Газообмен в легких и тканях происходит благодаря. Что такое газообмен в крови, в легких и тканях? Особенности газообмена. Строение легочной альвеолы

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Акт дыхания состоит из ритмично повторяющихся вдоха и выдоха.

Вдох осуществляется следующим образом. Под влиянием нервных импульсов сокращаются мышцы, участвующие в акте вдоха: диафрагма, наружные межрёберные мышцы и др. Диафрагма при своём сокращении опускается (уплощается), что ведёт к увеличению вертикального размера грудной полости. При сокращении наружных межрёберных и некоторых других мышц поднимаются рёбра, при этом увеличиваются переднезадний и поперечный размеры грудной полости. Таким образом, в результате сокращения мышц увеличивается объём грудной клетки. Вследствие того, что в полости плевры воздух отсутствует и давление в ней отрицательное, одновременно с увеличением объёма грудной клетки расширяются и лёгкие. При расширении лёгких давление воздуха внутри них понижается (оно становится ниже атмосферного) и атмосферный воздух устремляется по дыхательным путям в лёгкие. Следовательно, при вдохе последовательно происходит: сокращение мышц - увеличение объёма грудной клетки - расширение лёгких и уменьшение давления внутри лёгких - поступление воздуха по воздухоносным путям в лёгкие.

Выдох происходит вслед за вдохом. Мышцы, участвующие в акте вдоха, расслабляются (диафрагма при этом поднимается), рёбра в результате сокращения внутренних межрёберных и других мышц и вследствие своей тяжести опускаются. Объём грудной клетки уменьшается, лёгкие сжимаются, давление в них повышается (становится выше атмосферного), и воздух по воздухоносным путям устремляется наружу.

Процентный состав выдыхаемого воздуха иной. Кислорода в нем остается всего около 16%, а количество углекислого газа возрастает до 4%. Увеличивается и содержание водяных паров. Только азот и инертные газы в выдыхаемом воздухе остаются в том же количестве, что и во вдыхаемом.

Обмен газов в легких. Насыщение крови кислородом и отдача ею углекислого газа происходят в легочных пузырьках. По их капиллярам течет венозная кровь. Она отделена от воздуха, наполняющего легкие, тончайшими, проницаемыми для газов стенками капилляров и легочных пузырьков.

Концентрация углекислого газа в венозной крови гораздо выше, чем в воздухе, поступающем в пузырьки. Вследствие диффузии этот газ проникает из крови в легочный воздух. Таким образом кровь все время отдает углекислый газ в воздух, постоянно сменяющийся в легких.

Кислород проникает в кровь тоже путем диффузии. Во вдыхаемом воздухе его концентрация гораздо выше, чем в венозной крови, движущейся по капиллярам легких. Поэтому кислород все время проникает в нее. Но тут же он вступает в химическое соединение с гемоглобином, вследствие чего содержание свободного кислорода в крови понижается. Тогда в кровь сразу проникает новая порция кислорода, которая также связывается гемоглобином. Этот процесс продолжается в течение всего времени, пока кровь медленно течет по капиллярам легких. Поглотив много кислорода, она становится артериальной. Пройдя через сердце, такая кровь попадает в большой круг кровообращения.

Обмен газов в тканях. Продвигаясь по капиллярам большого круга кровообращения, кровь отдает клеткам тканей кислород и насыщается углекислым газом.

Попадающий в клетки свободный кислород используется на окисление органических соединений. Поэтому в клетках его гораздо меньше, чем в омывающей их артериальной крови. Непрочная связь кислорода с гемоглобином разрывается. Кислород диффундирует в клетки и сразу же используется на окислительные процессы, происходящие в них. Медленно протекая по капиллярам, пронизывающим ткани, кровь вследствие диффузии отдает клеткам кислород. Так происходит превращение артериальной крови в венозную (рис. 84).

При окислении органических соединений в клетках образуется углекислый газ. Он диффундирует в кровь. Небольшое количество углекислого газа вступает в непрочное соединение с гемоглобином. Но большая его часть соединяется с некоторыми солями, растворенными в крови. Углекислый газ уносится кровью в правую часть сердца, а оттуда - к легким.

Производя попеременно вдох и выдох, человек вентилирует легкие, поддерживая в легочных пузырьках (альвеолах) относительно постоянный газовый состав. Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух, в котором кислорода 16,3%, а углекислого газа 4% (табл. 13).

Состав альвеолярного воздуха значительно отличается от состава атмосферного, вдыхаемого воздуха. В нем меньше кислорода (14,2%).

И , входящие в состав воздуха, в дыхании участия не принимают, и их содержание во вдыхаемом, выдыхаемом и альвеолярном воздухе практически одинаково.

Таблица 13

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Почему в выдыхаемом воздухе кислорода содержится больше, чем в альвеолярном? Объясняется это тем, что при выдохе к альвеолярному воздуху примешивается воздух, который находится в органах дыхания, в воздухоносных путях.

Парциальное давление и напряжение газов

В легких из альвеоляр ного воздуха переходит в , а углекислый газ из крови поступает в легкие. Переход газов из воздуха вжидкость и из жидкости ввоздух происходит за счет разницы парциального давления этих газов в воздухе и жидкости.

Парциальным давлением называют часть общего давления, которая приходится на долю данного газа в газовой смеси. Чем выше процентное содержание газа в смеси, тем соответственно выше его парциальное давление. Атмосферный воздух, как известно, - смесь газов. В этой смеси газов кислорода содержится 20,94%, углекислого газа - 0,03% и азота - 79,03%. Давление атмосферного воздуха 760 мм рт. ст. Парциальное давление кислорода в атмосферном воздухе составляет 20,94% от 760 мм, т. е. 159 мм, азота - 79,03% от 760 мм, т. е. около 600 мм, углекислого газа в атмосферном воздухе мало - 0,03% от 760 мм-0,2 мм рт. ст.

Для газов, растворенных в жидкости, употребляют термин «напряжение», соответствующий термину «парциальное давление», применяемому для свободных газов. Напряжение газов выражается в тех же единицах, что и давление (в мм рт. ст.). Если парциальное давление газа в окружающей среде выше, чем напряжение этого газа в жидкости, газ растворяется в жидкости.

Парциальное давление кислорода в альвеолярном воздухе 100-105 мм рт. ст., а в притекающей к легким крови напряжение кислорода в среднем 40 мм рт. ст., поэтому в легких из альвеолярного воздуха переходит в .

Движение газов происходит по законам диффузии, согласно которым газ распространяется из среды с высоким парциальным давлением в среду с меньшим давлением.

Газообмен в легких

Переход в легких кислорода из альвеолярного воздуха в и поступление углекислого газа из крови в легкие подчиняются описанным выше закономерностям.

Благодаря работам И. М. Сеченова стало возможно изучение газового состава крови и условий газообмена в легких и тканях.

Газообмен в легких совершается между альвеолярным воздухом и кровью путем диффузии. Альвеолы легких оплетены густой сетью капилляров. Стенки альвеол и стенки капилляров очень тонкие, что способствует проникновению газов из легких в кровь и наоборот. Газообмен зависит от поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов. Такие условия есть в легких. При глубоком вдохе альвеолы растягиваются и их поверхность достигает 100-150 м 2 . Так же велика и поверхность капилляров в легких. Есть и достаточная разница парциального давления газов альвеолярного воздуха и напряжения этих газов в венозной крови (табл. 14).

Таблица 14

Парциальное давление кислорода и углекислого газа во вдыхаемом и альвеолярном воздухе и их напряжение в крови (в мм рт. ст.)

Из таблицы 14 следует, что разность между напряжением газов в венозной крови и их парциальным давлением в альвеолярном воздухе составляет для кислорода 110-40 = 70 мм рт. ст., а для углекислого газа 47-40=7 мм рт. ст.

Опытным путем удалось установить, что при разнице напряжения кислорода в 1 мм рт. ст. у взрослого человека, находящегося в покое, в кровь может поступить 25-60 см 3 кислорода в минуту. Следовательно, разность давлений кислорода в 70 мм рт. ст. достаточна для обеспечения организма кислородом при разных условиях его деятельности: при физической работе, спортивных упражнениях и др.

Скорость диффузии углекислого газа из крови в 25 раз больше, чем кислорода, поэтому за счет разности в 7 мм рт. ст. углекислый газ успевает выделиться из крови.

Перенос газов кровью

Кровь переносит кислород и углекислый газ. В крови, как и во всякой жидкости, газы могут находиться в двух состояниях: в физически растворенном и в химически связанном. И кислород, и углекислый газ в очень небольшом количестве растворяются в плазме крови. Большая часть кислорода и углекислого газа переносится в химически связанном виде.

Основной переносчик кислорода - крови. Каждый грамм гемоглобина связывает 1,34 см 3 кислорода. обладает способностью вступать в соединение с кислородом, образуя оксигемоглобин. Чем выше парциальное давление кислорода, тем больше образуется оксигемоглобина. В альвеолярном воздухе парциальное давление кислорода 100-110 мм рт. ст. При этих условиях 97% гемоглобина крови связывается с кислородом. В виде оксигемоглобина кислород кровью приносится к тканям. Здесь парциальное давление кислорода низкое и оксигемоглобин - соединение непрочное - высвобождает кислород, который используется тканями. На связывание кислорода гемоглобином оказывает влияние и напряжение углекислого газа. Углекислый газ уменьшает способность гемоглобина связывать кислород и способствует диссоциации оксигемоглобина. Повышение температуры также уменьшает возможности связывания гемоглобином кислорода. Известно, что температура в тканях выше, чем в легких. Все эти условия помогают диссоциации оксигемоглобина, в результате чего кровь отдает высвободившийся из химического соединения кислород в тканевую жидкость.

Свойство гемоглобина связывать кислород имеет жизненное значение для организма. Иногда люди гибнут от недостатка кислорода в организме, окруженные самым чистым воздухом. Это может случиться с человеком, оказавшимся в условиях пониженного давления (на больших высотах), где в разреженной атмосфере очень низкое парциальное давление кислорода. 15 апреля 1875 г. воздушный шар «Зенит», на борту которого находились три воздухоплавателя, достиг высоты 8000 м. Когда шар приземлился, в живых остался только один человек. Причиной гибели людей было резкое снижение величины парциального давления кислорода на большой высоте. На больших высотах (7-8 км) артериальная кровь по своему газовому составу приближается к венозной; все ткани тела начинают испытывать острый недостаток кислорода, что и приводит к тяжелым последствиям. Подъем на высоту более 5000 м, как правило, требует пользования специальными кислородными приборами.

При специальной тренировке организм может приспосабливаться к пониженному содержанию кислорода в атмосферном воздухе. У тренированного человека углубляется

Тема: Дыхательная система

Урок: Строение легких. Газообмен в легких и тканях

Легкие человека - это парный орган конусовидной формы (см. Рис. 1). Снаружи они покрыты легочной плеврой, грудная полость покрыта пристеночной плеврой. Между 2 листками плевры находится плевральная жидкость, которая снижает силу трения при вдохе и выдохе.

Рис. 1.

За 1 минуту легкие прокачивают 100 литров воздуха.

Бронхи ветвятся, образуя бронхиолы, на концах которых находятся тонкостенные легочные пузырьки - альвеолы (см. Рис. 2).

Рис. 2.

Стенки альвеол и капилляров однослойные, что облегчает газообмен. Они образованы эпителием. Они выделяют сурфактант, который препятствует слипанию альвеол, и вещества, убивающие микроорганизмы. Отработанные БАВ перевариваются фагоцитами или выделяются в виде мокроты.

Рис. 3.

Кислород из воздуха альвеол переходит в кровь, а углекислый газ из крови переходит в альвеолярный воздух (см. Рис. 3).

Это происходит благодаря парциальному давлению, так как каждый газ растворяется в жидкости именно благодаря своему парциальному давлению.

Если парциальное давление газа в окружающей среде выше, чем его давление в жидкости, то газ будет растворяться в жидкости, пока не образуется равновесие.

Парциальное давление кислорода составляет 159 мм. рт. ст. в атмосфере, а в венозной крови - 44 мм. рт. ст. Это позволяет кислороду из атмосферы переходить в кровь.

Кровь попадает в легкие по легочным артериям и растекается по капиллярам альвеол тонким слоем, что способствует газообмену (см. Рис. 4). Кислород, переходя из альвеолярного воздуха в кровь, вступает во взаимодействие с гемоглобином с образованием оксигемоглобина. В этом виде кислород разносится кровью от легких к тканям. Там парциальное давление низкое, и оксигемоглобин диссоциирует, освобождая кислород.

Рис. 4.

Механизмы выделения углекислого газа сходны с механизмами поступления кислорода. Углекислый газ образует нестойкое соединение с гемоглобином - карбогемоглобин, диссоциация которого происходит в легких.

Рис. 5.

Угарный газ образует стойкое соединение с гемоглобином, диссоциация которого не происходит. И такой гемоглобин уже не может выполнять свою функцию - разносить кислород по организму. В результате этого человек может погибнуть от удушья даже при нормальной работе легких. Поэтому опасно находиться в закрытом, непроветриваемом помещении, в котором работает автомобиль или топится печь.

Дополнительная информация

Очень много людей дышит часто (более 16 раз в минуту), при этом совершая неглубокие дыхательные движения. В результате такого дыхания воздух попадает только в верхние части легких, а в нижних частях происходит застой воздуха. В такой среде происходит интенсивное размножение бактерий и вирусов.

Для самостоятельной проверки правильности дыхания понадобится секундомер. Необходимо будет определить, сколько дыхательных движений человек делает в минуту. При этом необходимо следить за процессом вдоха и вдоха.

Если при дыхании напрягаются мышцы брюшного пресса, это брюшной тип дыхания. Если изменяется объем грудной клетки, это грудной тип дыхания. Если используются оба эти механизма, то у человека смешанный тип дыхания.

Если человек совершает до 14 дыхательных движений в минуту - это отличный результат. Если человек совершает 15 - 18 движений - это хороший результат. А если более 18 движений - это плохой результат.

Список литературы

1. Колесов Д.В., Маш Р.Д., Беляев И.Н. Биология. 8. - М.: Дрофа.

2. Пасечник В.В., Каменский А.А., Швецов Г.Г. / Под ред. Пасечника В.В. Биология. 8. - М.: Дрофа.

3. Драгомилов А.Г., Маш Р.Д. Биология. 8. - М.: Вентана-Граф.

Домашнее задание

1. Колесов Д.В., Маш Р.Д., Беляев И.Н. Биология. 8. - М.: Дрофа. - С. 141, задания и вопрос 1, 3, 4.

2. Какую роль в газообмене имеет парциальное давление?

3. Какое строение имеют легкие?

4. Подготовьте небольшое сообщение, в котором объясните, почему в кровь при вдохе не попадают азот, углекислый газ и другие составляющие воздуха.

Кровь, которая течет к легким от сердца (венозная), содержит мало кислорода и много углекислого газа; воздух в альвеолах, наоборот, содержит много кислорода и меньше углекислого газа. Вследствие этого через стенки альвеол и капилляров происходит двусторонняя диффузия -. кислород переходит в кровь, а углекислый газ поступает из крови в альвеолы. В крови кислород проникает в эритроциты и соединяется с гемоглобином. Кровь, насыщенная кислородом, становится артериальной и по легочным венам поступает в левое предсердие.

У человека обмен газами завершается в несколько секунд, пока кровь проходит через альвеолы легких. Это возможно благодаря огромной поверхности легких, сообщающейся с внешней средой. Общая поверхность альвеол составляет свыше 90 м 3 .

Обмен газов в тканях осуществляется в капиллярах. Через их тонкие стенки кислород поступает из крови в тканевую жидкость и затем в клетки, а углекислота из тканей переходит в кровь. Концентрация кислорода в крови больше, чем в клетках, поэтому он легко диффундирует в них.

Концентрация углекислого газа в тканях, где он собирается, выше, чем в крови. Поэтому он переходит в кровь, где связывается химическими соединениями плазмы и отчасти с гемоглобином, транспортируется кровью в легкие и выделяется в атмосферу.

Для обеспечения клеток, тканей и органов кислородом в организме человека существует дыхательная система. Она состоит из следующих органов: носовой полости, носоглотки, гортани, трахеи, бронхов и легких. В этой статье мы изучим их строение. А также рассмотрим газообмен в тканях и легких. Определим особенности внешнего дыхания, происходящего между организмом и атмосферой, и внутреннего, протекающего непосредственно на клеточном уровне.

Для чего мы дышим?

Большинство людей, не задумываясь, ответят: чтобы получить кислород. Но они не знают, зачем он нам нужен. Многие отвечают просто: кислород необходим, чтобы дышать. Получается какой-то замкнутый круг. Разорвать его нам поможет биохимия, изучающая клеточный обмен веществ.

Светлые умы человечества, изучающие эту науку, уже давно пришли к выводу, что кислород, поступающий в ткани и органы, окисляет углеводы, жиры и белки. При этом образуются энергетически бедные соединения: вода, аммиак. Но главным является то, что в результате этих реакций синтезируется АТФ - универсальное энергетическое вещество, используемое клеткой для своей жизнедеятельности. Можно сказать, что газообмен в тканях и легких как раз и будет поставлять организму и его структурам необходимый для окисления кислород.

Механизм газообмена

Он подразумевает наличие хотя бы двух веществ, чья циркуляция в организме обеспечивает метаболические процессы. Кроме вышеназванного кислорода, газообмен в легких, крови и тканях происходит с еще одним соединением - углекислым газом. Он образуется в реакциях диссимиляции. Являясь токсичным веществом обмена, он должен быть выведен из цитоплазмы клеток. Рассмотрим этот процесс подробнее.

Диоксид углерода путем диффузии проникает через клеточную мембрану в межтканевую жидкость. Из неё он поступает в капилляры крови - венулы. Далее эти сосуды сливаются, образуя нижнюю и верхнюю полые вены. Они собирают кровь, насыщенную СО 2. И направляют её в правое предсердие. При сокращении его стенок порция венозной крови поступает в правый желудочек. Отсюда начинается легочный (малый) круг кровообращения. Его задачей является насыщение крови кислородом. Венозная в легких становится артериальной. А СО 2 , в свою очередь, выходит из крови и удаляется наружу через Чтобы понять, как это происходит, нужно прежде всего изучить строение легких. Газообмен в легких и тканях осуществляется в особых структурах - альвеолах и их капиллярах.

Строение легких

Это парные органы, расположенные в грудной полости. Левое легкое состоит из двух долей. Правое больше по размерам. Оно имеет три доли. Через ворота легких в них входят два бронха, которые, разветвляясь, образуют так называемое дерево. По его веткам воздух движется во время вдоха и выдоха. На мелких, респираторных бронхиолах располагаются пузырьки - альвеолы. Они собраны в ацинусы. Те, в свою очередь, формируют легочную паренхиму. Важно то, что каждый дыхательный пузырек густо оплетен капиллярной сетью малого и большого кругов кровообращения. Приносящие ветви легочных артерий, поставляющие венозную кровь из правого желудочка, транспортируют в просвет альвеолы углекислый газ. А выносящие легочные венулы забирают из альвеолярного воздуха кислород.

Поступает по легочным венам в левое предсердие, а из него - в аорту. Её ветвления в виде артерий обеспечивают клетки организма необходимым для внутреннего дыхания кислородом. Именно в альвеолах кровь из венозной становится артериальной. Таким образом, газообмен в тканях и легких непосредственно осуществляется циркуляцией крови по малому и большому кругам кровообращения. Происходит это благодаря непрерывным сокращениям мышечных стенок сердечных камер.

Внешнее дыхание

Оно еще называется вентиляцией легких. Представляет собой обмен воздуха между внешней средой и альвеолами. Физиологически правильный вдох через нос обеспечивает организм порцией воздуха такого состава: около 21% О 2 , 0,03% СО 2 и 79% азота. По он поступает в альвеолы. Они имеют собственную порцию воздуха. Её состав следующий: 14,2% О 2 , 5,2% СО 2 , 80% N 2 . Вдох, как и выдох, регулируется двумя путями: нервным и гуморальным (концентрацией углекислого газа). Благодаря возбуждению дыхательного центра продолговатого мозга, нервные импульсы передаются к дыхательным межреберным мышцам и диафрагме. Объем грудной клетки увеличивается. Легкие, пассивно движущиеся вслед за сокращениями грудной полости, расширяются. Давление воздуха в них становится ниже атмосферного. Поэтому порция воздуха из верхних дыхательных путей поступает в альвеолы.

Выдох осуществляется вслед за вдохом. Он сопровождается расслаблением межреберных мышц и поднятием свода диафрагмы. Это приводит к уменьшению объема легких. Давление воздуха в них становится выше атмосферного. И воздух с избытком углекислого газа поднимается в бронхиолы. Далее, по верхним дыхательным путям, он следует в носовую полость. Состав выдыхаемого воздуха следующий: 16,3% О 2 , 4% СО 2 , 79 N 2 . На этом этапе происходит внешний газообмен. Легочный газообмен, осуществляемый альвеолами, обеспечивает клетки кислородом, необходимым для внутреннего дыхания.

Клеточное дыхание

Входит в систему катаболических реакций обмена веществ и энергии. Эти процессы изучает как биохимия, так и анатомия, и Газообмен в легких и тканях взаимосвязан и друг без друга невозможен. Так, поставляет в межтканевую жидкость кислород и удаляет из нее углекислый газ. А внутреннее, осуществляемое непосредственно в клетке её органеллами - митохондриями, которые обеспечивают окислительное фосфолирование и синтез молекул АТФ, использует кислород для этих процессов.

Цикл Кребса

Цикл трикарбоновых кислот является ведущим в Он объединяет и согласует реакции бескислородного этапа и процессов с участием трансмембранных белков. Он также выполняет роль поставщика строительного клеточного материала (аминокислот, простых сахаров, высших карбоновых кислот), образующегося в его промежуточных реакциях и используемого клеткой для роста и деления. Как видим, в данной статье был изучен газообмен в тканях и легких, а также определена его биологическая роль в жизнедеятельности организма человека.

Loading...Loading...