Витамины и другие средства антиоксидантного действия. Побочное и токсическое действие витаминных препаратов, коррекция. Антивитамины. Побочные эффекты, вызываемые витаминами Антивитамины механизм действия примеры

История открытия витаминов

Ко второй половине 19 века было выяснено, что пищевая ценность продуктов питания определяется содержанием в них, в основном, следующих веществ: белков, жиров, углеводов, минеральных солей и воды.

Считалось общепризнанным, что если в пищу человека входят в определенных количествах все эти питательные вещества, то она полностью отвечает биологическим потребностям организма. Это мнение прочно укоренилось в науке и поддерживалось такими авторитетными физиологами того времени, как Петтенкофер, Фойт и Рубнер.

Однако практика далеко не всегда подтверждала правильность укоренившихся представлений о биологической полноценности пищи.

Практический опыт врачей и клинические наблюдения издавна с несомненностью указывали на существование ряда специфических заболеваний, непосредственно связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям. Об этом свидетельствовал также многовековой практический опыт участников длительных путешествий. Настоящим бичом для мореплавателей долгое время была цинга; от нее погибало моряков больше, чем, например, в сражениях или от кораблекрушений. Так, из 160 участников известной экспедиции Васко де Гама, прокладывавшей морской путь в Индию, 100 человек погибли от цинги.

История морских и сухопутных путешествий давала также ряд поучительных примеров, указывавших на то, что возникновение цинги может быть предотвращено, а цинготные больные могут быть вылечены, если в их пищу вводить известное количество лимонного сока или отвара.

Таким образом, практический опыт ясно указывал на то, что цинга и некоторые другие болезни связанны с дефектами питания, что даже самая обильная пища сама по себе еще далеко не всегда гарантирует отсутствие подобных заболеваний и что для предупреждения и лечения таких заболеваний необходимо вводить в организм какие-то дополнительные вещества, которые содержатся не во всякой пище.

Экспериментальное обоснование и научно-теоретическое обобщение этого многовекового практического опыта впервые стали возможны благодаря открывшему новую главу в науке исследованию русского ученого Николая Ивановича Лунина, изучавшего в лаборатории Г.А. Бунге роль минеральных веществ в питании.

Н.И. Лунин проводил свои опыты на мышах, содержавшихся на искусственно приготовленной пище. Эта пища состояла из смеси очищенного казеина (белок молока), жира молока, молочного сахара, солей, входящих в состав молока, и воды. Казалось, налицо были все необходимые составные части молока; между тем мыши, находившееся на такой диете, не росли, теряли в весе, переставали поедать даваемый им корм и, наконец, погибали. В то же время контрольная партия мышей, получавшая натуральное молоко, развивалась совершенно нормально. На основании этих работ Н.И. Лунин в 1880 г. пришел к следующему заключению: "... если, как вышеупомянутые опыты учат, невозможно обеспечить жизнь белками, жирами, сахаром, солями и водой, то из этого следует, что в молоке, помимо казеина, жира, молочного сахара и солей, содержатся еще другие вещества, незаменимые для питания. Представляет большой интерес исследовать эти вещества и изучить их значение для питания".

Это было важное научное открытие, опровергавшее установившееся положения в науке о питании. Результаты работ Н. И. Лунина стали оспариваться; их пытались объяснить, например, тем, что искусственно приготовленная пища, которой он в своих опытах кормил животных, была якобы невкусной.

В 1890 г. К.А. Сосин повторил опыты Н. И. Лунина с иным вариантом искусственной диеты и полностью подтвердил выводы Н.И. Лунина. Все же и после этого безупречный вывод не сразу получил всеобщее признание.

Блестящим подтверждением правильности вывода Н.И. Лунина стало установление причины болезни бери-бери, которая была особенно широко распространена в Японии и Индонезии среди населения, питавшегося, главным образом, полированным рисом.

Врач Эйкман, работавший в тюремном госпитале на острове Ява, в 1896 году подметил, что куры, содержавшиеся во дворе госпиталя и питавшиеся обычным полированным рисом, страдали заболеванием, напоминающим бери-бери. После перевода кур на питание неочищенным рисом болезнь проходила.

Наблюдения Эйкмана, проведенные на большом числе заключенных в тюрьмах Явы, также показали, что среди людей, питавшихся очищенным рисом, бери-бери заболевал в среднем один человек из 40, тогда как в группе людей, питавшихся неочищенным рисом, ею заболевал лишь один человек из 10000.

Таким образом, стало ясно, что в оболочке риса (рисовых отрубях) содержится какое-то неизвестное вещество, предохраняющее от заболевания бери-бери. В 1911 году польский ученый Казимир Функ выделил это вещество в кристаллическом виде (оказавшееся, как потом выяснилось, смесью витаминов); оно было довольно устойчивым по отношению к кислотам и выдерживало, например, кипячение с 20%-ным раствором серной кислоты. В щелочных растворах активное начало, напротив, очень быстро разрушалось. По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу. Функ пришел к заключению, что бери-бери является только одной из болезней, вызываемых отсутствием каких-то особых веществ в пище.

Несмотря на то, что эти особые вещества присутствуют в пище, как подчеркнул ещё Н.И. Лунин, в малых количествах, они являются жизненно необходимыми. Так как первое вещество этой группы жизненно необходимых соединений содержало аминогруппу и обладало некоторыми свойствами аминов, Функ (1912) предложил назвать весь этот класс веществ витаминами (лат. vita - жизнь, vitamin - амин жизни). Впоследствии, однако, оказалось, что многие вещества этого класса не содержат аминогруппы. Тем не менее, термин "витамины" настолько прочно вошел в обиход, что менять его не уже имело смысла.

После выделения из пищевых продуктов вещества, предохраняющего от заболевания бери-бери, был открыт ряд других витаминов. Большое значение в развитии учения о витаминах имели работы Гопкинса, Степпа, Мак-Коллума, Мелэнби и многих других учёных.

В настоящее время известно около 20 различных витаминов. Установлена и их химическая структура; это дало возможность организовать промышленное производство витаминов не только путём переработки продуктов, в которых они содержатся в готовом виде, но и искусственно, путём их химического синтеза.

Общее понятие об авитаминозах; гипо- и гипервитаминозы

Болезни, которые возникают вследствие отсутствия в пище тех или иных витаминов, стали называть авитаминозами. Если болезнь возникает вследствие отсутствия нескольких витаминов, её называют поливитаминозом. Однако типичные по своей клинической картине авитаминозы в настоящее время встречаются довольно редко. Чаще приходится иметь дело с относительным недостатком какого-либо витамина; такое заболевание называется гиповитаминозом. Если правильно и своевременно поставлен диагноз, то авитаминозы и особенно гиповитаминозы легко излечить введением в организм соответствующих витаминов.

Чрезмерное введение в организм некоторых витаминов может вызвать заболевание, называемое гипервитаминозом.

В настоящее время многие изменения в обмене веществ при авитаминозе рассматривают как следствие нарушения ферментных систем. Известно, что многие витамины входят в состав ферментов в качестве компонентов их простетических или коферментных групп.

Многие авитаминозы можно рассматривать как патологические состояния, возникающие на почве выпадения функций тех или других коферментов. Однако в настоящее время механизм возникновения многих авитаминозов ещё неясен, поэтому пока ещё не представляется возможности трактовать все авитаминозы как состояния, возникающие на почве нарушения функций тех или иных коферментных систем.

С открытием витаминов и выяснением их природы открылись новые перспективы не только в предупреждении и лечении авитаминозов, но и в области лечения инфекционных заболеваний. Выяснилось, что некоторые фармацевтические препараты (например, из группы сульфаниламидных) частично напоминают по своей структуре и по некоторым химическим признакам витамины, необходимые для бактерий, но в то же время не обладают свойствами этих витаминов. Такие "замаскированные под витамины" вещества захватываются бактериями, при этом блокируются активные центры бактериальной клетки, нарушается её обмен, и происходит гибель бактерий.

Антивитамины – это соединения, частично или полностью включающие витамины из обменных реакций организма путем их разрушения, инактивации или препятствия их ассимиляции.

Большинство антивитаминов представляет собой производные синтетически полученных витаминов с замещенными функциональными группами. Этими же свойствами обладает и ряд синтетически поученных лекарственных препаратов. Установлено, что при пероральном применении сульфанилаимдных препаратов может нарушаться синтез бактериями кишечника таких витаминов, как тиамин, рибофлавин, никотинамид, пиридоксин, пантотеновая кислота, фолиевая кислота, цианокобаламин, биотин и витамин К.

Основные механизмы действия антивитаминов :

    Блокада внутриклеточного метаболизма витамина;

    Разрушение витаминов;

    Модификация молекулы витамина;

    Блокада рецепторов клеток для витаминов.

Перечень антивитаминов (Смирнов В.И., 1974):

    Для витамина В 1 (тиамин) – тиаминаза I и II, пиритиамин (неврологический синдром В 1 недостаточности), неопиритиамин;

    Для витамина В 2 (рибофлавин) – изорибофлавин, галактофлавин, токсофлавин, акрихин, левомицетин, террамицин, тетрациклин, мегафен;

    Для витамина В 6 (пиридоксин) – изониазид, циклосерин, токсопиримидин, 4-дезоксипиридоксин;

    Для витамина В 12 (цианкобаламин) – 2-амино-метилпропанол В 12 ;

    Для витамина РР (никотиновая кислота) – изониазид, 3-ацетилпирин;

    Для фолиевой кислоты – аминоптерин, аметоптерин;

    Для витамина С (аскорбинвая кислота) – аскорбиназа, глюкоаскорбиновая кислота;

    Для витамина Н (биотин) – овидин (белок из птичьих яиц), дестиобиотин;

    Для витамина К (филлохинон) – кумарин, дикумарин (снижает синтез протромбина печенью);

    Для витамина Е (токоферол) – 3-фенилфосфат, 3-ортокрезолфосфат.

Антивитамины, проникая в клетку, вступают с витаминами или их производными в конкурентные отношения в соответствующих биохимических реакциях. Известно, что ряд витаминов входит в виде простатических групп – коферментов в связь с белками-апоферментами и образует ферменты. Антивитамины, имеющие структурные аналоги с витаминами за место связи их с белками и вытесняют витамины. Это приводит как к образованию неактивных комплексов, так и к усиленному выделению витаминов из организма и развитию эндогенной витаминной недостаточности.

Гипервитаминозы

При избыточном поступлении некоторые витамины могут вызвать интоксикацию организма с развитием клинической картины, более или менее характерной для данного гипервитаминоза.

Различают: острые гипервитаминозы – развиваются после однократного приема массивной дозы витамина; хронические гипервитаминозы – возникают в результате длительного приема больших доз витамина.

Гипервитаминоз А – развивается у человека в результате употребления продуктов, содержащих большое количество витамина А (печень: кита, белого медведя, полярных птиц), либо при употреблении больших количеств рыбьего жира и препаратов витамина А (минимальная профилактическая доза для детей и взрослых – 3300 МЕ).

Токсическая доза витамина А, вызывающая острое отравление, являются дозы от 1000000 до 6000000 МЕ. Хроническая интоксикация возникает при длительном приеме (3-4 месяца) витамина А в дозах более 20000 МЕ.

Гипервитаминоз А у взрослых :

    Острый – выражается в тяжелой головной боли, сонливости, диспепсических явлениях (тошнота, рвота), шелушении кожи;

    Хронический – вызывает кожные симптомы, выпадение волос, боль в костях и суставах при ходьбе, головные боли, потерю аппетита, бессонницу, анорексию и гепатоспленомегалию. Иногда наблюдается симптом экзофтальмии, повышение давления спинномозговой жидкости.

Гипервитаминоз А у детей :

    Острый – наблюдается обычно у грудных детей и наступает в течение 12 часов после приема витамина, проявления исчезают спустя 24-48 часов. Характерные симптомы отравления: повышение давления спинномозговой жидкости, гидроцефалия, выпячивание родничка, кратковременное повышение температуры тела, потеря аппетита, рвота, незначительные расстройства функции черепномозговых нервов, экзантемы и петехии на коже, ринит, олигурия.

    Хронический – основными симптомами являются: раздражительность, потеря аппетита, сухость и выпадение волос, потрескавшаяся кожа на ладонях и ступнях ног, себорейные высыпания, гепато- и спленомегалия, головные боли, бессонница, субфебрильная температура, повышение артериального давления, расстройство походки, боль в суставах. Кроме того, наблюдается гипохромная анемия, повышение уровня липидов в сыворотке крови, увеличение активности щелочной фосфатазы.

Гипервитаминоз D – это избыточное поступление витаминов D 2 и D 3 , токсическое действие и тяжесть интоксикации зависят не только от количества принятого витамина, но и от индивидуальной чувствительности к нему (суточная доза витамина D 2 50000 МЕ).

Основные проявления гипервитаминоза D : аномальная деминерализация предобразованной костной ткани, гиперкальциемия, гиперкальциурия, патологическая кальцификация: почек, кровеносных сосудов, сердечной мышцы (сердечная недостаточность, стеноз аорты), легких и стенок кишечника, приводящая к тяжелому и стойкому нарушению функции этих органов. Нарушения со стороны ЦНС: вялость, сонливость, адинамия, клонико-тонические судороги, а в наиболее тяжелых случаях заканчивающиеся смертью.

Внешне гипервитаминоз D проявляется : общей слабостью, резкой потерей аппетита, полиурией, тошнотой, рвотой, жаждой, болями в животе и костях при надавливании, отмечается конъюнктивит, в тяжелых случаях резкое истощение.

Патогенез: в основе механизма повреждающего действия витамина D, лежит способность его к быстрому окислению с образованием свободных радикалов, а также продуктов перекисной природы и карбонильных соединений. Эти продукты превращения витамина D в водной среде являются сильными окислителями, легко повреждающими структуру липопротеиновых мембран и активные центры белков, что подтверждается накоплением продуктов перекисного расщепления липидов в эритроцитах и тканевых гомогенатах. В этом случае избыток витамина D способствует выходу кальция из клетки и переходу его в кровь, лимфу и другие биологические жидкости. Антиоксиданты (витамин Е), подавляя действие витамина D и индуцируемые им процессы перекисного расщепления тканевых липидов, защищают эритроциты от гемолитического действия этого витамина и снимают его ингибиторный эффект на АТФ-азу.

Избыток витамина В 1 (тиамина) – может оказывать острое токсическое действие. По данным В.М. Смирнова (1974), тиамин занимает первое место среди витаминов по частоте острых токсических реакций, кроме того возможна сенсибилизация к этому витамину. При инъекциях даже очень малых доз витамина возникают аллергические реакции вплоть до анафилактического шока.

Что такое витамины, знают все, а вот о существовании антивитаминов — веществ, сходных с ними по структуре, но имеющих абсолютно противоположные свойства, — слышали немногие. Причем эти соединения могут занимать место в структуре витаминного кофермента (быть промежуточными переносчиками определенных химических групп), но не выполнять функции витаминов. Это приводит к нарушению биохимических процессов в организме и может стать причиной патологий обмена веществ.

Откажитесь от фреша в ресторанах — до подачи к столу он в лучшем случае потеряет 50 % аскорбиновой кислоты.

Самый яркий пример противостояния витаминов и антивитаминов — аскорбиновая кислота и аскорбиназа. Знакомая ситуация: разрезали огромное яблоко, половину съели, а вторую оставили на потом? Знайте, что потом от витамина С во фрукте не останется и следа. Под воздействием света в яблоке синтезируется аскорбиназа — вещество, вызывающее окисление и разрушающее витамин С. И это касается не только яблок! Свежевыжатый апельсиновый сок, например, нужно употреблять сразу же после приготовления. Так что откажитесь от фреша в ресторанах — до подачи к столу он в лучшем случае потеряет 50 % аскорбиновой кислоты.

Витамин В1 поддерживает работу сердечно-сосудистой, нервной и пищеварительной систем. Им богаты лесные орехи, помидоры, говядина и птица. Действие витамина В1 полностью подавляет тиаминаза, которой много в картофеле, шпинате, рисе, вишне, чайном листе. Вот почему картофель не лучший гарнир к куриному филе (и дело не только в высоком содержании крахмала).

Антивитамином ниацина (витамина В3) является аминокислота лейцин. Последняя содержится в сое, фасоли, буром рисе, грибах, грецких орехах, птице и молоке. Ниацином богаты брокколи, финики, яйца, печень. Так что ужин из отварной индейки и брокколи, как оказалось, не самый здоровый вариант.

По разные стороны баррикад

Для переваривания каждого вида пищи необходим разный ферментный состав желудочного сока. Например, белкам необходима кислая среда (соляная кислота), углеводам — щелочная. При взаимодействии кислоты со щелочью образуются соли, за счет которых увеличивается нагрузка на почки, печень и поджелудочную железу. Так что суши (рыба — белок, рис — углевод), макароны с сыром и бутерброды с бужениной (пусть даже и с цельнозерновым хлебом) не должны присутствовать в рационе адептов здорового питания.

Без сожаления ставьте клеймо на сочетании продуктов с высоким содержанием белка и жиров. Последние блокируют выделение соляной кислоты. Из этого следует вывод, что рыбу, яйца, мясо и бобовые нельзя готовить с добавлением масла (даже оливкового).

Фруктовые десерты после еды (вне зависимости от состава меню) не лучший вариант. Фрукты перевариваются в кишечнике, и, если на пути через ЖКТ они встречают препятствие в желудке, брожения вместе с другими составляющими обеда им не избежать. Поэтому персики, бананы, яблоки, груши и иже с ними можно есть только за 30 минут до основного приема пищи.

В чайном листе содержатся дубильные вещества, блокирующие усвоение магния, кальция, меди, цинка и железа, а также негативно влияющие на усвоение белка

Любимый миллионами салат из огурцов и помидоров также пора исключить из рациона. Во-первых, огурцы щелочные, а помидоры кислые. Во-вторых, в огурцах содержится антивитамин аскорбиназа, который разрушает витамин С.

Чай в сочетании с изделиями из дрожжевого теста иди протеиновыми десертами употреблять крайне нежелательно. В чайном листе содержатся дубильные вещества, блокирующие усвоение магния, кальция, меди, цинка и железа, а также негативно влияющие на усвоение белка. Причем чем сильнее заварка, тем меньше у микро- и макроэлементов шансов принести пользу организму.

Таблицу совместимости продуктов можно найти .

Текст: Наталия Капица

Похожие материалы из рубрики

Препарат

Побочные эффекты

Аскорбиновая кислота (С)

Гиповитаминоз группы В, аллергические реакции.

Никотиновая кислота (РР)

Кожные реакции в виде покраснения верхней части тела.

Ретинола ацетат (А)

Сонливость, вялость, головная боль, гиперамия, шелушение кожи.

Рибофлавин (В 2)

Закупорка почечных канальцев.

Тиамин (В 1)

Аллергические реакции.

Токоферол (Е)

Симптомы почечной недостаточности, кровоизлияние в сетчатую оболочку глаз, или мозг, асцит.

Фолиевая кислота (В с)

Диспепсические явления, высокие дозы – бессонницу, нарушение функции почек (гипертрофия, гиперплазия эпителия канальцев почек).

Холекальциферол (D)

Повышает внутричерепное давление.

Цианокобаламин (В 12)

Повышает свертываемость крови.

Следует учитывать физико-химическую несовместимость витаминов.

Нельзя смешивать в одном шприце витамины В 6 и В 12 , С и В 12 , В 1 и РР, так как они разрушаются или окисляются.

Меры помощи при передозировке витаминов .

При передозировке витамина А назначают витамины D, С, Е, маннит, глюкокортикоиды, гормоны щитовидной железы;

При передозировке витамина D– витамины А, Е, антагонисты кальция, сульфат магния

При передозировке витамина Е – витамины А, С.

Поскольку участие различных витаминов в обмене веществ взаимосвязано и назначение какого-либо одного из них может вести к нарушениям витаминного баланса в целом, предпочтение отдается в большинстве случаев поливитаминным препаратам. В практике используют поливитамины для комбинированного применения с целью оказания более сильного и разностороннего действия: аевит, пентавит, декамевит, аэровит, компливит, витатресс, олигавит, юникап, центрум, супрадин и др.

Антивитамины могут оказывать блокирующее влияние на биологическое действие витаминов или препятствовать синтезу и ассимиляции витаминов в организме. (табл. 6)

Таблица 6

Классификация антивитаминов

Препараты водорастворимых витаминов

Название препарата, его синонимы, условия хранения и порядок отпуска из аптек.

Форма выпуска (состав), количество препарата в упаковке

Способ назначения, средние терапевтические дозы

Тиамина хлорид (В 1)

Thiaminibromidum

Таблетки по 0,002 и 0,01

Ампулы 5% р-р по 1 мл

В мышцу по 1 мл 1 раз в сутки

Рибофлавин (В 2)

Таблетки по 0,005 и 0,01

По 12-1 таблетке 1-3 раза в сутки

В полость конъюнктивы 0,01% р-р по 1-2 капли 2 раза в сутки

Пиридоксина гидрохлорид (В 6)

Pyridoxinihydrochloridum

Таблетки по 0,002

Таблетки по 0,01

Ампулы 5% р-р по 1 мл

По 1 табл. 1 раз в сутки (с профил. целями)

По 2-5 таблеток 1-2 раза в сутки

В мышцу (под кожу) по 2 мл 1 раз в сутки

Кальция пантотенат (В 3)

Calciipantothenas

Таблетки по 0,1

По 1-2 таблетки 2-4 раза в сутки

Кислота никотиновая (РР)

Acidumnicotinicum

Таблетки по 0,05

Ампулы 1% р-р по 1 мл

По 1-2 таблетки 2-3 раза в сутки

В вену (медленно), реже в мышцу по 1 мл

Кислота фолиевая (В с)

Таблетки по 0,001

По 12-1 таблетке 1-2 раза в сутки

Цианокобаламин (В 12)

Cyanocobalaminum

Ампулы 0,01% и 0,05% р-р по 1 мл

В мышцу, под кожу, в вену по 1 мл

Кислота аскорбиновая (С)

Acidumascorbinicum

Драже (таблетки) по 0,05 и 0,1

Ампулы 5% р-р по 1 и 2 мл; 10% р-р по 1 мл

По 1-2 драже (таблетки) 3-5 раз в сутки

В мышцу (в вену) 1-3 мл

Таблетки по 0,02

По 1-2 таблетки 2-3 раза в сутки

В. М. АБАКУМОВ, кандидат медицинских наук

История антивитаминов началась лет пятьдесят назад с одной, поначалу, казалось бы, неудачи. Химики решили синтезировать витамин В с (фолиевую кислоту) и заодно несколько усилить его биологические свойства.

Этот витамин, как известно, участвует в биосинтезе белка и активизирует процессы кроветворения. Следовательно, в процессах жизнедеятельности ему отводится далеко не второстепенная роль.

А химический аналог полностью утратил витаминную активность. Но оказалось, что новое соединение тормозит развитие клеток, прежде всего раковых. Оно вошло в реестр эффективных противоопухолевых средств для лечения больных некоторыми злокачественными новообразованиями.

Стремясь понять механизм лечебного эффекта препарата, биохимики установили, что он является... антагонистом витамина В с. Его лечебное действие обусловлено тем, что он, вторгаясь в сложную цепочку химических реакций, нарушает превращение фолиевой кислоты в кофермент.

Соединения, противоборствующие некоторым витаминам, обнаружились и в ряде пищевых продуктов. Специалисты обратили внимание на то, что включение в рацион лисиц сырого карпа вызывало у животных развитие типичного состояния В 1 - авитаминоза. Позже было установлено, что в тканях сырого карпа содержится фермент тиаминаза, расщепляющий молекулу витамина В 1 (тиамина) до неактивных соединений.

Этот фермент затем был обнаружен и в других рыбах, причем не только пресноводных. Так, обследуя жителей Таиланда, врачи выявили у многих дефицит тиамина. Но почему? Ведь с пищей витамина поступало вполне достаточно. Последующие исследования показали, что виновница В 1 - недостаточности - все та же тиаминаза. Она содержится в рыбе, которую население в больших количествах использует в питании в сыром виде.

Более широкие исследования позволили обнаружить и другие В 1 - антивитаминные факторы в продуктах растительного происхождения. Например, из ягод черники выделена так называемая 3,4-дигидрооксикоричная кислота. 1,8 миллиграмма ее достаточно для нейтрализации 1 миллиграмма тиамина. Выяснилось, что антитиаминовые факторы содержатся и в других пищевых продуктах: рисе, шпинате, вишне, брюссельской капусте и т.д.

Впрочем, интенсивность их антивитаминного действия настолько незначительна, что существенного значения в развитии В 1 - гиповитаминоза они практически не имеют. Несомненный интерес представляет открытие антивитаминного фактора в кофе. Причем в отличие, скажем, от тиаминазы рыб он не разрушается при нагревании.

В овощах и фруктах, больше всего в огурцах, кабачках, цветной капусте и тыкве, содержится аскорбатоксидаза. Этот фермент ускоряет окисление витамина С до практически неактивной дикетогулоновой кислоты. А так как, выяснилось, это происходит вне организма, то витамин С разрушается в растительных продуктах при их длительном хранении и во время кулинарной обработки. Например, только за счет действия аскорбатоксидазы смесь сырых размельченных овощей за 6 часов хранения теряет более половины содержащегося в ней витамина С, причем потери его тем выше, чем больше измельчены овощи.

Соевый белок, особенно в сочетании с кукурузным маслом, способен нейтрализовать действие витамина Е (токоферола). Происходит это в связи с тем, что в сое содержатся пока еще не выделенные в чистом виде антивитамины токоферола. Подобный эффект наблюдается и при употреблении сырой фасоли. Термическая обработка этих продуктов приводит к разрушению соперника витамина Е.

Очевидно, такого рода факты следует учитывать тем, кто пропагандирует и увлекается «сыроедением»!.. Антивитамины обнаружены сравнительно недавно, и неизвестно, все ли «антисоединения» уже найдены в сырых натуральных продуктах.

В частности, в экспериментах на животных установлено, что в составе соевых бобов имеется белковое соединение, которое способствует развитию рахита даже при нормальном поступлении с пищей витамина D, кальция и фосфора. Оказалось, что нагревание соевой муки разрушает антивитамины, при этом, естественно, его отрицательных свойств можно не опасаться.

Отрицательных ли? А нельзя эти свойства использовать в медицинской практике при лечении D-гипервитаминозных состояний? Это еще предстоит доказать.

А вот антивитамин К уже вошел в арсенал лекарственных средств. Интересна история его создания. Специалисты выясняли причину так называемой болезни сладкого клевера у сельскохозяйственных животных, один из симптомов которой - плохая свертываемость крови. Оказалось, что в клеверном сене содержится антивитамин К - дикумарин.

Витамин К способствует свертыванию крови, а дикумарин нарушает этот процесс. Так возникла идея, воплощенная затем в жизнь, использовать дикумарин для лечения различных заболеваний, обусловленных повышенной свертываемостью крови.

Незначительно изменив структуру витамина В 3 (пантотеновой кислоты), химики получили вещество с противоположными витамину свойствами. В процессе длительного экспериментального изучения нового соединения была выявлена не присущая пантотеновой кислоте психотропная активность. Оказалось, что антивитамин В 3 - пантогам обладает умеренным успокаивающим действием и способен оказывать противосудорожный эффект.

Соединив две молекулы витамина В 6 , специалисты синтезировали вещество, которое может рассматриваться как его антагонист. Затем выяснилось, что вновь полученное соединение (его называют пиридитол, энцефабол и т.д.) благоприятно влияет на некоторые ключевые обменные процессы в тканях головного мозга.

Под воздействием пиридитола улучшается утилизация глюкозы клетками головного мозга, нормализуется транспорт фосфатов через гематоэнцефалический барьер, повышается их содержание в головном мозгу. В результате и этот антивитамин нашел применение в клинической практике.

В ходе изучения антивитаминов и использования их в качестве лекарственных средств возник вопрос: а каков же механизм действия такого рода химических соединений? О витаминах известно, что они в организме человека превращаются в более активные в биологическом отношении коферменты, которые, в свою очередь, вступая во взаимодействие со специфическими белками, образуют ферменты - катализаторы разнообразных биохимических процессов. А антивитамины?

Имея близкое с витаминами структурное сходство, эти соперники витаминов, возможно, трансформируются в организме человека по тем же законам, что и их «родоначальники», превращаясь в ложный кофермент. В дальнейшем он, вступая во взаимодействие со специфическим белком, подменяет собой истинный кофермент соответствующего витамина. Заняв его место, антивитамин в то же время не выполняет биологической роли витамина.

Фермент «обманут». Он не замечает химического отличия между истинным коферментом и его соперником и по-прежнему стремится выполнить свою функцию катализатора. Но это ему уже не удается. Соответствующие процессы обмена веществ остановлены - они не могут протекать без участия катализатора. Не исключено при этом, что возникший псевдофермент начинает играть присущую уже только ему биохимическую роль, и это обусловливает спектр фармакотерапевтического действия антивитамина.

Возможно, именно подобные изменения структуры лежат в основе терапевтического действия «универсальных» антивитаминов, какими являются эффективные противотуберкулезные средства изониазид и фтивазид. Они нарушают в микобактериях туберкулеза обменные процессы не только витамина В 6 , но и тиамина, витаминов В 3 , РР и В 2 , благодаря чему задерживают рост и размножение возбудителей заболевания. Аналогичный механизм, очевидно, определяет и действие некоторых противомалярийных препаратов - акрихина и хинина, являющихся антагонистами рибофлавина (витамина В 2).

Означают ли приведенные примеры, что каждый из синтетических антивитаминов может найти применение в медицинской практике? Нет.

К настоящему времени химики различных стран синтезировали сотни, а может быть, тысячи разнообразных производных витаминов, среди которых многие имеют антивитаминные свойства. Но далеко не все из них оказались в арсенале лекарственных средств: мала фармакобиологическая активность. Однако целесообразность дальнейших исследований свойств витаминов и их производных не вызывает сомнений. И, как знать, может быть, именно среди антагонистов витаминов будут обнаружены новые средства борьбы с заболеваниями.

В заключение одна необходимая оговорка. В продуктах питания соотношение витаминов и антивитаминов сохраняется, как правило, в пользу первых. Прием антивитаминов как лекарственных средств это соотношение может нарушить. Поэтому при необходимости врачи наряду с антивитаминами назначают дополнительно и соответствующий витамин или коферментные препараты.

К слову, это еще один довод против самолечения: ведь закономерности действия антивитаминов, их противоборства витаминам известны только врачу.

Один из ПРИРОДНЫХ антивитаминов - аскорбатоксидаза (АО) при длительном хранении огурца разрушает в нем витамин С.
Через 6 часов хранения сырых измельченных овощей и фруктов в них разрушается более половины витамина С: потери его тем значительнее. чем больше степень измельчения.

Некоторые СИНТЕТИЧЕСКИЕ антивитамины обогатили арсенал лекарственных средств.

Изучая химические производ ные витаминов, биохимики, фармакологи и клиницисты обнаружили соединения как с витаминными, так и с антивитаминными свойствами. Неко торые из антивитаминов уже вошли в клиническую практику как лекарства; другие находятся в стадии изучения.

Рисунок С. ЛУХИНА

В. Б. СПИРИЧЕВ, профессор,
Т. В. РЫМАРЕНКО, кандидат медицинских наук

Витамин С, или аскорбиновая кислота, - безусловно, самый популярный из витаминов. Еще в то время, когда о нем ничего не было известно, врачи замечали, что у больных цингой (авитаминоз С) открываются старые раны, а новые плохо рубцуются.

Теперь мы знаем, что объясняется это нарушением образования важного для заживления ран белка - коллагена. Этот белок связывает отдельные клетки в единое целое, а аскорбиновая кислота необходима для его синтеза в организме.

Столь же она необходима для продукции другого соединительнотканного белка - эластина, создающего основу стенок кровеносных сосудов. Вот почему при недостатке витамина С стенки сосудов, особенно мелких, становятся хрупкими. Их ломкость приводит к кровоточивости, на коже появляются многочисленные кровоизлияния, «привычные» синяки.

Незаменимые факторы пищи и работоспособность

Примечание: Ряд авторов с успехом использовали большие дозы витамина C (0,3-1 г) при утомлении, интенсивных тренировках (Яковлев, 1962). Мегадозы витамина C (2-3 г в сутки) рекомендовал нобелевский лауреат Л. Полинг (1974) с целью увеличения резистентности к инфекции и снижения проницаемости капилляров. Однако при этом выявлено токсическое действие на поджелудочную железу, почки и др.

Loading...Loading...