20 kvadratinių lygčių. Kaip išspręsti kvadratines lygtis

Kvadratinė lygtis – lengva išspręsti! *Toliau – KU. Bičiuliai, atrodytų, kad matematikoje negali būti nieko paprasčiau nei išspręsti tokią lygtį. Tačiau kažkas man pasakė, kad daugelis žmonių turi problemų su juo. Nusprendžiau pažiūrėti, kiek parodymų pagal pareikalavimą „Yandex“ pateikia per mėnesį. Štai kas atsitiko, žiūrėk:


Ką tai reiškia? Tai reiškia, kad per mėnesį ieško apie 70 000 žmonių Ši informacija, ką tai turi bendro su vasara ir kas bus per mokslo metus – prašymų bus dvigubai daugiau. Tai nenuostabu, nes šios informacijos ieško tie vaikinai ir merginos, kurie seniai baigė mokyklą ir ruošiasi vieningam valstybiniam egzaminui, o atmintį atgaivinti stengiasi ir moksleiviai.

Nepaisant to, kad yra daugybė svetainių, kuriose pasakojama, kaip išspręsti šią lygtį, aš nusprendžiau taip pat prisidėti ir paskelbti medžiagą. Pirma, noriu, kad lankytojai į mano svetainę ateitų pagal šį prašymą; antra, kituose straipsniuose, kai iškils tema “KU”, pateiksiu nuorodą į šį straipsnį; trečia, aš jums papasakosiu šiek tiek daugiau apie jo sprendimą, nei paprastai nurodoma kitose svetainėse. Pradėkime! Straipsnio turinys:

Kvadratinė lygtis yra tokios formos lygtis:

kur koeficientai a,bir c yra savavališki skaičiai, kurių a≠0.

Mokyklos kurse medžiaga pateikiama tokia forma - lygtys suskirstytos į tris klases:

1. Jie turi dvi šaknis.

2. *Turėti tik vieną šaknį.

3. Jie neturi šaknų. Čia ypač verta paminėti, kad jie neturi tikrų šaknų

Kaip apskaičiuojamos šaknys? Tiesiog!

Apskaičiuojame diskriminantą. Po šiuo „siaubingu“ žodžiu slypi labai paprasta formulė:

Šaknies formulės yra tokios:

*Šias formules reikia žinoti mintinai.

Galite iš karto užsirašyti ir išspręsti:

Pavyzdys:


1. Jei D > 0, tai lygtis turi dvi šaknis.

2. Jei D = 0, tai lygtis turi vieną šaknį.

3. Jei D< 0, то уравнение не имеет действительных корней.

Pažiūrėkime į lygtį:


Šiuo atžvilgiu, kai diskriminantas yra lygus nuliui, mokyklos kursas sako, kad gaunama viena šaknis, čia ji yra lygi devynioms. Viskas teisinga, taip yra, bet...

Ši mintis yra šiek tiek neteisinga. Tiesą sakant, yra dvi šaknys. Taip, taip, nenustebkite, gausite dvi lygias šaknis, o jei matematiškai tiksliai, tada atsakyme turėtų būti parašytos dvi šaknys:

x 1 = 3 x 2 = 3

Bet taip yra – mažas nukrypimas. Mokykloje gali užsirašyti ir pasakyti, kad yra viena šaknis.

Dabar kitas pavyzdys:


Kaip žinome, neigiamo skaičiaus šaknis negalima paimti, todėl sprendiniai in tokiu atveju Nr.

Tai yra visas sprendimo procesas.

Kvadratinė funkcija.

Tai parodo, kaip sprendimas atrodo geometriškai. Tai nepaprastai svarbu suprasti (ateityje viename iš straipsnių išsamiai išanalizuosime kvadratinės nelygybės sprendimą).

Tai yra formos funkcija:

kur x ir y yra kintamieji

a, b, c – duoti skaičiai, kurių a ≠ 0

Grafikas yra parabolė:

Tai yra, paaiškėja, kad išsprendę kvadratinę lygtį, kai „y“ lygi nuliui, randame parabolės susikirtimo taškus su x ašimi. Šių taškų gali būti du (diskriminantas yra teigiamas), vienas (diskriminantas yra nulis) ir nė vienas (diskriminantas yra neigiamas). Išsami informacija apie kvadratinė funkcija Galite peržiūrėti Innos Feldman straipsnis.

Pažiūrėkime į pavyzdžius:

1 pavyzdys: išspręskite 2x 2 +8 x–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Atsakymas: x 1 = 8 x 2 = –12

*Galima buvo iš karto padalyti kairę ir dešinę lygties puses iš 2, tai yra supaprastinti. Skaičiavimai bus lengvesni.

2 pavyzdys: Nuspręskite x 2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 – 4ac = (–22) 2 –4, 1, 121 = 484–484 = 0

Mes nustatėme, kad x 1 = 11 ir x 2 = 11

Atsakyme leidžiama rašyti x = 11.

Atsakymas: x = 11

3 pavyzdys: Nuspręskite x 2 – 8x+72 = 0

a=1 b= –8 c=72

D = b 2 -4ac = (-8) 2 -4, 1, 72 = 64 - 288 = -224

Diskriminantas yra neigiamas, realiaisiais skaičiais sprendimo nėra.

Atsakymas: nėra sprendimo

Diskriminantas yra neigiamas. Yra sprendimas!

Čia kalbėsime apie lygties sprendimą tuo atveju, kai gaunamas neigiamas diskriminantas. Ar žinote ką nors apie kompleksinius skaičius? Čia nenagrinėsiu, kodėl ir kur jie atsirado ir koks jų specifinis vaidmuo ir būtinybė matematikoje; tai yra didelio atskiro straipsnio tema.

Kompleksinio skaičiaus samprata.

Šiek tiek teorijos.

Kompleksinis skaičius z yra formos skaičius

z = a + bi

kur a ir b yra realieji skaičiai, i yra vadinamasis įsivaizduojamas vienetas.

a+bi – tai VIENAS SKAIČIUS, o ne papildymas.

Įsivaizduojamas vienetas yra lygus minus vieneto šaknei:

Dabar apsvarstykite lygtį:


Gauname dvi konjuguotas šaknis.

Nebaigta kvadratinė lygtis.

Panagrinėkime specialius atvejus, kai koeficientas „b“ arba „c“ yra lygus nuliui (arba abu lygūs nuliui). Jas galima lengvai išspręsti be jokių diskriminacinių priemonių.

1 atvejis. Koeficientas b = 0.

Lygtis tampa tokia:

Konvertuokime:

Pavyzdys:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

2 atvejis. Koeficientas c = 0.

Lygtis tampa tokia:

Transformuokime ir faktorizuokime:

* Produktas yra lygus nuliui, kai bent vienas iš veiksnių yra lygus nuliui.

Pavyzdys:

9x 2 –45x = 0 => 9x (x-5) =0 => x = 0 arba x-5 =0

x 1 = 0 x 2 = 5

3 atvejis. Koeficientai b = 0 ir c = 0.

Čia aišku, kad lygties sprendimas visada bus x = 0.

Naudingos koeficientų savybės ir modeliai.

Yra savybių, kurios leidžia išspręsti lygtis su dideliais koeficientais.

Ax 2 + bx+ c=0 galioja lygybė

a + b+ c = 0, Tai

- jei lygties koeficientams Ax 2 + bx+ c=0 galioja lygybė

a+ s =b, Tai

Šios savybės padeda apsispręsti tam tikro tipo lygtys

1 pavyzdys: 5001 x 2 –4995 x – 6=0

Šansų suma yra 5001+( 4995)+( 6) = 0, o tai reiškia

2 pavyzdys: 2501 x 2 +2507 x+6=0

Lygybė galioja a+ s =b, Reiškia

Koeficientų dėsningumai.

1. Jei lygtyje ax 2 + bx + c = 0 koeficientas "b" yra lygus (a 2 +1), o koeficientas "c" yra skaitine prasme lygus koeficientui "a", tai jo šaknys yra lygios

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

Pavyzdys. Apsvarstykite lygtį 6x 2 + 37x + 6 = 0.

x 1 = –6 x 2 = –1/6.

2. Jei lygtyje ax 2 – bx + c = 0 koeficientas „b“ yra lygus (a 2 +1), o koeficientas „c“ skaitine prasme lygus koeficientui „a“, tai jo šaknys yra lygios.

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

Pavyzdys. Apsvarstykite lygtį 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Jei lygtyje. ax 2 + bx – c = 0 koeficientas „b“ yra lygus (a 2 – 1), ir koeficientas „c“ yra skaitine prasme lygus koeficientui "a", tada jo šaknys lygios

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

Pavyzdys. Apsvarstykite lygtį 17x 2 +288x – 17 = 0.

x 1 = – 17 x 2 = 1/17.

4. Jei lygtyje ax 2 – bx – c = 0 koeficientas „b“ yra lygus (a 2 – 1), o koeficientas c skaitine prasme lygus koeficientui „a“, tai jo šaknys yra lygios

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

Pavyzdys. Apsvarstykite lygtį 10x 2 – 99x –10 = 0.

x 1 = 10 x 2 = – 1/10

Vietos teorema.

Vietos teorema pavadinta garsaus prancūzų matematiko Francois Vieta vardu. Naudodamiesi Vietos teorema, galime išreikšti savavališko KU šaknų sumą ir sandaugą jo koeficientais.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Iš viso skaičius 14 duoda tik 5 ir 9. Tai šaknys. Turėdami tam tikrų įgūdžių, naudodami pateiktą teoremą, galite iškart žodžiu išspręsti daugybę kvadratinių lygčių.

Vietos teorema, be to. patogu, nes išsprendus kvadratinė lygtis susidariusias šaknis galima patikrinti įprastu būdu (per diskriminantą). Aš rekomenduoju tai daryti visada.

TRANSPORTAVIMO BŪDAS

Taikant šį metodą koeficientas „a“ dauginamas iš laisvojo termino, tarsi „įmetamas“ į jį, todėl jis vadinamas "perdavimo" metodas.Šis metodas naudojamas, kai galite lengvai rasti lygties šaknis naudodami Vietos teoremą ir, svarbiausia, kai diskriminantas yra tikslus kvadratas.

Jeigu A± b+c≠ 0, tada naudojama perdavimo technika, pavyzdžiui:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Naudojant Vietos teoremą (2) lygtyje, nesunku nustatyti, kad x 1 = 10 x 2 = 1

Gautas lygties šaknis reikia padalyti iš 2 (kadangi jos buvo „išmestos“ iš x 2), gauname

x 1 = 5 x 2 = 0,5.

Koks yra loginis pagrindas? Pažiūrėk, kas vyksta.

(1) ir (2) lygčių diskriminantai yra lygūs:

Jei pažvelgsite į lygčių šaknis, gausite tik skirtingus vardiklius, o rezultatas priklauso būtent nuo x 2 koeficiento:


Antrasis (modifikuotas) turi 2 kartus didesnes šaknis.

Todėl rezultatą padalijame iš 2.

*Jei persuksime tris, rezultatą padalinsime iš 3 ir pan.

Atsakymas: x 1 = 5 x 2 = 0,5

kv. ur-ie ir vieningas valstybinis egzaminas.

Trumpai papasakosiu apie jo svarbą – TURI GEBĖTI SPRENDIMS greitai ir negalvodamas, reikia mintinai žinoti šaknų ir diskriminatorių formules. Daugelis problemų, įtrauktų į vieningo valstybinio egzamino užduotis, yra susijusios su kvadratinės lygties (įskaitant geometrines) sprendimu.

Į ką nors verta atkreipti dėmesį!

1. Lygties rašymo forma gali būti „numanoma“. Pavyzdžiui, galimas toks įrašas:

15+ 9x 2 - 45x = 0 arba 15x + 42 + 9x 2 - 45x = 0 arba 15 -5x + 10x 2 = 0.

Turite jį pateikti į standartinę formą (kad nesusipainiotumėte sprendžiant).

2. Atsiminkite, kad x yra nežinomas dydis ir jį galima žymėti bet kuria kita raide – t, q, p, h ir kt.

Dirbkime su kvadratines lygtis. Tai labai populiarios lygtys! Pačioje bendras vaizdas kvadratinė lygtis atrodo taip:

Pavyzdžiui:

Čia A =1; b = 3; c = -4

Čia A =2; b = -0,5; c = 2,2

Čia A =-3; b = 6; c = -18

Na, supranti...

Kaip išspręsti kvadratines lygtis? Jei šioje formoje turite kvadratinę lygtį, tada viskas paprasta. Prisiminkite magišką žodį diskriminuojantis . Retas gimnazistas nėra girdėjęs šio žodžio! Frazė „sprendžiame per diskriminantą“ įkvepia pasitikėjimo ir užtikrintumo. Nes nereikia tikėtis gudrybių iš diskriminanto! Tai paprasta ir be problemų naudoti. Taigi, kvadratinės lygties šaknų radimo formulė atrodo taip:

Išraiška po šaknies ženklu yra ta diskriminuojantis. Kaip matote, norėdami rasti X, naudojame tik a, b ir c. Tie. koeficientai iš kvadratinės lygties. Tiesiog atsargiai pakeiskite vertybes a, b ir c Tai yra formulė, kurią mes apskaičiuojame. Pakeiskime su savo ženklais! Pavyzdžiui, pirmajai lygčiai A =1; b = 3; c= -4. Čia mes tai užrašome:

Pavyzdys beveik išspręstas:

Tai viskas.

Kokie atvejai galimi naudojant šią formulę? Yra tik trys atvejai.

1. Diskriminantas yra teigiamas. Tai reiškia, kad iš jo galima išgauti šaknį. Ar šaknis išgauta gerai, ar blogai – kitas klausimas. Svarbu tai, kas išgaunama iš esmės. Tada jūsų kvadratinė lygtis turi dvi šaknis. Du skirtingi sprendimai.

2. Diskriminantas lygus nuliui. Tada turite vieną sprendimą. Griežtai kalbant, tai ne viena šaknis, o du vienodi. Tačiau tai turi įtakos nelygybėms, kur mes šią problemą išnagrinėsime išsamiau.

3. Diskriminantas yra neigiamas. Negalima paimti neigiamo skaičiaus kvadratinės šaknies. Na, gerai. Tai reiškia, kad sprendimų nėra.

Viskas labai paprasta. Ir ką, jūs manote, kad neįmanoma suklysti? Na taip, kaip...
Dažniausios klaidos yra painiojimas su ženklų reikšmėmis a, b ir c. Arba, tiksliau, ne su jų ženklais (kur susipainioti?), o su neigiamų verčių pakeitimu į šaknų skaičiavimo formulę. Čia padeda išsamus formulės įrašymas su konkrečiais skaičiais. Jei kyla problemų su skaičiavimais, padaryti, kad!



Tarkime, kad turime išspręsti šį pavyzdį:

Čia a = -6; b = -5; c = -1

Tarkime, žinote, kad pirmą kartą retai sulaukiate atsakymų.

Na, netingėk. Papildomai eilutei parašyti užtruks apie 30 sekundžių.Ir klaidų skaičius smarkiai sumažės. Taigi mes rašome išsamiai, su visais skliaustais ir ženklais:

Atrodo neįtikėtinai sunku taip kruopščiai parašyti. Bet taip tik atrodo. Pabandyk. Na, arba pasirinkti. Kas geriau, greitas ar teisingas? Be to, aš tave pradžiuginsiu. Po kurio laiko nebereikės visko taip kruopščiai surašyti. Tai išsispręs savaime. Ypač jei naudojate praktinius metodus, kurie aprašyti toliau. Šis blogas pavyzdys su daugybe minusų gali būti išspręstas lengvai ir be klaidų!

Taigi, kaip išspręsti kvadratines lygtis per diskriminantą, kurį prisiminėme. Arba jie išmoko, o tai taip pat yra gerai. Jūs žinote, kaip teisingai nustatyti a, b ir c. Ar žinai kaip? dėmesingai pakeiskite juos į šaknies formulę ir dėmesingai suskaičiuok rezultatą. Ar tu tai supratai raktažodįČia - dėmesingai?

Tačiau kvadratinės lygtys dažnai atrodo šiek tiek kitaip. Pavyzdžiui, taip:

Tai nepilnos kvadratinės lygtys . Jas taip pat galima išspręsti naudojant diskriminantą. Jums tereikia teisingai suprasti, kam jie čia prilygsta. a, b ir c.

Ar išsiaiškinote? Pirmame pavyzdyje a = 1; b = -4; A c? Jo visai nėra! Na taip, tai tiesa. Matematikoje tai reiškia c = 0 ! Tai viskas. Vietoj to formulėje pakeiskite nulį c, ir mums pasiseks. Tas pats su antruoju pavyzdžiu. Tik pas mus čia nėra nulio Su, A b !

Tačiau nepilnas kvadratines lygtis galima išspręsti daug paprasčiau. Be jokios diskriminacijos. Panagrinėkime pirmąją nepilną lygtį. Ką galite padaryti kairėje pusėje? Galite ištraukti X iš skliaustų! Išimkime.

Ir kas iš šito? Ir tai, kad sandauga lygi nuliui tada ir tik tada, kai kuris nors iš veiksnių yra lygus nuliui! Netikite manimi? Gerai, tada sugalvokite du ne nuo nulio skaičius, kuriuos padauginus bus gautas nulis!
Neveikia? Viskas...
Todėl drąsiai galime rašyti: x = 0, arba x = 4

Visi. Tai bus mūsų lygties šaknys. Tinka abu. Pakeitus bet kurį iš jų į pradinę lygtį, gauname teisingą tapatybę 0 = 0. Kaip matote, sprendimas yra daug paprastesnis nei naudojant diskriminantą.

Antrąją lygtį taip pat galima išspręsti paprastai. Perkelkite 9 į dešinę pusę. Mes gauname:

Belieka išgauti šaknį iš 9, ir viskas. Tai paaiškės:

Taip pat dvi šaknys . x = +3 ir x = -3.

Taip išsprendžiamos visos nepilnos kvadratinės lygtys. Arba įdėdami X iš skliaustų arba tiesiog perkeldami skaičių į dešinę ir ištraukdami šaknį.
Labai sunku supainioti šiuos metodus. Vien dėl to, kad pirmu atveju teks ištraukti X šaknį, kuri kažkaip nesuprantama, o antruoju atveju nėra ką ištraukti iš skliaustų...

Dabar atkreipkite dėmesį į praktinius metodus, kurie žymiai sumažina klaidų skaičių. Tie patys, kurie dėl neatidumo... Dėl ko vėliau tampa skaudu ir įžeidžiama...

Pirmas susitikimas. Nebūkite tingus prieš išspręsdami kvadratinę lygtį ir įveskite ją į standartinę formą. Ką tai reiškia?
Tarkime, kad po visų transformacijų gausite tokią lygtį:

Neskubėkite rašyti šaknies formulės! Beveik neabejotinai sumaišysite šansus a, b ir c. Teisingai sukonstruokite pavyzdį. Pirma, X kvadratas, tada be kvadrato, tada laisvas terminas. Kaip šitas:

Ir vėl, neskubėkite! Minusas prieš X kvadratą gali jus tikrai nuliūdinti. Lengva pamiršti... Atsikratykite minuso. Kaip? Taip, kaip mokyta ankstesnėje temoje! Turime padauginti visą lygtį iš -1. Mes gauname:

Bet dabar galite drąsiai užsirašyti šaknų formulę, apskaičiuoti diskriminantą ir baigti spręsti pavyzdį. Spręskite patys. Dabar turėtumėte turėti šaknis 2 ir -1.

Priėmimas antras. Patikrinkite šaknis! Pagal Vietos teoremą. Nebijok, aš viską paaiškinsiu! Tikrinama paskutinis dalykas lygtis. Tie. ta, kurią naudojome užrašydami šaknies formulę. Jei (kaip šiame pavyzdyje) koeficientas a = 1, patikrinti šaknis lengva. Užtenka juos padauginti. Rezultatas turėtų būti nemokamas narys, t.y. mūsų atveju -2. Atkreipkite dėmesį, ne 2, o -2! Laisvas narys su savo ženklu . Jei nepavyksta, vadinasi, jie jau kažkur susisuko. Ieškokite klaidos. Jei tai veikia, turite pridėti šaknis. Paskutinis ir paskutinis patikrinimas. Koeficientas turėtų būti b Su priešingas pažįstamas. Mūsų atveju -1+2 = +1. Koeficientas b, kuris yra prieš X, yra lygus -1. Taigi, viskas teisinga!
Gaila, kad tai taip paprasta tik pavyzdžiams, kur x kvadratas yra grynas, su koeficientu a = 1. Bet bent jau patikrinkite tokias lygtis! Klaidų bus vis mažiau.

Trečias priėmimas. Jei jūsų lygtis turi trupmenų koeficientus, atsikratykite trupmenų! Padauginkite lygtį iš bendro vardiklio, kaip aprašyta ankstesniame skyriuje. Dirbant su trupmenomis, klaidų kažkodėl vis atsiranda...

Beje, blogą pavyzdį pažadėjau supaprastinti su krūva minusų. Prašau! Štai jis.

Kad nesusipainiotume su minusais, lygtį padauginame iš -1. Mes gauname:

Tai viskas! Spręsti yra vienas malonumas!

Taigi, apibendrinkime temą.

Praktinis patarimas:

1. Prieš spręsdami kvadratinę lygtį įvedame į standartinę formą ir ją sudarome Teisingai.

2. Jei prieš X kvadratą yra neigiamas koeficientas, jį pašaliname visą lygtį padauginę iš -1.

3. Jeigu koeficientai trupmeniniai, tai trupmenas eliminuojame padauginę visą lygtį iš atitinkamo koeficiento.

4. Jei x kvadratas yra grynas, jo koeficientas lygus vienetui, sprendinį galima nesunkiai patikrinti naudojant Vietos teoremą. Daryk!

Trupmenų lygtys. ODZ.

Mes ir toliau įvaldome lygtis. Mes jau žinome, kaip dirbti su tiesinėmis ir kvadratinėmis lygtimis. Liko paskutinis vaizdas - trupmenines lygtis. Arba jie taip pat vadinami daug garbingiau - trupmenines racionaliąsias lygtis. Tai tas pats.

Trupmenų lygtys.

Kaip rodo pavadinimas, šiose lygtyse būtinai yra trupmenų. Bet ne tik trupmenos, bet ir trupmenos, kurios turi vardiklis nežinomas. Bent jau viename. Pavyzdžiui:

Leiskite jums priminti, kad jei vardikliai yra tik numeriai, tai tiesinės lygtys.

Kaip nuspręsti trupmenines lygtis? Visų pirma, atsikratykite trupmenų! Po to lygtis dažniausiai virsta tiesine arba kvadratine. Ir tada mes žinome, ką daryti... Kai kuriais atvejais tai gali virsti tapatybe, pvz., 5=5 arba neteisinga išraiška, pavyzdžiui, 7=2. Tačiau taip nutinka retai. Tai paminėsiu žemiau.

Bet kaip atsikratyti trupmenų!? Labai paprasta. Taikant tas pačias identiškas transformacijas.

Turime padauginti visą lygtį iš tos pačios išraiškos. Kad visi vardikliai būtų sumažinti! Viskas iš karto taps lengviau. Leiskite paaiškinti pavyzdžiu. Turime išspręsti lygtį:

Kaip jus mokė pradinėje mokykloje? Viską perkeliame į vieną pusę, suvedame į bendrą vardiklį ir t.t. Pamiršk kaip baisus sapnas! Tai reikia padaryti, kai pridedate arba atimsite trupmenas. Arba dirbate su nelygybėmis. O lygtyse iš karto padauginame abi puses iš išraiškos, kuri suteiks galimybę sumažinti visus vardiklius (t. y. iš esmės iš bendro vardiklio). Ir kas yra ši išraiška?

Kairėje pusėje, norint sumažinti vardiklį, reikia padauginti iš x+2. O dešinėje reikia dauginti iš 2. Tai reiškia, kad lygtis turi būti padauginta iš 2 (x+2). Padauginti:

Tai yra įprastas trupmenų dauginimas, bet aš tai išsamiai aprašysiu:

Atkreipkite dėmesį, kad aš dar neatidarau laikiklio (x + 2)! Taigi, visą tai rašau:

Kairėje pusėje jis visiškai susitraukia (x+2), o dešinėje 2. Ko ir reikėjo! Po sumažinimo gauname linijinis lygtis:

Ir kiekvienas gali išspręsti šią lygtį! x = 2.

Išspręskime kitą pavyzdį, šiek tiek sudėtingesnį:

Jei prisiminsime, kad 3 = 3/1, ir 2x = 2x/ 1, galime rašyti:

Ir vėl atsikratome to, kas mums nelabai patinka – trupmenomis.

Matome, kad norėdami sumažinti vardiklį su X, turime trupmeną padauginti iš (x – 2). O kelios mums netrukdo. Na, padauginkime. Visi kairė pusė Ir visi dešinioji pusė:

Vėl skliausteliuose (x – 2) Aš neatskleisiu. Aš dirbu su skliaustu kaip visuma taip, lyg tai būtų vienas skaičius! Tai turi būti daroma visada, kitaip niekas nesumažės.

Su gilaus pasitenkinimo jausmu sumažiname (x – 2) ir gauname lygtį be jokių trupmenų, su liniuote!

Dabar atidarykime skliaustus:

Atvežame panašius, perkeliame viską į kairę pusę ir gauname:

Klasikinė kvadratinė lygtis. Bet minusas į priekį nėra geras. Visada galite jo atsikratyti padauginę arba padalydami iš -1. Bet jei atidžiai pažvelgsite į pavyzdį, pastebėsite, kad geriausia šią lygtį padalyti iš -2! Vienu ypu minusas išnyks, o šansai taps patrauklesni! Padalinkite iš -2. Kairėje pusėje - terminas po termino, o dešinėje - tiesiog padalinkite nulį iš -2, nulį ir gausime:

Išsprendžiame per diskriminantą ir patikriname naudodami Vietos teoremą. Mes gauname x = 1 ir x = 3. Dvi šaknys.

Kaip matote, pirmuoju atveju lygtis po transformacijos tapo tiesinė, tačiau čia ji tampa kvadratine. Pasitaiko, kad atsikračius trupmenų, sumažėja visi X. Kažkas lieka, pavyzdžiui, 5=5. Tai reiškia kad x gali būti bet kas. Kad ir kas tai būtų, jis vis tiek bus sumažintas. Ir pasirodo, kad tai gryna tiesa, 5=5. Bet, atsikračius trupmenų, tai gali pasirodyti visiškai netiesa, pavyzdžiui, 2=7. O tai reiškia, kad jokių sprendimų! Bet koks X pasirodo esantis netiesa.

Supratau pagrindinis būdas sprendimus trupmenines lygtis? Tai paprasta ir logiška. Mes keičiame pradinę išraišką, kad viskas, kas mums nepatinka, išnyktų. Arba trukdo. Šiuo atveju tai yra trupmenos. Tą patį darysime su visomis rūšimis sudėtingų pavyzdžių su logaritmais, sinusais ir kitais baisumais. Mes Visada Atsikratykime viso šito.

Tačiau turime pakeisti pradinę išraišką mums reikalinga kryptimi pagal taisykles, taip... Kurio įvaldymas – pasiruošimas vieningam valstybiniam matematikos egzaminui. Taigi mes jį įvaldome.

Dabar mes išmoksime apeiti vieną iš pagrindinės pasalos dėl vieningo valstybinio egzamino! Bet pirmiausia pažiūrėkime, ar jūs į jį patenkate, ar ne?

Pažvelkime į paprastą pavyzdį:

Reikalas jau pažįstamas, padauginame iš abiejų pusių (x – 2), mes gauname:

Primenu, su skliaustais (x – 2) Dirbame tarsi su viena, vientisa išraiška!

Čia aš jau neberašiau vieno vardikliuose, tai neoru... Ir vardikliuose skliaustų netraukiau, išskyrus x – 2 nieko nėra, piešti nereikia. Sutrumpinkime:

Atidarykite skliaustus, perkelkite viską į kairę ir nurodykite panašius:

Išsprendžiame, patikriname, gauname dvi šaknis. x = 2 Ir x = 3. Puiku.

Tarkime, kad užduotyje nurodyta užrašyti šaknį arba jų sumą, jei yra daugiau nei viena šaknis. Ką rašysime?

Jei nuspręsite, kad atsakymas yra 5, jūs buvo užpulti. Ir užduotis jums nebus įskaityta. Jie dirbo veltui... Teisingas atsakymas yra 3.

Kas nutiko?! Ir tu pabandyk patikrinti. Nežinomo reikšmes pakeiskite į originalus pavyzdys. O jei at x = 3 viskas suaugs nuostabiai, gauname 9 = 9, tada kada x = 2 Tai bus padalijimas iš nulio! Ko tu visiškai negali padaryti. Reiškia x = 2 nėra sprendimas ir į jį neatsižvelgiama atsakant. Tai vadinamoji pašalinė arba papildoma šaknis. Mes tiesiog jį išmetame. Galutinė šaknis yra viena. x = 3.

Kaip tai?! – girdžiu pasipiktinusius šūksnius. Mus mokė, kad lygtį galima padauginti iš išraiškos! Tai identiška transformacija!

Taip, identiškas. At nedidelė būklė– išraiška, iš kurios mes dauginame (daliname) – skiriasi nuo nulio. A x – 2 adresu x = 2 lygus nuliui! Taigi viskas sąžininga.

O dabar ką aš galiu padaryti?! Nedauginti pagal išraišką? Ar turėčiau tikrinti kiekvieną kartą? Ir vėl neaišku!

ramiai! Nepanikuokite!

Šioje sudėtingoje situacijoje mus išgelbės trys stebuklingos raidės. Aš žinau, ką tu galvoji. Teisingai! Tai ODZ . Priimtinų vertybių sritis.

Lygčių naudojimas yra plačiai paplitęs mūsų gyvenime. Jie naudojami atliekant daugybę skaičiavimų, statant konstrukcijas ir net sportuojant. Žmogus senovėje naudojo lygtis, o nuo to laiko jų vartojimas tik išaugo. Diskriminantas leidžia išspręsti bet kurią kvadratinę lygtį naudojant bendroji formulė, kuris atrodo taip:

Diskriminacinė formulė priklauso nuo daugianario laipsnio. Aukščiau pateikta formulė tinka kvadratinėms lygtims spręsti tokio tipo:

Diskriminantas turi šias savybes dalykai, kuriuos reikia žinoti:

* "D" yra 0, kai daugianomas turi kelias šaknis ( vienodos šaknys);

* "D" yra simetriškas daugianomas daugianario šaknų atžvilgiu, todėl yra daugianario koeficientas; be to, šio daugianario koeficientai yra sveikieji skaičiai, neatsižvelgiant į plėtinį, kuriame paimtos šaknys.

Tarkime, kad mums duota tokios formos kvadratinė lygtis:

1 lygtis

Pagal formulę turime:

Nuo \ lygtis turi 2 šaknis. Apibrėžkime juos:

Kur galiu išspręsti lygtį naudojant diskriminacinį internetinį sprendiklį?

Galite išspręsti lygtį mūsų svetainėje https://site. Nemokamas internetinis sprendėjas leis per kelias sekundes išspręsti bet kokio sudėtingumo internetines lygtis. Viskas, ką jums reikia padaryti, tai tiesiog įvesti savo duomenis į sprendiklį. Taip pat galite peržiūrėti vaizdo įrašo instrukcijas ir sužinoti, kaip išspręsti lygtį mūsų svetainėje. O jei turite klausimų, galite užduoti juos mūsų VKontakte grupėje http://vk.com/pocketteacher. Prisijunkite prie mūsų grupės, mes visada džiaugiamės galėdami jums padėti.

Daugiau paprastu būdu. Norėdami tai padaryti, įdėkite z iš skliaustų. Gausite: z(аz + b) = 0. Veiksnius galima užrašyti: z=0 ir аz + b = 0, nes abu gali baigtis nuliu. Žymėjime az + b = 0 antrąjį perkeliame į dešinę su kitu ženklu. Iš čia gauname z1 = 0 ir z2 = -b/a. Tai yra originalo šaknys.

Jei yra nepilna az² + c = 0 formos lygtis, šiuo atveju jos randamos tiesiog perkeliant laisvąjį terminą į dešinę lygties pusę. Taip pat pakeiskite jo ženklą. Rezultatas bus az² = -с. Išreikškite z² = -c/a. Paimkite šaknį ir užrašykite du sprendinius – teigiamą ir neigiamą kvadratinę šaknį.

pastaba

Jei lygtyje yra trupmeninių koeficientų, padauginkite visą lygtį iš atitinkamo koeficiento, kad pašalintumėte trupmenas.

Žinios, kaip spręsti kvadratines lygtis, reikalingos ir moksleiviams, ir studentams, kartais tai gali padėti ir suaugusiajam kasdieniame gyvenime. Yra keletas specifinių sprendimo būdų.

Kvadratinių lygčių sprendimas

A*x^2+b*x+c=0 formos kvadratinė lygtis. Koeficientas x – norimas kintamasis, a, b, c – skaitiniai koeficientai. Atminkite, kad „+“ ženklas gali pasikeisti į „-“.

Norint išspręsti šią lygtį, reikia panaudoti Vietos teoremą arba rasti diskriminantą. Labiausiai paplitęs metodas yra rasti diskriminantą, nes kai kurioms a, b, c reikšmėms negalima naudoti Vietos teoremos.

Norint rasti diskriminantą (D), reikia parašyti formulę D=b^2 - 4*a*c. D reikšmė gali būti didesnė už, mažesnė už nulį arba lygi nuliui. Jei D yra didesnis arba mažiau nei nulis, tada bus dvi šaknys; jei D = 0, tada lieka tik viena šaknis; tiksliau galime pasakyti, kad D šiuo atveju yra dvi lygiavertės šaknys. Į formulę pakeiskite žinomus koeficientus a, b, c ir apskaičiuokite reikšmę.

Suradę diskriminantą, naudokite formules, kad surastumėte x: x(1) = (- b+sqrt(D))/2*a; x(2) = (- b-sqrt(D))/2*a kur sqrt yra funkcija, reiškianti ištrauką kvadratinė šaknisduotas numeris. Apskaičiavę šias išraiškas, rasite dvi savo lygties šaknis, po kurių lygtis laikoma išspręsta.

Jei D yra mažesnis už nulį, jis vis tiek turi šaknis. Mokykloje šį skyrių praktiškai nestudijavo. Universiteto studentai turėtų žinoti, kas vyksta neigiamas skaičius po šaknimi. Jie jo atsikrato paryškindami įsivaizduojamą dalį, tai yra, -1 po šaknimi visada yra lygus įsivaizduojamam elementui „i“, kuris padauginamas iš šaknies su tuo pačiu teigiamu skaičiumi. Pavyzdžiui, jei D=sqrt(-20), po transformacijos gauname D=sqrt(20)*i. Po šios transformacijos lygties sprendimas sumažinamas iki to paties šaknų radimo, kaip aprašyta aukščiau.

Vietos teorema susideda iš x(1) ir x(2) reikšmių pasirinkimo. Naudojamos dvi identiškos lygtys: x(1) + x(2)= -b; x(1)*x(2)=с. Ir labai svarbus punktas yra ženklas prieš koeficientą b, atminkite, kad šis ženklas yra priešingas lygties ženklui. Iš pirmo žvilgsnio atrodo, kad apskaičiuoti x(1) ir x(2) yra labai paprasta, tačiau sprendžiant susidursite su tuo, kad teks atsirinkti skaičius.

Kvadratinių lygčių sprendimo elementai

Pagal matematikos taisykles kai kurios gali būti suskirstytos faktoriais: (a+x(1))*(b-x(2))=0, jei pavyko konvertuoti naudojant matematines formules Panašiu būdu duota kvadratinė lygtis, tada drąsiai užsirašykite atsakymą. x(1) ir x(2) bus lygūs gretimiems skliaustuose esantiems koeficientams, bet su priešingas ženklas.

Taip pat nepamirškite apie neišsamias kvadratines lygtis. Gali būti, kad trūksta kai kurių terminų; jei taip, tada visi jo koeficientai yra tiesiog lygūs nuliui. Jei prieš x^2 arba x nieko nėra, tada koeficientai a ir b yra lygūs 1.

Tikiuosi, kad išstudijavę šį straipsnį sužinosite, kaip rasti visos kvadratinės lygties šaknis.

Naudojant diskriminantą sprendžiamos tik pilnos kvadratinės lygtys, nepilnoms kvadratinėms lygtims spręsti naudojami kiti metodai, kuriuos rasite straipsnyje „Nepilnių kvadratinių lygčių sprendimas“.

Kokios kvadratinės lygtys vadinamos pilnosiomis? Tai ax 2 + b x + c = 0 formos lygtys, kur koeficientai a, b ir c nėra lygūs nuliui. Taigi, norėdami išspręsti visą kvadratinę lygtį, turime apskaičiuoti diskriminantą D.

D = b 2 – 4ac.

Atsižvelgdami į diskriminanto reikšmę, surašysime atsakymą.

Jei diskriminantas yra neigiamas skaičius (D< 0),то корней нет.

Jei diskriminantas lygus nuliui, tai x = (-b)/2a. Kai diskriminantas yra teigiamas skaičius (D > 0),

tada x 1 = (-b - √D)/2a ir x 2 = (-b + √D)/2a.

Pavyzdžiui. Išspręskite lygtį x 2– 4x + 4 = 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Atsakymas: 2.

Išspręskite 2 lygtį x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Atsakymas: nėra šaknų.

Išspręskite 2 lygtį x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81) / (2 2) = (-5 - 9) / 4 = - 3,5

x 2 = (-5 + √81) / (2 2) = (-5 + 9) / 4 = 1

Atsakymas: – 3,5; 1.

Taigi įsivaizduokime pilnų kvadratinių lygčių sprendimą naudodami 1 paveiksle pateiktą diagramą.

Naudodami šias formules galite išspręsti bet kurią pilną kvadratinę lygtį. Jums tiesiog reikia būti atsargiems lygtis buvo parašyta kaip standartinės formos daugianario

A x 2 + bx + c, kitaip galite padaryti klaidą. Pavyzdžiui, rašydami lygtį x + 3 + 2x 2 = 0, galite klaidingai nuspręsti, kad

a = 1, b = 3 ir c = 2. Tada

D = 3 2 – 4 1 2 = 1 ir tada lygtis turi dvi šaknis. Ir tai netiesa. (Žr. 2 pavyzdžio sprendimą aukščiau).

Todėl, jei lygtis parašyta ne kaip standartinės formos daugianario, pirmiausia visa kvadratinė lygtis turi būti parašyta kaip standartinės formos daugianomas (pirmas turėtų būti monomas su didžiausiu eksponentu, t. y. A x 2 , tada su mažiau bx ir tada laisvas narys Su.

Sprendžiant sumažintą kvadratinę lygtį ir kvadratinę lygtį su lyginiu koeficientu antrajame dėme, galite naudoti kitas formules. Susipažinkime su šiomis formulėmis. Jei pilnoje kvadratinėje lygtyje antrasis narys turi lyginį koeficientą (b = 2k), tada lygtį galite išspręsti naudodami 2 paveikslo diagramoje parodytas formules.

Pilna kvadratinė lygtis vadinama redukuota, jei koeficientas at x 2 yra lygi vienetui ir lygtis įgauna formą x 2 + px + q = 0. Tokią lygtį galima pateikti sprendiniui arba ją galima gauti visus lygties koeficientus padalijus iš koeficiento A, stovi prie x 2 .

3 paveiksle parodyta sumažinto kvadrato sprendimo schema
lygtys. Pažvelkime į šiame straipsnyje aptartų formulių taikymo pavyzdį.

Pavyzdys. Išspręskite lygtį

3x 2 + 6x – 6 = 0.

Išspręskime šią lygtį naudodami 1 paveikslo diagramoje parodytas formules.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3)))/6 = -1 - √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3)))/6 = –1 + √3

Atsakymas: –1 – √3; –1 + √3

Galite pastebėti, kad x koeficientas šioje lygtyje yra lyginis skaičius, tai yra b = 6 arba b = 2k, iš kur k = 3. Tada pabandykime išspręsti lygtį naudodami D paveikslo diagramoje pateiktas formules. 1 = 3 2 – 3 · (– 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 – 3√3)/3 = (3 (-1 – √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Atsakymas: –1 – √3; –1 + √3. Pastebėję, kad visi šios kvadratinės lygties koeficientai dalijasi iš 3 ir atlikę padalijimą, gauname sumažintą kvadratinę lygtį x 2 + 2x – 2 = 0 Išspręskite šią lygtį naudodami sumažintos kvadratinės formules.
lygtys 3 pav.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 – 2√3)/2 = (2 (-1 – √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Atsakymas: –1 – √3; –1 + √3.

Kaip matome, sprendžiant šią lygtį pagal įvairios formulės gavome tą patį atsakymą. Todėl gerai įsisavinę 1 paveikslo diagramoje parodytas formules, visada galėsite išspręsti bet kurią pilną kvadratinę lygtį.

svetainėje, kopijuojant visą medžiagą ar jos dalį, būtina nuoroda į šaltinį.

Įkeliama...Įkeliama...