to 6, and the 7th term is equal to 18. It is necessary to find the difference and restore this sequence to the 7th term.

Let's use the formula to determine the unknown term: a n = (n - 1) * d + a 1 . Let's substitute the known data from the condition into it, that is, the numbers a 1 and a 7, we have: 18 = 6 + 6 * d. From this expression you can easily calculate the difference: d = (18 - 6) /6 = 2. Thus, we have answered the first part of the problem.

To restore the sequence to the 7th term, you should use the definition of an algebraic progression, that is, a 2 = a 1 + d, a 3 = a 2 + d, and so on. As a result, we restore the entire sequence: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, a 7 = 18.

Example No. 3: drawing up a progression

Let's complicate it further stronger condition tasks. Now we need to answer the question of how to find an arithmetic progression. The following example can be given: two numbers are given, for example - 4 and 5. It is necessary to create an algebraic progression so that three more terms are placed between these.

Before you start solving this problem, you need to understand what place the given numbers will occupy in the future progression. Since there will be three more terms between them, then a 1 = -4 and a 5 = 5. Having established this, we move on to the problem, which is similar to the previous one. Again, for the nth term we use the formula, we get: a 5 = a 1 + 4 * d. From: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2.25. What we got here is not an integer value of the difference, but it is a rational number, so the formulas for the algebraic progression remain the same.

Now let's add the found difference to a 1 and restore the missing terms of the progression. We get: a 1 = - 4, a 2 = - 4 + 2.25 = - 1.75, a 3 = -1.75 + 2.25 = 0.5, a 4 = 0.5 + 2.25 = 2.75, a 5 = 2.75 + 2.25 = 5, which coincided with the conditions of the problem.

Example No. 4: first term of progression

Let's continue to give examples of arithmetic progression with solutions. In all previous problems, the first number of the algebraic progression was known. Now let's consider a problem of a different type: let two numbers be given, where a 15 = 50 and a 43 = 37. It is necessary to find which number this sequence begins with.

The formulas used so far assume knowledge of a 1 and d. In the problem statement, nothing is known about these numbers. Nevertheless, we will write down expressions for each term about which information is available: a 15 = a 1 + 14 * d and a 43 = a 1 + 42 * d. We received two equations in which there are 2 unknown quantities (a 1 and d). This means that the problem is reduced to solving a system of linear equations.

The easiest way to solve this system is to express a 1 in each equation and then compare the resulting expressions. First equation: a 1 = a 15 - 14 * d = 50 - 14 * d; second equation: a 1 = a 43 - 42 * d = 37 - 42 * d. Equating these expressions, we get: 50 - 14 * d = 37 - 42 * d, whence the difference d = (37 - 50) / (42 - 14) = - 0.464 (only 3 decimal places are given).

Knowing d, you can use any of the 2 expressions above for a 1. For example, first: a 1 = 50 - 14 * d = 50 - 14 * (- 0.464) = 56.496.

If you have doubts about the result obtained, you can check it, for example, determine the 43rd term of the progression, which is specified in the condition. We get: a 43 = a 1 + 42 * d = 56.496 + 42 * (- 0.464) = 37.008. The small error is due to the fact that rounding to thousandths was used in the calculations.

Example No. 5: amount

Now let's look at several examples with solutions for the sum of an arithmetic progression.

Let a numerical progression be given the following type: 1, 2, 3, 4, ...,. How to calculate the sum of 100 of these numbers?

Thanks to development computer technology you can solve this problem, that is, add all the numbers sequentially, which Calculating machine will do as soon as the person presses the Enter key. However, the problem can be solved mentally if you pay attention that the presented series of numbers is an algebraic progression, and its difference is equal to 1. Applying the formula for the sum, we get: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

It is interesting to note that this problem is called “Gaussian” because at the beginning of the 18th century the famous German, still only 10 years old, was able to solve it in his head in a few seconds. The boy did not know the formula for the sum of an algebraic progression, but he noticed that if you add the numbers at the ends of the sequence in pairs, you always get the same result, that is, 1 + 100 = 2 + 99 = 3 + 98 = ..., and since these sums will be exactly 50 (100 / 2), then to get the correct answer it is enough to multiply 50 by 101.

Example No. 6: sum of terms from n to m

One more typical example the sum of an arithmetic progression is as follows: given a series of numbers: 3, 7, 11, 15, ..., you need to find what the sum of its terms from 8 to 14 will be equal to.

The problem is solved in two ways. The first of them involves finding unknown terms from 8 to 14, and then summing them sequentially. Since there are few terms, this method is not quite labor-intensive. Nevertheless, it is proposed to solve this problem using a second method, which is more universal.

The idea is to obtain a formula for the sum of the algebraic progression between terms m and n, where n > m are integers. For both cases, we write two expressions for the sum:

  1. S m = m * (a m + a 1) / 2.
  2. S n = n * (a n + a 1) / 2.

Since n > m, it is obvious that the 2nd sum includes the first. The last conclusion means that if we take the difference between these sums and add the term a m to it (in the case of taking the difference, it is subtracted from the sum S n), we will obtain the necessary answer to the problem. We have: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n/2 + a m * (1- m/2). It is necessary to substitute formulas for a n and a m into this expression. Then we get: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

The resulting formula is somewhat cumbersome, however, the sum S mn depends only on n, m, a 1 and d. In our case, a 1 = 3, d = 4, n = 14, m = 8. Substituting these numbers, we get: S mn = 301.

As can be seen from the above solutions, all problems are based on knowledge of the expression for the nth term and the formula for the sum of the set of first terms. Before starting to solve any of these problems, it is recommended that you carefully read the condition, clearly understand what you need to find, and only then proceed with the solution.

Another tip is to strive for simplicity, that is, if you can answer a question without using complex mathematical calculations, then you need to do just that, since in this case the likelihood of making a mistake is less. For example, in the example of an arithmetic progression with solution No. 6, one could stop at the formula S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, and break common task into separate subtasks (in in this case first find the terms a n and a m).

If you have doubts about the result obtained, it is recommended to check it, as was done in some of the examples given. We found out how to find an arithmetic progression. If you figure it out, it's not that difficult.

The concept of a number sequence implies that each natural number corresponds to some real value. Such a series of numbers can be either arbitrary or have certain properties - a progression. In the latter case, each subsequent element (member) of the sequence can be calculated using the previous one.

Arithmetic progression - sequence numerical values, in which its neighboring members differ from each other by the same number (all elements of the series, starting from the 2nd, have a similar property). This number– the difference between the previous and subsequent terms is constant and is called the progression difference.

Progression difference: definition

Consider a sequence consisting of j values ​​A = a(1), a(2), a(3), a(4) ... a(j), j belongs to the set of natural numbers N. An arithmetic progression, according to its definition, is a sequence , in which a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = d. The value d is the desired difference of this progression.

d = a(j) – a(j-1).

Highlight:

  • An increasing progression, in which case d > 0. Example: 4, 8, 12, 16, 20, ...
  • Decreasing progression, then d< 0. Пример: 18, 13, 8, 3, -2, …

Difference progression and its arbitrary elements

If 2 arbitrary terms of the progression are known (i-th, k-th), then the difference for a given sequence can be determined based on the relationship:

a(i) = a(k) + (i – k)*d, which means d = (a(i) – a(k))/(i-k).

Difference of progression and its first term

This expression will help determine an unknown value only in cases where the number of the sequence element is known.

Progression difference and its sum

The sum of a progression is the sum of its terms. To calculate the total value of its first j elements, use the appropriate formula:

S(j) =((a(1) + a(j))/2)*j, but since a(j) = a(1) + d(j – 1), then S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a(1) + d(– 1))/2)*j.

Loading...Loading...