Egy aritmetikai sorozat első 8 számának összege. Algebra: Aritmetikai és geometriai progressziók

Az óra típusa:új anyagok tanulása.

Az óra céljai:

  • a tanulók megértésének bővítése és elmélyítése az aritmetikai progresszió segítségével megoldott problémákkal kapcsolatban; a tanulók keresési tevékenységének szervezése egy számtani sorozat első n tagjának összegének képletének származtatása során;
  • az új ismeretek önálló elsajátításának és a már megszerzett tudás felhasználásának képességének fejlesztése egy adott feladat megvalósítása érdekében;
  • a megszerzett tények általánosítására irányuló vágy és igény kialakítása, az önállóság fejlesztése.

Feladatok:

  • összefoglalni és rendszerezni a meglévő ismereteket az „Aritmetikai progresszió” témában;
  • levezetni a képleteket egy aritmetikai sorozat első n tagjának összegének kiszámításához;
  • tanítsa meg a kapott képletek alkalmazását különféle feladatok megoldása során;
  • hívja fel a tanulók figyelmét a numerikus kifejezés értékének megtalálásának eljárására.

Felszerelés:

  • kártyák feladatokkal csoportos és páros munkavégzéshez;
  • értékelő papír;
  • bemutatásAritmetikai progresszió”.

I. Alapismeretek felfrissítése.

1. Önálló munkavégzés párban.

1. lehetőség:

Határozza meg az aritmetikai progressziót. Írjon fel egy ismétlődési képletet, amely meghatároz egy aritmetikai progressziót. Kérjük, adjon meg egy példát egy aritmetikai sorozatra, és jelezze a különbségét.

2. lehetőség:

Írja fel egy aritmetikai sorozat n-edik tagjának képletét! Keresse meg az aritmetikai sorozat 100. tagját ( a n}: 2, 5, 8 …
Ebben az időben két diák hátoldal a testületek válaszokat készítenek ezekre a kérdésekre.
A tanulók a táblán bejelölve értékelik partnerük munkáját. (A válaszokat tartalmazó lapokat leadjuk.)

2. Játék pillanata.

1. Feladat.

Tanár. Valami számtani sorozatra gondoltam. Csak két kérdést tegyél fel, hogy a válaszok után gyorsan megnevezhesd ennek a folyamatnak a 7. tagját. (1, 3, 5, 7, 9, 11, 13, 15…)

Diákok kérdései.

  1. Mi a progresszió hatodik tagja és mi a különbség?
  2. Mi a progresszió nyolcadik tagja, és mi a különbség?

Ha nincs több kérdés, akkor a tanár ösztönözheti őket - „tiltás” a d-re (különbség), vagyis nem szabad megkérdezni, hogy mi a különbség. Kérdéseket tehet fel: mivel egyenlő a progresszió 6. tagja és mi a 8. tagja?

2. feladat.

A táblára 20 szám van felírva: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

A tanár háttal áll a táblának. A tanulók kihívják a számot, a tanár pedig azonnal magát a számot. Magyarázd el, hogyan tudom ezt megtenni?

A tanár emlékszik az n-edik tag képletére a n = 3n – 2és a megadott n értékeket helyettesítve megkeresi a megfelelő értékeket a n.

II. Tanulási feladat kitűzése.

Egy, az ie 2. évezredre visszanyúló, egyiptomi papiruszokban talált ősi probléma megoldását javaslom.

Feladat:„Azt mondják neked: ossz el 10 mérce árpát 10 ember között, a különbség minden ember és szomszédja között a mérték 1/8-a.”

  • Hogyan kapcsolódik ez a probléma az aritmetikai progresszióhoz? (Minden következő személy a mérték 1/8-ával többet kap, ami azt jelenti, hogy a különbség d=1/8, 10 fő, ami n=10-et jelent.)
  • Mit gondol, mit jelent a 10-es szám? (A progresszió összes tagjának összege.)
  • Mit kell még tudni ahhoz, hogy könnyen és egyszerűen lehessen osztani az árpát a probléma körülményei szerint? (A fejlődés első szakasza.)

A lecke célja– a progresszív tagok összegének számától, az első tagtól és a különbségtől való függésének megállapítása, valamint annak ellenőrzése, hogy az ókorban helyesen oldották-e meg a feladatot.

Mielőtt levezetnénk a képletet, nézzük meg, hogyan oldották meg a problémát az ókori egyiptomiak.

És a következőképpen oldották meg:

1) 10 intézkedés: 10 = 1 intézkedés – átlagos részesedés;
2) 1 ütem ∙ = 2 ütem – megduplázva átlagos Ossza meg.
Megduplázva átlagos részesedés az 5. és 6. személy részesedéseinek összege.
3) 2 intézkedés – 1/8 intézkedés = 1 7/8 intézkedés – az ötödik személy arányának duplája.
4) 1 7/8: 2 = 5/16 – az ötödrész töredéke; és így tovább, megtalálhatja az egyes előző és következő személyek részesedését.

Megkapjuk a sorrendet:

III. A probléma megoldása.

1. Csoportos munka

I. csoport: Keresse meg az egymást követő 20 összegét természetes számok: S 20 =(20+1)∙10 =210.

BAN BEN Általános nézet

II csoport: Keresse meg a természetes számok összegét 1-től 100-ig (A kis Gauss legendája).

S 100 = (1+100)∙50 = 5050

Következtetés:

III csoport: Keresse meg a természetes számok összegét 1-től 21-ig!

Megoldás: 1+21=2+20=3+19=4+18…

Következtetés:

IV csoport: Keresse meg a természetes számok összegét 1-től 101-ig!

Következtetés:

A vizsgált problémák megoldásának ezt a módszerét „Gauss-módszernek” nevezik.

2. Minden csoport bemutatja a táblán a probléma megoldását.

3. A javasolt megoldások általánosítása tetszőleges aritmetikai haladásra:

a 1, a 2, a 3,…, a n-2, a n-1, a n.
S n =a 1 + a 2 + a 3 + a 4 +…+ a n-3 + a n-2 + a n-1 + a n.

Keressük meg ezt az összeget hasonló érveléssel:

4. Megoldottuk a problémát?(Igen.)

IV. A kapott képletek elsődleges megértése és alkalmazása a feladatok megoldása során.

1. Egy ősi probléma megoldásának ellenőrzése a képlet segítségével.

2. A képlet alkalmazása különböző feladatok megoldásában.

3. Feladatmegoldás során képletek alkalmazásának képességét fejlesztő gyakorlatok.

A) 613. sz

Adott:( a n) – aritmetikai progresszió;

(a n): 1, 2, 3, …, 1500

Megtalálja: S 1500

Megoldás: , a 1 = 1 és 1500 = 1500,

B) Adott: ( a n) – aritmetikai progresszió;
(a n): 1, 2, 3, …
Sn = 210

Megtalálja: n
Megoldás:

V. Önálló munkavégzés kölcsönös ellenőrzéssel.

Denis futárként kezdett dolgozni. Az első hónapban 200 rubel volt a fizetése, minden következő hónapban 30 rubelrel nőtt. Mennyit keresett összesen egy év alatt?

Adott:( a n) – aritmetikai progresszió;
a 1 = 200, d = 30, n = 12
Megtalálja: S 12
Megoldás:

Válasz: Denis 4380 rubelt kapott az évre.

VI. Házi feladat oktatás.

  1. 4.3. szakasz – tanulja meg a képlet levezetését.
  2. №№ 585, 623 .
  3. Hozzon létre egy feladatot, amely megoldható a számtani sorozat első n tagjának összegének képletével!

VII. Összegezve a tanulságot.

1. Pontozólap

2. Folytasd a mondatokat!

  • Ma az órán tanultam...
  • Tanult képletek...
  • Úgy gondolom, hogy …

3. Meg tudod találni az 1-től 500-ig terjedő számok összegét? Milyen módszerrel oldja meg ezt a problémát?

Bibliográfia.

1. Algebra, 9. évfolyam. Tutorial for oktatási intézmények. Szerk. G.V. Dorofeeva. M.: „Felvilágosodás”, 2009.

Ha minden természetes számra n valós számnak felel meg a n , akkor azt mondják, hogy adott számsor :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Tehát a számsorozat a természetes argumentum függvénye.

Szám a 1 hívott a sorozat első tagja , szám a 2 a sorozat második tagja , szám a 3 harmadik stb. Szám a n hívott n-edik tag sorozatok , és egy természetes szám na számát .

Két szomszédos tagból a n És a n +1 szekvencia tagja a n +1 hívott későbbi (felé a n ), A a n előző (felé a n +1 ).

Egy sorozat definiálásához meg kell adni egy metódust, amely lehetővé teszi a sorozat tetszőleges számú tagjának megtalálását.

A sorrendet gyakran a segítségével határozzák meg n-edik tagképletek , azaz egy képlet, amely lehetővé teszi egy sorozat tagjának a szám alapján történő meghatározását.

Például,

képlettel megadható a pozitív páratlan számok sorozata

a n= 2n- 1,

és a váltakozás sorrendje 1 És -1 - képlet

b n = (-1)n +1 .

A sorrend meghatározható visszatérő képlet, vagyis egy képlet, amely a sorozat bármely tagját kifejezi, néhánytól kezdve, az előző (egy vagy több) tagon keresztül.

Például,

Ha a 1 = 1 , A a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Ha egy 1= 1, a 2 = 1, a n +2 = a n + a n +1 , akkor a numerikus sorozat első hét tagja a következőképpen alakul:

egy 1 = 1,

a 2 = 1,

a 3 = egy 1 + a 2 = 1 + 1 = 2,

egy 4 = a 2 + a 3 = 1 + 2 = 3,

egy 5 = a 3 + egy 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

A szekvenciák lehetnek végső És végtelen .

A sorozat az ún végső , ha véges számú tagja van. A sorozat az ún végtelen , ha végtelenül sok tagja van.

Például,

kétjegyű természetes számok sorozata:

10, 11, 12, 13, . . . , 98, 99

végső.

Prímszámok sorozata:

2, 3, 5, 7, 11, 13, . . .

végtelen.

A sorozat az ún növekvő , ha minden tagja a másodiktól kezdve nagyobb, mint az előző.

A sorozat az ún csökkenő , ha minden tagja a másodiktól kezdve kisebb, mint az előző.

Például,

2, 4, 6, 8, . . . , 2n, . . . — növekvő sorrend;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . — csökkenő sorrend.

Olyan sorozatot nevezünk, amelynek elemei a szám növekedésével nem csökkennek, vagy éppen ellenkezőleg, nem nőnek monoton sorozat .

A monoton szekvenciák különösen növekvő és csökkenő szekvenciák.

Aritmetikai progresszió

Aritmetikai progresszió egy olyan sorozat, amelyben minden tag a másodiktól kezdve egyenlő az előzővel, amelyhez ugyanannyit adunk.

a 1 , a 2 , a 3 , . . . , a n, . . .

egy aritmetikai progresszió, ha bármely természetes számra n a feltétel teljesül:

a n +1 = a n + d,

Ahol d - egy bizonyos szám.

Így egy adott aritmetikai sorozat következő és előző tagjai közötti különbség mindig állandó:

a 2 - a 1 = a 3 - a 2 = . . . = a n +1 - a n = d.

Szám d hívott aritmetikai progresszió különbsége.

Egy aritmetikai progresszió meghatározásához elegendő annak első tagját és különbségét feltüntetni.

Például,

Ha a 1 = 3, d = 4 , akkor a sorozat első öt tagját a következőképpen találjuk meg:

egy 1 =3,

a 2 = egy 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

egy 4 = a 3 + d= 11 + 4 = 15,

a 5 = a 4 + d= 15 + 4 = 19.

Az első taggal végzett aritmetikai sorozathoz a 1 és a különbség d neki n

a n = egy 1 + (n- 1)d.

Például,

keresse meg az aritmetikai sorozat harmincadik tagját

1, 4, 7, 10, . . .

egy 1 =1, d = 3,

egy 30 = egy 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = egy 1 + (n- 2)d,

a n= egy 1 + (n- 1)d,

a n +1 = a 1 + nd,

akkor nyilván

a n=
a n-1 + a n+1
2

Egy számtani sorozat minden tagja a másodiktól kezdve egyenlő az előző és az azt követő tagok számtani átlagával.

az a, b és c számok akkor és csak akkor, ha az egyik egyenlő a másik kettő számtani középével.

Például,

a n = 2n- 7 , egy aritmetikai sorozat.

Használjuk a fenti állítást. Nekünk van:

a n = 2n- 7,

a n-1 = 2(n- 1) - 7 = 2n- 9,

a n+1 = 2(n+ 1) - 7 = 2n- 5.

Ennélfogva,

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = a n,
2
2

Vegye figyelembe, hogy n Egy aritmetikai progresszió tizedik tagja nem csak a segítségével található meg a 1 , hanem bármely korábbi a k

a n = a k + (n- k)d.

Például,

Mert a 5 le lehet írni

egy 5 = egy 1 + 4d,

egy 5 = a 2 + 3d,

egy 5 = a 3 + 2d,

egy 5 = egy 4 + d.

a n = a n-k + kd,

a n = a n+k - kd,

akkor nyilván

a n=
a n-k +a n+k
2

egy aritmetikai sorozat bármely tagja a másodiktól kezdve egyenlő a számtani sorozat egyenlő távolságra lévő tagjainak összegének felével.

Ezen túlmenően, bármely aritmetikai progresszióra a következő egyenlőség érvényes:

a m + a n = a k + a l,

m + n = k + l.

Például,

számtani haladásban

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = egy 10 = a 3 + 7d= 7 + 7 3 = 7 + 21 = 28;

3) egy 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, mert

a 2 + a 12= 4 + 34 = 38,

egy 5 + egy 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 +. . .+ a n,

első n egy aritmetikai progresszió tagja egyenlő a szélső tagok összegének felének és a tagok számának szorzatával:

Ebből különösen az következik, hogy ha összegezni kell a feltételeket

a k, a k +1 , . . . , a n,

akkor az előző képlet megtartja szerkezetét:

Például,

számtani haladásban 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Ha számtani progressziót adunk meg, akkor a mennyiségeket a 1 , a n, d, nÉsS n két képlet köti össze:

Ezért ha három jelentése ezekből a mennyiségekből adjuk meg, majd ezekből a képletekből határozzuk meg a másik két mennyiség megfelelő értékét, két egyenletrendszerbe kombinálva két ismeretlennel.

Az aritmetikai sorozat egy monoton sorozat. Ahol:

  • Ha d > 0 , akkor növekszik;
  • Ha d < 0 , akkor csökken;
  • Ha d = 0 , akkor a sorozat stacioner lesz.

Geometriai progresszió

Geometriai progresszió olyan sorozat, amelyben minden egyes tag a másodiktól kezdve egyenlő az előzővel, szorozva ugyanazzal a számmal.

b 1 , b 2 , b 3 , . . . , b n, . . .

geometriai progresszió, ha bármely természetes számra n a feltétel teljesül:

b n +1 = b n · q,

Ahol q ≠ 0 - egy bizonyos szám.

Így egy adott geometriai progresszió következő tagjának az előzőhöz viszonyított aránya egy állandó szám:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

Szám q hívott a geometriai progresszió nevezője.

A geometriai progresszió meghatározásához elegendő annak első tagját és nevezőjét feltüntetni.

Például,

Ha b 1 = 1, q = -3 , akkor a sorozat első öt tagját a következőképpen találjuk meg:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 és nevező q neki n A kifejezés a következő képlettel kereshető:

b n = b 1 · qn -1 .

Például,

keresse meg a geometriai progresszió hetedik tagját 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 2 6 = 64.

b n-1 = b 1 · qn -2 ,

b n = b 1 · qn -1 ,

b n +1 = b 1 · qn,

akkor nyilván

b n 2 = b n -1 · b n +1 ,

a geometriai progresszió minden tagja a másodiktól kezdve egyenlő az előző és az azt követő tagok mértani átlagával (arányos).

Mivel fordítva is igaz, a következő állítás érvényes:

az a, b és c számok valamilyen geometriai haladás egymást követő tagjai akkor és csak akkor, ha az egyik négyzete egyenlő a másik kettő szorzatával, vagyis az egyik szám a másik kettő mértani közepe.

Például,

Bizonyítsuk be, hogy a képlet által adott sorozat b n= -3 2 n , egy geometriai progresszió. Használjuk a fenti állítást. Nekünk van:

b n= -3 2 n,

b n -1 = -3 2 n -1 ,

b n +1 = -3 2 n +1 .

Ennélfogva,

b n 2 = (-3 2 n) 2 = (-3 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

ami bizonyítja a kívánt állítást.

Vegye figyelembe, hogy n A geometriai progresszió harmadtagja nem csak ezen keresztül található meg b 1 , hanem bármely korábbi tag is b k , amihez elég a képletet használni

b n = b k · qn - k.

Például,

Mert b 5 le lehet írni

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q 2,

b 5 = b 4 · q.

b n = b k · qn - k,

b n = b n - k · q k,

akkor nyilván

b n 2 = b n - k· b n + k

egy geometriai sorozat bármely tagjának négyzete a másodiktól kezdve egyenlő ennek a haladásnak az egyenlő távolságra lévő tagjainak szorzatával.

Ezenkívül bármely geometriai progresszióra igaz az egyenlőség:

b m· b n= b k· b l,

m+ n= k+ l.

Például,

geometriai haladásban

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , mert

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

első n nevezővel rendelkező geometriai progresszió tagjai q 0 képlettel számolva:

És mikor q = 1 - a képlet szerint

S n= nb 1

Vegye figyelembe, hogy ha összegeznie kell a feltételeket

b k, b k +1 , . . . , b n,

akkor a következő képletet használjuk:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - qn - k +1
.
1 - q

Például,

geometriai haladásban 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Ha adott egy geometriai progresszió, akkor a mennyiségek b 1 , b n, q, nÉs S n két képlet köti össze:

Ezért, ha ezen mennyiségek közül bármelyik három értékét megadjuk, akkor a másik két mennyiség megfelelő értékeit ezekből a képletekből határozzuk meg, két egyenletrendszerbe kombinálva, két ismeretlennel.

Egy geometriai progresszióhoz az első taggal b 1 és nevező q a következők történnek a monotonitás tulajdonságai :

  • a progresszió növekszik, ha az alábbi feltételek egyike teljesül:

b 1 > 0 És q> 1;

b 1 < 0 És 0 < q< 1;

  • A progresszió csökken, ha az alábbi feltételek egyike teljesül:

b 1 > 0 És 0 < q< 1;

b 1 < 0 És q> 1.

Ha q< 0 , akkor a geometriai progresszió váltakozó: a páratlan számú tagok előjele megegyezik az első tagjával, a páros számokkal pedig ellentétes előjelű. Nyilvánvaló, hogy a váltakozó geometriai progresszió nem monoton.

Az első terméke n a geometriai progresszió tagjai a következő képlettel számíthatók ki:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

Például,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Végtelenül csökkenő geometriai progresszió

Végtelenül csökkenő geometriai progresszió végtelen geometriai progressziónak nevezzük, amelynek a nevező modulusa kisebb 1 , vagyis

|q| < 1 .

Vegye figyelembe, hogy a végtelenül csökkenő geometriai progresszió nem feltétlenül csökkenő sorozat. Alkalomhoz illik

1 < q< 0 .

Ilyen nevező esetén a sorozat váltakozó. Például,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Egy végtelenül csökkenő geometriai progresszió összege nevezd meg azt a számot, amelyhez az elsők összege korlátlanul közelít! n egy progresszió tagjai korlátlan számnövekedéssel n . Ez a szám mindig véges, és a képlettel fejezzük ki

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Például,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Az aritmetikai és a geometriai progresszió kapcsolata

Az aritmetikai és a geometriai progresszió szorosan összefügg. Nézzünk csak két példát.

a 1 , a 2 , a 3 , . . . d , Azt

b a 1 , b a 2 , b a 3 , . . . b d .

Például,

1, 3, 5, . . . - aritmetikai progresszió különbséggel 2 És

7 1 , 7 3 , 7 5 , . . . - geometriai progresszió nevezővel 7 2 .

b 1 , b 2 , b 3 , . . . - geometriai progresszió nevezővel q , Azt

log a b 1, log a b 2, log a b 3, . . . - aritmetikai progresszió különbséggel log aq .

Például,

2, 12, 72, . . . - geometriai progresszió nevezővel 6 És

lg 2, lg 12, lg 72, . . . - aritmetikai progresszió különbséggel lg 6 .

Első szint

Aritmetikai progresszió. Részletes elmélet példákkal (2019)

Számsorozat

Szóval, üljünk le, és kezdjünk el néhány számot írni. Például:
Bármilyen számot írhatsz, és annyi lehet, amennyit akarsz (esetünkben ilyenek vannak). Akárhány számot írunk, mindig meg tudjuk mondani, hogy melyik az első, melyik a második, és így tovább az utolsóig, vagyis meg tudjuk őket számozni. Ez egy példa egy számsorozatra:

Számsorozat
Például a sorozatunkhoz:

A hozzárendelt szám csak egy számra vonatkozik a sorozatban. Más szóval, nincs három másodperces szám a sorozatban. A második szám (mint a th szám) mindig ugyanaz.
A számmal rendelkező számot a sorozat th tagjának nevezzük.

Általában a teljes sorozatot valamilyen betűvel hívjuk (például,), és ennek a sorozatnak minden tagja ugyanaz a betű, amelynek indexe megegyezik ennek a tagnak a számával: .

A mi esetünkben:

Tegyük fel, hogy van egy számsorozatunk, amelyben a szomszédos számok különbsége azonos és egyenlő.
Például:

stb.
Ezt a számsorozatot aritmetikai sorozatnak nevezzük.
A „progresszió” kifejezést Boethius római szerző vezette be még a 6. században, és tágabb értelemben végtelen számsorozatként értelmezték. Az „aritmetika” elnevezést a folytonos arányok elméletéből vették át, amelyet az ókori görögök tanulmányoztak.

Ez egy számsorozat, amelynek minden tagja egyenlő az előzővel, amely ugyanahhoz a számhoz van hozzáadva. Ezt a számot aritmetikai progresszió különbségének nevezzük, és jelöljük.

Próbáld meg meghatározni, hogy mely számsorozatok aritmetikai sorozatok, és melyek nem:

a)
b)
c)
d)

Megvan? Hasonlítsuk össze a válaszainkat:
Is számtani progresszió - b, c.
Nem számtani progresszió - a, d.

Térjünk vissza az adott progresszióhoz () és próbáljuk meg megtalálni a th tag értékét. Létezik kettő megtalálásának módja.

1. Módszer

Addig adhatjuk a progressziószámot az előző értékhez, amíg el nem érjük a progresszió edik tagját. Még jó, hogy nincs sok összefoglalni valónk – csak három érték:

Tehát a leírt aritmetikai progresszió edik tagja egyenlő.

2. Módszer

Mi van, ha meg kell találnunk a progresszió th tagjának értékét? Az összegzés több mint egy órát venne igénybe, és nem tény, hogy nem hibáznánk a számok összeadásakor.
Természetesen a matematikusok kitalálták azt a módot, hogy nem szükséges egy számtani sorozat különbségét hozzáadni az előző értékhez. Nézze meg közelebbről a megrajzolt képet... Bizonyára Ön is észrevett már egy bizonyos mintát, mégpedig:

Például nézzük meg, miből áll ennek az aritmetikai sorozatnak az értéke:


Más szavakkal:

Próbáld meg magad is így megtalálni egy adott számtani sorozat tagjának értékét.

Kiszámoltad? Hasonlítsa össze a jegyzeteit a válasszal:

Kérjük, vegye figyelembe, hogy pontosan ugyanazt a számot kapta, mint az előző módszernél, amikor az aritmetikai progresszió tagjait szekvenciálisan hozzáadtuk az előző értékhez.
Próbáljuk meg „személyteleníteni” ezt a képletet – fogalmazzuk meg általános formában, és kapjuk meg:

Aritmetikai progresszió egyenlete.

Az aritmetikai progressziók növekedhetnek vagy csökkenhetnek.

Növekvő- olyan progressziók, amelyekben a kifejezések minden következő értéke nagyobb, mint az előző.
Például:

Csökkenő- olyan progressziók, amelyekben a kifejezések minden további értéke kisebb, mint az előző.
Például:

A származtatott képletet egy aritmetikai sorozat növekvő és csökkenő tagjának számításakor használják.
Vizsgáljuk meg ezt a gyakorlatban.
Egy számtani sorozatot kapunk, amelyből áll a következő számokat: Nézzük meg, mi lesz ennek az aritmetikai sorozatnak a száma, ha a képletünket használjuk a kiszámításához:


Azóta:

Így meg vagyunk győződve arról, hogy a képlet csökkenő és növekvő aritmetikai progresszióban is működik.
Próbálja meg saját maga megtalálni ennek az aritmetikai sorozatnak a th és th tagját.

Hasonlítsuk össze az eredményeket:

Aritmetikai progresszió tulajdonsága

Bonyolítsuk a problémát – levezetjük az aritmetikai progresszió tulajdonságát.
Tegyük fel, hogy a következő feltételt kapjuk:
- aritmetikai progresszió, keresse meg az értéket.
Könnyű, mondja, és elkezd számolni a már ismert képlet szerint:

Na akkor hadd:

Teljesen igaza van. Kiderült, hogy először megtaláljuk, majd hozzáadjuk az első számhoz, és megkapjuk, amit keresünk. Ha a progressziót kis értékek képviselik, akkor nincs benne semmi bonyolult, de mi van, ha a feltételben számokat adunk? Egyetértek, előfordulhat, hogy tévednek a számításokban.
Most gondoljon arra, hogy meg lehet-e oldani ezt a problémát egy lépésben bármilyen képlet segítségével? Természetesen igen, és ezt igyekszünk most kihozni.

Jelöljük az aritmetikai progresszió szükséges tagját úgy, hogy a megtalálásának képlete ismert – ez ugyanaz a képlet, amelyet az elején levezettünk:
, Akkor:

  • a progresszió előző tagja:
  • a progresszió következő tagja:

Foglaljuk össze a progresszió előző és későbbi feltételeit:

Kiderül, hogy a progresszió előző és következő tagjának összege a közöttük elhelyezkedő progressziótag dupla értéke. Más szavakkal, egy ismert korábbi és egymást követő értékekkel rendelkező progressziós tag értékének meghatározásához össze kell adni őket, és el kell osztani velük.

Így van, ugyanaz a számunk. Biztosítsuk az anyagot. Számolja ki maga a továbblépés értékét, ez egyáltalán nem nehéz.

Szép munka! Szinte mindent tudsz a fejlődésről! Már csak egy képletet kell kideríteni, amelyet a legenda szerint minden idők egyik legnagyobb matematikusa, a „matematikusok királya” - Karl Gauss - könnyen levezetett...

Amikor Carl Gauss 9 éves volt, egy tanár, aki azzal volt elfoglalva, hogy ellenőrizte a diákok munkáját más osztályokban, a következő feladatot adta az órán: „Számítsa ki az összes természetes szám összegét től-ig (más források szerint) inkluzívan.” Képzeljük el a tanár meglepetését, amikor az egyik tanítványa (ez Karl Gauss volt) egy perccel később helyes választ adta a feladatra, miközben a vakmerő osztálytársa hosszas számolás után rossz eredményt kapott...

A fiatal Carl Gauss észrevett egy bizonyos mintát, amelyet Ön is könnyen észrevehet.
Tegyük fel, hogy van egy aritmetikai sorozatunk, amely -edik tagokból áll: Meg kell találnunk a számtani folyamat ezen tagjainak összegét. Természetesen manuálisan is összegezhetjük az összes értéket, de mi van akkor, ha a feladathoz meg kell találni a tagok összegét, ahogyan azt Gauss kereste?

Ábrázoljuk a nekünk adott fejlődést. Nézze meg alaposan a kiemelt számokat, és próbáljon meg különféle matematikai műveleteket végrehajtani velük.


Kibróbáltad? mit vettél észre? Jobb! Összegük egyenlő


Most mondd meg, hány ilyen pár van összesen a nekünk adott progresszióban? Természetesen az összes számnak pontosan a fele.
Abból a tényből kiindulva, hogy egy aritmetikai sorozat két tagjának összege egyenlő, és a hasonló párok egyenlőek, azt kapjuk, hogy a teljes összeg egyenlő:
.
Így bármely aritmetikai progresszió első tagjának összegének képlete a következő lesz:

Egyes feladatokban nem ismerjük a th tagot, de ismerjük a progresszió különbségét. Próbálja meg behelyettesíteni a th tag képletét az összegképletbe.
Mit kaptál?

Szép munka! Most térjünk vissza a Carl Gaussnak feltett feladathoz: számolja ki magának, hogy a th-től kezdődő számok összege hányados, és mennyivel egyenlő a th-től kezdődő számok összege!

mennyit kaptál?
Gauss megállapította, hogy a tagok összege egyenlő, és a tagok összege egyenlő. Így döntöttél?

Valójában az ókori görög tudós, Diophantus bizonyította be az aritmetikai haladás összegének képletét a 3. században, és ez idő alatt a szellemes emberek teljes mértékben kihasználták a számtani progresszió tulajdonságait.
Például képzeld el Az ókori Egyiptomés az akkori legnagyobb építkezés - piramis építése... A képen az egyik oldala látható.

Hol van itt a fejlődés, azt mondod? Nézze meg alaposan, és keresse meg a mintát a homoktömbök számában a piramisfal minden sorában.


Miért nem egy aritmetikai sorozat? Számítsa ki, hány tömbre van szükség egy fal építéséhez, ha tömbtéglákat helyeznek az alapra. Remélem, nem fog számolni, miközben az ujját a monitoron mozgatja, emlékszik az utolsó képletre és mindarra, amit az aritmetikai progresszióról mondtunk?

BAN BEN ebben az esetben A folyamat a következőképpen néz ki: .
Aritmetikai progresszió különbség.
Egy aritmetikai sorozat tagjainak száma.
Helyettesítsük be adatainkat az utolsó képletekbe (2 módon számítsuk ki a blokkok számát).

1. módszer.

2. módszer.

És most már számolhat a monitoron: hasonlítsa össze a kapott értékeket a piramisunkban lévő blokkok számával. Megvan? Jól tetted, elsajátítottad egy aritmetikai sorozat n-edik tagjának összegét.
Természetesen nem lehet piramist építeni az alján lévő kockákból, de? Próbálja kiszámolni, hány homoktégla szükséges egy ilyen feltétellel rendelkező fal építéséhez.
Sikerült?
A helyes válasz a blokkok:

Kiképzés

Feladatok:

  1. Masha formába lendül a nyárra. Minden nap növeli a guggolások számát. Hányszor fog Mása guggolni egy héten, ha az első edzésen guggolt?
  2. Mennyi a benne lévő páratlan számok összege.
  3. A naplók tárolása során a naplózók úgy rakják egymásra azokat, hogy mindegyik felső réteg eggyel kevesebb naplót tartalmaz, mint az előző. Hány rönk van egy falazatban, ha a falazat alapja rönk?

Válaszok:

  1. Határozzuk meg az aritmetikai progresszió paramétereit. Ebben az esetben
    (hetek = napok).

    Válasz: Két hét múlva Masha naponta egyszer guggolást kell végeznie.

  2. Első páratlan szám, utolsó szám.
    Aritmetikai progresszió különbség.
    A páratlan számok száma fele, de nézzük meg ezt a tényt a számtani sorozat tizedik tagjának meghatározására szolgáló képlettel:

    A számok páratlan számokat tartalmaznak.
    Helyettesítsük be a rendelkezésre álló adatokat a képletbe:

    Válasz: A benne foglalt páratlan számok összege egyenlő.

  3. Emlékezzünk a piramisokkal kapcsolatos problémára. A mi esetünkben a , mivel minden felső réteg egy rönkvel lecsökken, akkor összesen egy csomó réteg van, azaz.
    Helyettesítsük be az adatokat a képletbe:

    Válasz: A falazatban rönkök vannak.

Foglaljuk össze

  1. - olyan számsorozat, amelyben a szomszédos számok különbsége azonos és egyenlő. Lehet növekvő vagy csökkenő.
  2. Képlet megtalálása Egy aritmetikai sorozat edik tagját a - képlettel írjuk fel, ahol a számok száma a sorozatban.
  3. Egy aritmetikai sorozat tagjainak tulajdonsága- - hol a folyamatban lévő számok száma.
  4. Egy aritmetikai sorozat tagjainak összege kétféleképpen lehet megtalálni:

    , ahol az értékek száma.

ARITMETIKAI PROGRESSZIÓ. ÁTLAGOS SZINT

Számsorozat

Üljünk le és kezdjünk el néhány számot írni. Például:

Bármilyen számot írhat, és annyi lehet, amennyit csak akar. De mindig meg tudjuk mondani, hogy melyik az első, melyik a második, és így tovább, vagyis meg tudjuk számozni őket. Ez egy példa egy számsorozatra.

Számsorozat számok halmaza, amelyek mindegyikéhez egyedi szám rendelhető.

Más szóval, minden szám társítható egy bizonyos természetes számhoz, és egy egyedihez. És ezt a számot nem fogjuk hozzárendelni egyetlen másik számhoz sem ebből a készletből.

A számmal rendelkező számot a sorozat th tagjának nevezzük.

Általában a teljes sorozatot valamilyen betűvel hívjuk (például,), és ennek a sorozatnak minden tagja ugyanaz a betű, amelynek indexe megegyezik ennek a tagnak a számával: .

Nagyon kényelmes, ha a sorozat edik tagja valamilyen képlettel megadható. Például a képlet

beállítja a sorrendet:

A képlet pedig a következő sorrend:

Például egy aritmetikai sorozat egy sorozat (az első tag egyenlő, a különbség pedig egyenlő). Vagy (, különbség).

n-edik tagképlet

Ismétlődő képletnek nevezünk, amelyben a th tag megismeréséhez ismerni kell az előzőt vagy több korábbit:

Ahhoz, hogy ezzel a képlettel megtaláljuk például a progresszió edik tagját, ki kell számítanunk az előző kilencet. Például hagyd. Akkor:

Nos, most már világos, hogy mi a képlet?

Minden sorban hozzáadjuk, megszorozzuk valamilyen számmal. Melyik? Nagyon egyszerű: ez az aktuális tag száma mínusz:

Most sokkal kényelmesebb, igaz? Ellenőrizzük:

Döntsd el magad:

A számtani sorozatban keresse meg az n-edik tag képletét és keresse meg a századik tagot.

Megoldás:

Az első tag egyenlő. Mi a különbség? Íme:

(Ezért nevezik különbségnek, mert egyenlő a progresszió egymást követő tagjainak különbségével).

Tehát a képlet:

Ekkor a századik tag egyenlő:

Mennyi az összes természetes szám összege től ig?

A legenda szerint a nagy matematikus, Carl Gauss, 9 éves fiúként néhány perc alatt kiszámolta ezt az összeget. Észrevette, hogy az első és az utolsó szám összege egyenlő, a második és az utolsó előtti szám összege megegyezik, a harmadik és a 3. szám összege a végétől azonos, és így tovább. Hány ilyen pár van összesen? Ez így van, pontosan fele az összes szám számának, vagyis. Így,

Az általános képlet bármely aritmetikai progresszió első tagjának összegére a következő lesz:

Példa:
Keresse meg az összes kétjegyű többszörös összegét!

Megoldás:

Az első ilyen szám ez. Minden további számot az előző számhoz hozzáadva kapunk. Így az általunk érdekelt számok egy aritmetikai sorozatot alkotnak az első taggal és a különbséggel.

Ennek a haladásnak a képlete:

Hány tag van a folyamatban, ha mindegyiknek két számjegyűnek kell lennie?

Nagyon könnyű: .

A progresszió utolsó tagja egyenlő lesz. Akkor az összeg:

Válasz: .

Most döntsd el magad:

  1. A sportoló minden nap több métert fut, mint előző nap. Összesen hány kilométert fut le egy héten, ha az első napon km m-t futott?
  2. Egy kerékpáros naponta több kilométert tesz meg, mint előző nap. Az első napon km-t utazott. Hány napot kell utaznia egy kilométer megtételéhez? Hány kilométert fog megtenni utazása utolsó napján?
  3. A hűtőszekrény ára a boltban minden évben ugyanennyivel csökken. Határozza meg, mennyivel csökkent évente egy hűtőszekrény ára, ha rubelért kínálták eladásra, de hat évvel később rubelért adták el.

Válaszok:

  1. Itt a legfontosabb az aritmetikai progresszió felismerése és paramétereinek meghatározása. Ebben az esetben (hetek = napok). Meg kell határoznia ennek a haladásnak az első tagjainak összegét:
    .
    Válasz:
  2. Itt van megadva: , meg kell találni.
    Nyilvánvalóan ugyanazt az összegképletet kell használnia, mint az előző feladatban:
    .
    Cserélje be az értékeket:

    A gyökér nyilván nem illik, szóval a válasz.
    Számítsuk ki az elmúlt nap során megtett utat a th tag képletével:
    (km).
    Válasz:

  3. Adott: . Megtalálja: .
    Nem is lehetne egyszerűbb:
    (dörzsölés).
    Válasz:

ARITMETIKAI PROGRESSZIÓ. RÖVIDEN A FŐ DOLOGOKRÓL

Ez egy olyan számsorozat, amelyben a szomszédos számok különbsége azonos és egyenlő.

Az aritmetikai progresszió lehet növekvő () és csökkenő ().

Például:

Képlet egy aritmetikai sorozat n-edik tagjának megtalálására

a képlet írja le, ahol a folyamatban lévő számok száma.

Egy aritmetikai sorozat tagjainak tulajdonsága

Lehetővé teszi, hogy könnyen megtalálja egy progresszió tagját, ha ismertek a szomszédos tagok - hol van a progresszióban lévő számok száma.

Egy aritmetikai sorozat tagjainak összege

Kétféleképpen találhatja meg az összeget:

Hol van az értékek száma.

Hol van az értékek száma.

Utasítás

Az aritmetikai sorozat az a1, a1+d, a1+2d..., a1+(n-1)d formájú sorozat. d számú lépés progresszió.Nyilvánvaló, hogy az aritmetika tetszőleges n-edik tagjának általános progresszió alakja: An = A1+(n-1)d. Aztán ismerve az egyik tagot progresszió, tag progresszióés lépj progresszió, lehet, vagyis a haladó tag száma. Nyilvánvalóan az n = (An-A1+d)/d képlet határozza meg.

Legyen most ismert az m-edik tag progresszióés egy másik tagja progresszió- n-edik, de n , mint az előző esetben, de ismert, hogy n és m nem esik egybe. progresszió képlet segítségével számítható ki: d = (An-Am)/(n-m). Ekkor n = (An-Am+md)/d.

Ha egy számtani egyenlet több elemének összege ismert progresszió, valamint az első és az utolsó, akkor ezeknek az elemeknek a száma is meghatározható Az aritmetika összege progresszió egyenlő lesz: S = ((A1+An)/2)n. Ekkor n = 2S/(A1+An) - chdenov progresszió. Felhasználva azt a tényt, hogy An = A1+(n-1)d, ez a képlet átírható így: n = 2S/(2A1+(n-1)d). Ebből megoldással n fejezhetjük ki másodfokú egyenlet.

A számtani sorozat olyan rendezett számhalmaz, amelynek minden tagja az első kivételével ugyanannyival különbözik az előzőtől. Ezt az állandó értéket a progresszió vagy lépése különbségének nevezzük, és a számtani progresszió ismert tagjaiból számítható ki.

Utasítás

Ha az első és a második vagy bármely más szomszédos tag pár értéke ismert a feladat feltételeiből, a különbség kiszámításához (d) egyszerűen vonja ki az előzőt a következő tagból. A kapott érték lehet pozitív vagy negatív szám- attól függ, hogy a progresszió növekszik-e. BAN BEN általános formaírjuk fel a megoldást a haladás szomszédos tagjainak tetszőlegesen választott párjára (aᵢ és aᵢ₊₁) a következőképpen: d = aᵢ₊₁ - aᵢ.

Egy ilyen progressziójú tagpárhoz, amelyek közül az egyik az első (a1), a másik pedig bármely más tetszőlegesen választott, szintén létrehozható egy képlet a különbség (d) meghatározására. Ebben az esetben azonban ismerni kell a sorozat egy tetszőlegesen kiválasztott tagjának sorszámát (i). A különbség kiszámításához adjuk össze mindkét számot, és a kapott eredményt osszuk el egy tetszőleges tag eggyel csökkentett sorszámával. Általában a következőképpen írjuk ezt a képletet: d = (a₁+ aᵢ)/(i-1).

Ha az i sorszámú aritmetikai sorozat tetszőleges tagja mellett egy másik u sorszámú tag is ismert, akkor ennek megfelelően változtassa meg az előző lépés képletét. Ebben az esetben a progresszió különbsége (d) ennek a két tagnak az összege, osztva a sorszámuk különbségével: d = (aᵢ+aᵥ)/(i-v).

A (d) különbség kiszámításának képlete némileg bonyolultabb lesz, ha a feladatfeltételek megadják annak első tagjának (a₁) értékét és az első tagok adott számának (i) összegét (Sᵢ). számtani sorozat. A kívánt érték eléréséhez osszuk el az összeget az azt alkotó tagok számával, vonjuk ki a sorozat első számának értékét, és duplázzuk meg az eredményt. A kapott értéket osszuk el az eggyel csökkentett összeget alkotó tagok számával. Általában a következőképpen írjuk fel a diszkrimináns kiszámításának képletét: d = 2*(Sᵢ/i-a₁)/(i-1).

Az algebra tanulmányozása során középiskola(9. osztály) az egyik fontos témákat a számsorozatok tanulmányozása, amelyek magukban foglalják a - geometriai és aritmetikai - progressziókat. Ebben a cikkben egy aritmetikai progressziót és megoldási példákat tekintünk meg.

Mi az aritmetikai progresszió?

Ennek megértéséhez meg kell határozni a szóban forgó progressziót, valamint meg kell adni azokat az alapképleteket, amelyeket a későbbiekben a problémák megoldása során használni fogunk.

Az aritmetika vagy olyan rendezett racionális számok halmaza, amelyek minden tagja valamilyen állandó értékkel különbözik az előzőtől. Ezt az értéket különbségnek nevezzük. Vagyis egy rendezett számsor bármely tagjának és a különbségnek a ismeretében visszaállíthatja a teljes aritmetikai sorozatot.

Mondjunk egy példát. A következő számsorozat egy aritmetikai sorozat lesz: 4, 8, 12, 16, ..., mivel a különbség ebben az esetben 4 (8 - 4 = 12 - 8 = 16 - 12). De a 3, 5, 8, 12, 17 számok halmaza már nem tulajdonítható a vizsgált progresszió típusának, mivel a különbség nem állandó érték (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17-12).

Fontos képletek

Most mutassuk be azokat az alapvető képleteket, amelyekre szükség lesz a feladatok számtani progresszióval történő megoldásához. Jelöljük a szimbólummal egy n-t n-edik tag sorozatok, ahol n egész szám. Jelöljük a különbséget latin betű d. Ekkor a következő kifejezések érvényesek:

  1. Az n-edik tag értékének meghatározására a következő képlet alkalmas: a n = (n-1)*d+a 1 .
  2. Az első n tag összegének meghatározásához: S n = (a n +a 1)*n/2.

Ahhoz, hogy megértsük a 9. osztályban a megoldásokkal végzett aritmetikai haladás példáit, elég megjegyezni ezt a két képletet, mivel a szóban forgó típusú problémák ezek használatán alapulnak. Ne feledje azt is, hogy a progresszió különbségét a következő képlet határozza meg: d = a n - a n-1.

1. példa: ismeretlen kifejezés keresése

Adjunk egy egyszerű példát egy aritmetikai sorozatra és a megoldáshoz szükséges képletekre.

Legyen adott a 10, 8, 6, 4, ... sorozat, öt tagot kell találni benne.

A feladat feltételeiből már az is következik, hogy az első 4 tag ismert. Az ötödik kétféleképpen határozható meg:

  1. Először számoljuk ki a különbséget. Van: d = 8 - 10 = -2. Hasonlóképpen, elvihet bármely két másik tagot egymás mellett. Például d = 4 - 6 = -2. Mivel ismert, hogy d = a n - a n-1, akkor d = a 5 - a 4, amiből kapjuk: a 5 = a 4 + d. Cseréljük ismert értékek: a 5 = 4 + (-2) = 2.
  2. A második módszer a kérdéses progresszió különbségének ismeretét is megköveteli, ezért először meg kell határozni a fentiek szerint (d = -2). Tudva, hogy az első tag a 1 = 10, a sorozat n számának képletét használjuk. Van: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Ha n = 5-öt behelyettesítünk az utolsó kifejezésbe, a következőt kapjuk: a 5 = 12-2 * 5 = 2.

Mint látható, mindkét megoldás ugyanarra az eredményre vezetett. Vegye figyelembe, hogy ebben a példában a d progressziókülönbség negatív érték. Az ilyen sorozatokat csökkenőnek nevezzük, mivel minden következő tag kisebb, mint az előző.

2. példa: progresszió különbség

Most bonyolítsuk egy kicsit a problémát, mondjunk példát arra, hogyan találjuk meg egy aritmetikai sorozat különbségét.

Ismeretes, hogy bizonyos algebrai progresszióban az 1. tag egyenlő 6-tal, a 7. tag pedig 18-cal. Meg kell találni a különbséget, és vissza kell állítani ezt a sorozatot a 7. tagra.

Használjuk a képletet az ismeretlen tag meghatározásához: a n = (n - 1) * d + a 1 . Helyettesítsük be a feltételből ismert adatokat, vagyis az a 1 és a 7 számokat, így kapjuk: 18 = 6 + 6 * d. Ebből a kifejezésből könnyen kiszámítható a különbség: d = (18 - 6) /6 = 2. Így a feladat első részét megválaszoltuk.

A sorozat 7. tagjára való visszaállításához az algebrai progresszió definícióját kell használni, azaz a 2 = a 1 + d, a 3 = a 2 + d és így tovább. Ennek eredményeként a teljes sorozatot visszaállítjuk: a 1 = 6, a 2 = 6 + 2 = 8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16, a 7 = 18.

3. példa: progresszió készítése

Bonyolítsuk tovább erősebb állapot feladatokat. Most azt a kérdést kell megválaszolnunk, hogyan találhatunk számtani sorozatot. A következő példa megadható: két szám van megadva, például - 4 és 5. Létre kell hozni egy algebrai progressziót úgy, hogy ezek közé még három tag kerüljön.

Mielőtt elkezdené megoldani ezt a problémát, meg kell értenie, hogy az adott számok milyen helyet foglalnak el a jövőbeni fejlődésben. Mivel még három tag lesz közöttük, akkor a 1 = -4 és egy 5 = 5. Ennek megállapítása után áttérünk az előzőhöz hasonló feladatra. Az n-edik tagra ismét a képletet használjuk, így kapjuk: a 5 = a 1 + 4 * d. Ebből: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. Amit itt kaptunk, az nem a különbség egész értéke, hanem egy racionális szám, így az algebrai haladás képlete változatlan marad.

Most adjuk hozzá a talált különbséget 1-hez, és állítsuk vissza a progresszió hiányzó tagjait. A következőt kapjuk: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, amelyek egybeesnek a probléma körülményeivel.

4. példa: a progresszió első tagja

Adjunk továbbra is példákat a megoldásokkal való aritmetikai progresszióra. Minden korábbi feladatban ismert volt az algebrai progresszió első száma. Most nézzünk meg egy más típusú problémát: legyen két szám, ahol egy 15 = 50 és egy 43 = 37. Meg kell találni, hogy melyik számmal kezdődik ez a sorozat.

Az eddig használt képletek egy 1 és d ismeretét feltételezik. A problémafelvetésben ezekről a számokról nem tudunk semmit. Mindazonáltal minden olyan kifejezéshez felírunk kifejezéseket, amelyekről információ áll rendelkezésre: a 15 = a 1 + 14 * d és a 43 = a 1 + 42 * d. Két egyenletet kaptunk, amelyben 2 ismeretlen mennyiség van (a 1 és d). Ez azt jelenti, hogy a feladat egy lineáris egyenletrendszer megoldására redukálódik.

A rendszer legegyszerűbb megoldása, ha minden egyenletben 1-et fejezünk ki, majd az eredményül kapott kifejezéseket összehasonlítjuk. Első egyenlet: a 1 = a 15 - 14 * d = 50 - 14 * d; második egyenlet: a 1 = a 43 - 42 * d = 37 - 42 * d. Ezeket a kifejezéseket egyenlővé téve a következőt kapjuk: 50 - 14 * d = 37 - 42 * d, innen a különbség d = (37 - 50) / (42 - 14) = - 0,464 (csak 3 tizedesjegy van megadva).

A d ismeretében a fenti 2 kifejezés bármelyikét használhatja 1-hez. Például először: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Ha kétségei vannak a kapott eredménnyel kapcsolatban, ellenőrizheti, például meghatározhatja a progresszió 43. tagját, amely a feltételben van megadva. A következőt kapjuk: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Az apró hiba abból adódik, hogy a számításoknál ezredrészekre kerekítést alkalmaztak.

5. számú példa: összeg

Most nézzünk meg néhány példát egy aritmetikai sorozat összegének megoldásával.

Adjunk meg egy numerikus progressziót a következő típus: 1, 2, 3, 4, ...,. Hogyan lehet kiszámítani ezeknek a számoknak a 100 összegét?

A fejlesztésnek köszönhetően számítógépes technológia megoldhatja ezt a feladatot, vagyis összeadja az összes számot egymás után, ami Számológép megteszi, amint a személy megnyomja az Enter billentyűt. A probléma azonban mentálisan megoldható, ha odafigyelünk arra, hogy a bemutatott számsor egy algebrai progresszió, és a különbsége egyenlő 1-gyel. Az összeg képletét alkalmazva a következőt kapjuk: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Érdekes megjegyezni, hogy ezt a problémát „gaussi”-nak nevezik, mert a 18. század elején a még csak 10 éves híres német fejében néhány másodperc alatt meg tudta oldani. A fiú nem ismerte az algebrai haladás összegének képletét, de észrevette, hogy ha páronként összeadja a sorozat végén lévő számokat, mindig ugyanazt az eredményt kapja, azaz 1 + 100 = 2 + 99 = 3 + 98 = ..., és mivel ezek az összegek pontosan 50 (100 / 2) lesznek, akkor a helyes válaszhoz elegendő 50-et megszorozni 101-gyel.

6. példa: tagok összege n-től m-ig

Még egy tipikus példa egy aritmetikai progresszió összege a következő: adott egy számsor: 3, 7, 11, 15, ..., meg kell találni, hogy mekkora lesz a 8-tól 14-ig terjedő tagok összege.

A probléma kétféleképpen oldható meg. Az első közülük 8-tól 14-ig ismeretlen kifejezéseket keres, majd egymás után összegzi őket. Mivel kevés a kifejezés, ez a módszer nem elég munkaigényes. Ennek ellenére azt javasolják, hogy ezt a problémát egy második módszerrel oldják meg, amely univerzálisabb.

Az ötlet az, hogy egy képletet kapjunk az m és n tagok közötti algebrai haladás összegére, ahol n > m egész számok. Mindkét esetben két kifejezést írunk az összegre:

  1. S m = m * (a m + a 1) / 2.
  2. S n = n * (a n + a 1) / 2.

Mivel n > m, nyilvánvaló, hogy a 2. összeg tartalmazza az elsőt. Az utolsó következtetés azt jelenti, hogy ha felvesszük ezen összegek különbségét, és hozzáadjuk az a m tagot (különbözet ​​felvétele esetén levonjuk az S n összegből), akkor megkapjuk a feladatra a szükséges választ. Van: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m * (a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n/2 + a m * (1- m/2). Ebbe a kifejezésbe n és m képleteket kell behelyettesíteni. Ekkor a következőt kapjuk: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m 2 - 2) / 2.

A kapott képlet kissé körülményes, azonban az S mn összeg csak n, m, a 1 és d függvénye. Esetünkben a 1 = 3, d = 4, n = 14, m = 8. Ezeket a számokat behelyettesítve a következőt kapjuk: S mn = 301.

Amint a fenti megoldásokból látható, minden probléma az n-edik tag kifejezésének és az első tagok összegének képletének ismeretén alapul. Mielőtt elkezdené megoldani ezeket a problémákat, javasoljuk, hogy figyelmesen olvassa el a feltételt, értse meg egyértelműen, mit kell találnia, és csak ezután folytassa a megoldást.

Egy másik tipp, hogy törekedjünk az egyszerűségre, vagyis ha bonyolult matematikai számítások használata nélkül tud válaszolni egy kérdésre, akkor ezt meg kell tennie, hiszen ebben az esetben kisebb a tévedés valószínűsége. Például a 6-os megoldású aritmetikai sorozat példájában megállhatunk az S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m képletnél, és szünet közös feladat külön részfeladatokba (ebben az esetben először keresse meg az a n és a m kifejezéseket).

Ha kétségei vannak a kapott eredménnyel kapcsolatban, javasoljuk, hogy ellenőrizze azt, ahogyan az egyes példákban is megtörtént. Megtudtuk, hogyan találhatunk számtani sorozatot. Ha rájössz, nem is olyan nehéz.

Betöltés...Betöltés...