Kada nema korijena u kvadratnoj jednadžbi. Metode rješavanja kvadratnih jednačina

Kvadratna jednadžba - lako riješiti! *U daljem tekstu “KU”. Prijatelji, čini se da u matematici ne može biti ništa jednostavnije od rješavanja takve jednačine. Ali nešto mi je govorilo da mnogi ljudi imaju problema s njim. Odlučio sam da vidim koliko utisaka na zahtjev Yandex daje mjesečno. Evo šta se desilo, pogledajte:


Šta to znači? To znači da oko 70.000 ljudi mjesečno traži ove informacije, kakve to veze ima sa letom, i šta će se dešavati tokom školske godine - biće duplo više zahteva. To nije iznenađujuće, jer oni momci i djevojke koji su davno završili školu i spremaju se za Jedinstveni državni ispit traže ove informacije, a i školarci se trude da osvježe svoje pamćenje.

Uprkos činjenici da postoji mnogo sajtova koji vam govore kako da rešite ovu jednačinu, odlučio sam da dam svoj doprinos i objavim materijal. Prvo, želim da posjetitelji dolaze na moju stranicu na osnovu ovog zahtjeva; drugo, u drugim člancima, kada se pojavi tema “KU”, dat ću link do ovog članka; treće, reći ću vam nešto više o njegovom rješenju nego što se obično navodi na drugim stranicama. Hajde da počnemo! Sadržaj članka:

Kvadratna jednačina je jednačina oblika:

gdje su koeficijenti a,bi c su proizvoljni brojevi, sa a≠0.

U školskom kursu materijal se daje sljedeći obrazac– jednačine su podijeljene u tri klase:

1. Imaju dva korijena.

2. *Imajte samo jedan korijen.

3. Nemaju korijene. Ovdje je posebno vrijedno napomenuti da oni nemaju prave korijene

Kako se izračunavaju korijeni? Samo!

Izračunavamo diskriminanta. Ispod ove "strašne" riječi krije se vrlo jednostavna formula:

Formule korijena su sljedeće:

*Ove formule morate znati napamet.

Možete odmah zapisati i riješiti:

primjer:


1. Ako je D > 0, onda jednačina ima dva korijena.

2. Ako je D = 0, onda jednačina ima jedan korijen.

3. Ako D< 0, то уравнение не имеет действительных корней.

Pogledajmo jednačinu:


S tim u vezi, kada je diskriminanta jednaka nuli, školski kurs kaže da se dobija jedan korijen, ovdje je jednak devet. Sve je tačno, tako je, ali...

Ova ideja je donekle netačna. U stvari, postoje dva korijena. Da, da, nemojte se iznenaditi, dobijate dva jednaka korijena, a da budemo matematički precizni, onda bi odgovor trebao pisati dva korijena:

x 1 = 3 x 2 = 3

Ali ovo je tako - mala digresija. U školi možete to zapisati i reći da postoji jedan korijen.

Sada sljedeći primjer:


Kao što znamo, korijen negativnog broja se ne može uzeti, pa su rješenja u u ovom slučaju br.

To je cijeli proces odlučivanja.

Kvadratna funkcija.

Ovo pokazuje kako rješenje izgleda geometrijski. Ovo je izuzetno važno razumjeti (u budućnosti ćemo u jednom od članaka detaljno analizirati rješenje kvadratne nejednakosti).

Ovo je funkcija oblika:

gdje su x i y varijable

a, b, c – dati brojevi, sa a ≠ 0

Grafikon je parabola:

Odnosno, ispada da rješavanjem kvadratne jednadžbe sa “y” jednakom nuli, nalazimo točke presjeka parabole sa x osom. Mogu postojati dvije od ovih tačaka (diskriminanta je pozitivna), jedna (diskriminanta je nula) i nijedna (diskriminanta je negativna). Detalji o kvadratna funkcija Možete pogledatičlanak Inna Feldman.

Pogledajmo primjere:

Primjer 1: Riješi 2x 2 +8 x–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Odgovor: x 1 = 8 x 2 = –12

*Moguće je odmah podijeliti lijevu i desnu stranu jednačine sa 2, odnosno pojednostaviti je. Proračun će biti lakši.

Primjer 2: Odluči se x 2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Otkrili smo da je x 1 = 11 i x 2 = 11

U odgovoru je dozvoljeno napisati x = 11.

Odgovor: x = 11

Primjer 3: Odluči se x 2 –8x+72 = 0

a=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Diskriminant je negativan, nema rješenja u realnim brojevima.

Odgovor: nema rješenja

Diskriminant je negativan. Postoji rješenje!

Ovdje ćemo govoriti o rješavanju jednadžbe u slučaju kada se dobije negativan diskriminant. Znate li išta o kompleksnim brojevima? Ovdje neću ulaziti u detalje zašto i gdje su nastali i koja je njihova specifična uloga i neophodnost u matematici; ovo je tema za veliki poseban članak.

Koncept kompleksnog broja.

Malo teorije.

Kompleksni broj z je broj oblika

z = a + bi

gdje su a i b realni brojevi, i je takozvana imaginarna jedinica.

a+bi – ovo je JEDAN BROJ, a ne dodatak.

Imaginarna jedinica jednaka je korijenu minus jedan:

Sada razmotrite jednačinu:


Dobijamo dva konjugirana korijena.

Nepotpuna kvadratna jednadžba.

Razmotrimo posebne slučajeve, to je kada je koeficijent “b” ili “c” jednak nuli (ili su oba jednaka nuli). Oni se mogu lako riješiti bez ikakvih diskriminanata.

Slučaj 1. Koeficijent b = 0.

Jednačina postaje:

Pretvorimo:

primjer:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Slučaj 2. Koeficijent c = 0.

Jednačina postaje:

Transformirajmo i faktorizirajmo:

*Proizvod je jednak nuli kada je barem jedan od faktora jednak nuli.

primjer:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 ili x–5 =0

x 1 = 0 x 2 = 5

Slučaj 3. Koeficijenti b = 0 i c = 0.

Ovdje je jasno da će rješenje jednadžbe uvijek biti x = 0.

Korisna svojstva i obrasci koeficijenata.

Postoje svojstva koja vam omogućavaju rješavanje jednadžbi s velikim koeficijentima.

Ax 2 + bx+ c=0 jednakost važi

a + b+ c = 0, To

- ako za koeficijente jednačine Ax 2 + bx+ c=0 jednakost važi

a+ c =b, To

Ova svojstva pomažu u odlučivanju određeni tip jednačine

Primjer 1: 5001 x 2 –4995 x – 6=0

Zbir kvota je 5001+( 4995)+( 6) = 0, što znači

Primjer 2: 2501 x 2 +2507 x+6=0

Jednakost važi a+ c =b, Sredstva

Pravilnosti koeficijenata.

1. Ako je u jednačini ax 2 + bx + c = 0 koeficijent “b” jednak (a 2 +1), a koeficijent “c” brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

Primjer. Razmotrimo jednačinu 6x 2 + 37x + 6 = 0.

x 1 = –6 x 2 = –1/6.

2. Ako je u jednačini ax 2 – bx + c = 0 koeficijent “b” jednak (a 2 +1), a koeficijent “c” brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

Primjer. Razmotrimo jednačinu 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Ako u jednadžbi ax 2 + bx – c = 0 koeficijent “b” je jednako (a 2 – 1), i koeficijent “c” je numerički jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

Primjer. Razmotrimo jednačinu 17x 2 +288x – 17 = 0.

x 1 = – 17 x 2 = 1/17.

4. Ako je u jednačini ax 2 – bx – c = 0 koeficijent “b” jednak (a 2 – 1), a koeficijent c brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

Primjer. Razmotrimo jednačinu 10x 2 – 99x –10 = 0.

x 1 = 10 x 2 = – 1/10

Vietin teorem.

Vietina teorema je dobila ime po poznatom francuskom matematičaru Francois Vieti. Koristeći Vietin teorem, možemo izraziti zbir i proizvod korijena proizvoljnog KU u terminima njegovih koeficijenata.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Ukupno, broj 14 daje samo 5 i 9. Ovo su korijeni. Uz određenu vještinu, koristeći prikazanu teoremu, možete odmah usmeno riješiti mnoge kvadratne jednadžbe.

Osim toga, Vietin teorem. Pogodno je po tome što se nakon rješavanja kvadratne jednadžbe na uobičajen način (preko diskriminanta) mogu provjeriti rezultirajući korijeni. Preporučujem da to radite uvijek.

NAČIN TRANSPORTA

Ovom metodom koeficijent “a” se množi slobodnim pojmom, kao da mu je “bačen”, zbog čega se naziva metodom "transfera". Ova metoda se koristi kada se korijeni jednadžbe mogu lako pronaći pomoću Vietine teoreme i, što je najvažnije, kada je diskriminanta tačan kvadrat.

Ako A± b+c≠ 0, tada se koristi tehnika prijenosa, na primjer:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Koristeći Vietinu teoremu u jednačini (2), lako je odrediti da je x 1 = 10 x 2 = 1

Rezultirajući korijeni jednadžbe moraju se podijeliti sa 2 (budući da su dva "izbačena" iz x 2), dobijamo

x 1 = 5 x 2 = 0,5.

Šta je obrazloženje? Pogledaj šta se dešava.

Diskriminante jednačina (1) i (2) su jednake:

Ako pogledate korijene jednadžbi, dobit ćete samo različite nazivnike, a rezultat ovisi upravo o koeficijentu x 2:


Drugi (modificirani) ima korijene koji su 2 puta veći.

Stoga, rezultat dijelimo sa 2.

*Ako prebacimo trojku, rezultat ćemo podijeliti sa 3, itd.

Odgovor: x 1 = 5 x 2 = 0,5

Sq. ur-ie i Jedinstveni državni ispit.

Reći ću vam ukratko o njegovoj važnosti - MORATE MOĆI DA ODLUČITE brzo i bez razmišljanja, morate znati formule korijena i diskriminanata napamet. Mnogi problemi uključeni u zadatke Jedinstvenog državnog ispita svode se na rješavanje kvadratne jednačine (uključujući i geometrijske).

Nešto vredno pažnje!

1. Oblik pisanja jednačine može biti „implicitan“. Na primjer, moguć je sljedeći unos:

15+ 9x 2 - 45x = 0 ili 15x+42+9x 2 - 45x=0 ili 15 -5x+10x 2 = 0.

Morate ga dovesti u standardni oblik (da se ne zbunite prilikom rješavanja).

2. Zapamtite da je x nepoznata veličina i može se označiti bilo kojim drugim slovom - t, q, p, h i drugim.

Bibliografski opis: Gasanov A. R., Kuramshin A. A., Elkov A. A., Shilnenkov N. V., Ulanov D. D., Shmeleva O. V. Metode rješenja. kvadratne jednačine// Mladi naučnik. 2016. br. 6.1. str. 17-20..03.2019.).





Naš projekt je o načinima rješavanja kvadratnih jednadžbi. Cilj projekta: naučiti rješavati kvadratne jednačine na načine koji nisu uključeni u školski program. Zadatak: pronaći sve mogući načini rješavanje kvadratnih jednadžbi i učenje kako ih sami koristiti i upoznavanje ovih metoda svojim kolegama iz razreda.

Šta su „kvadratne jednačine“?

Kvadratna jednadžba- jednačina oblika sjekira2 + bx + c = 0, Gdje a, b, c- neki brojevi ( a ≠ 0), x- nepoznato.

Brojevi a, b, c nazivaju se koeficijenti kvadratne jednačine.

  • a se naziva prvi koeficijent;
  • b se naziva drugi koeficijent;
  • c - slobodan član.

Ko je prvi "izmislio" kvadratne jednačine?

Neke algebarske tehnike za rješavanje linearnih i kvadratnih jednačina bile su poznate prije 4000 godina u starom Babilonu. Otkriće drevnih babilonskih glinenih ploča, koje datiraju negdje između 1800. i 1600. godine prije Krista, pruža najraniji dokaz proučavanja kvadratnih jednačina. Iste tablete sadrže metode za rješavanje određenih vrsta kvadratnih jednadžbi.

Potreba za rješavanjem jednačina ne samo prvog, već i drugog stepena u antičko doba bila je uzrokovana potrebom rješavanja problema vezanih za pronalaženje područja zemljišne parcele i sa zemljani radovi vojnog karaktera, kao i razvojem same astronomije i matematike.

Pravilo za rješavanje ovih jednačina, postavljeno u babilonskim tekstovima, u suštini se poklapa sa savremenim, ali nije poznato kako su Babilonci došli do ovog pravila. Gotovo svi do sada pronađeni klinopisni tekstovi daju samo probleme s rješenjima izloženim u obliku recepata, bez naznaka kako su pronađeni. Uprkos visoki nivo razvoj algebre u Babilonu, klinastim tekstovima nedostaje koncept negativnog broja i opšte metode rješavanje kvadratnih jednačina.

Babilonski matematičari iz oko 4. veka pre nove ere. koristio je metodu komplementa kvadrata za rješavanje jednadžbi s pozitivnim korijenima. Oko 300. pne Euklid je došao do općenitije metode geometrijskog rješenja. Prvi matematičar koji je pronašao rješenja jednadžbi s negativnim korijenima u obliku algebarske formule bio je indijski naučnik Brahmagupta(Indija, 7. vek nove ere).

Brahmagupta je postavio opće pravilo za rješavanje kvadratnih jednadžbi svedenih na jedan kanonski oblik:

ax2 + bx = c, a>0

Koeficijenti u ovoj jednačini također mogu biti negativni. Brahmaguptino pravilo je u suštini isto kao i naše.

Javni konkursi u rješavanju teških problema bili su uobičajeni u Indiji. Jedna od starih indijskih knjiga govori o takvim takmičenjima: „Kao što sunce pomračuje zvijezde svojim sjajem, tako ucen covek pomračiće svoju slavu na javnim skupovima predlažući i rješavajući algebarske probleme.” Problemi su često predstavljani u poetskom obliku.

U algebarskoj raspravi Al-Khwarizmi data je klasifikacija linearnih i kvadratnih jednadžbi. Autor broji 6 vrsta jednačina, izražavajući ih na sljedeći način:

1) „Kvadrati su jednaki korijenima“, tj. ax2 = bx.

2) „Kvadrati su jednaki brojevima“, tj. ax2 = c.

3) “Korijeni su jednaki broju”, tj. ax2 = c.

4) „Kvadrati i brojevi su jednaki korijenima“, tj. ax2 + c = bx.

5) „Kvadrati i korijeni su jednaki broju“, tj. ax2 + bx = c.

6) „Korijeni i brojevi su jednaki kvadratima“, tj. bx + c == ax2.

Za Al-Khwarizmija, koji je izbjegao upotrebu negativnih brojeva, članovi svake od ovih jednačina su sabirci, a ne oduzimajući. U ovom slučaju se očito ne uzimaju u obzir jednačine koje nemaju pozitivna rješenja. Autor postavlja metode za rješavanje ovih jednačina koristeći tehnike al-jabr i al-mukabal. Njegova odluka se, naravno, ne poklapa u potpunosti s našom. Da ne spominjemo da je to čisto retoričko, treba napomenuti, na primjer, da Al-Khorezmi, kao i svi matematičari do 17. stoljeća, prilikom rješavanja nepotpune kvadratne jednačine prvog tipa, ne uzima u obzir nulto rješenje, vjerovatno zato što u konkretnoj praksi to nije bitno u zadacima. Kada rješava potpune kvadratne jednadžbe, Al-Khwarizmi postavlja pravila za njihovo rješavanje koristeći određene numeričke primjere, a zatim i njihove geometrijske dokaze.

Forme za rješavanje kvadratnih jednačina po modelu Al-Khwarizmija u Evropi su prvi put izložene u "Knjizi Abakusa", napisanoj 1202. godine. italijanski matematičar Leonard Fibonacci. Autor je samostalno razvio neke nove algebarski primjeri rješavajući probleme i prvi u Europi uveo negativne brojeve.

Ova knjiga je doprinijela širenju algebarskog znanja ne samo u Italiji, već iu Njemačkoj, Francuskoj i drugim evropskim zemljama. Mnogi problemi iz ove knjige korišćeni su u gotovo svim evropskim udžbenicima 14.-17. Opšte pravilo rješenje kvadratnih jednadžbi svedeno na jedan kanonski oblik x2 + bh = s za sve moguće kombinacije predznaka i koeficijenata b, c formulirano je u Evropi 1544. godine. M. Stiefel.

Izvođenje formule za rješavanje kvadratne jednadžbe u opšti pogled Viet ga ima, ali Viet je prepoznao samo pozitivne korijene. italijanski matematičari Tartaglia, Cardano, Bombelli među prvima u 16. veku. Osim pozitivnih, u obzir se uzimaju i negativni korijeni. Tek u 17. veku. zahvaljujući naporima Girard, Descartes, Newton i drugih naučnika, metoda rješavanja kvadratnih jednačina poprima moderan oblik.

Pogledajmo nekoliko načina za rješavanje kvadratnih jednadžbi.

Standardne metode za rješavanje kvadratnih jednadžbi iz školski program:

  1. Faktoriranje lijeve strane jednačine.
  2. Metoda za odabir cijelog kvadrata.
  3. Rješavanje kvadratnih jednadžbi pomoću formule.
  4. Grafičko rješenje kvadratna jednačina.
  5. Rješavanje jednadžbi pomoću Vietine teoreme.

Zaustavimo se detaljnije na rješenju reduciranih i nereduciranih kvadratnih jednadžbi koristeći Vietin teorem.

Podsjetimo da je za rješavanje gornje kvadratne jednadžbe dovoljno pronaći dva broja čiji je proizvod jednak slobodnom članu, a čiji je zbir jednak drugom koeficijentu suprotnog predznaka.

Primjer.x 2 -5x+6=0

Morate pronaći brojeve čiji je proizvod 6, a zbir 5. Ovi brojevi će biti 3 i 2.

Odgovor: x 1 =2, x 2 =3.

Ali ovu metodu možete koristiti i za jednačine s prvim koeficijentom koji nije jednak jedan.

Primjer.3x 2 +2x-5=0

Uzmite prvi koeficijent i pomnožite ga slobodnim članom: x 2 +2x-15=0

Korijeni ove jednadžbe bit će brojevi čiji je proizvod jednak -15, a zbir jednak -2. Ovi brojevi su 5 i 3. Da biste pronašli korijene originalne jednačine, podijelite rezultirajuće korijene s prvim koeficijentom.

Odgovor: x 1 =-5/3, x 2 =1

6. Rješavanje jednadžbi metodom "baci".

Razmotrimo kvadratnu jednačinu ax 2 + bx + c = 0, gdje je a≠0.

Množenjem obe strane sa a dobijamo jednačinu a 2 x 2 + abx + ac = 0.

Neka je ax = y, odakle je x = y/a; tada dolazimo do jednačine y 2 + by + ac = 0, ekvivalentne datoj. Njegove korijene za 1 i 2 nalazimo koristeći Vietin teorem.

Konačno dobijamo x 1 = y 1 /a i x 2 = y 2 /a.

Kod ove metode koeficijent a se množi slobodnim terminom, kao da mu je „bačen“, zbog čega se naziva „metoda bacanja“. Ova metoda se koristi kada se korijeni jednadžbe mogu lako pronaći pomoću Vietine teoreme i, što je najvažnije, kada je diskriminanta tačan kvadrat.

Primjer.2x 2 - 11x + 15 = 0.

“Bacimo” koeficijent 2 na slobodni član i izvršimo zamjenu i dobijemo jednačinu y 2 - 11y + 30 = 0.

Prema Vietinoj inverznoj teoremi

y 1 = 5, x 1 = 5/2, x 1 = 2,5; y 2 ​​= 6, x 2 = 6/2, x 2 = 3.

Odgovor: x 1 =2,5; X 2 = 3.

7. Svojstva koeficijenata kvadratne jednačine.

Neka je data kvadratna jednačina ax 2 + bx + c = 0, a ≠ 0.

1. Ako je a+ b + c = 0 (tj. zbir koeficijenata jednačine je nula), tada je x 1 = 1.

2. Ako je a - b + c = 0, ili b = a + c, onda je x 1 = - 1.

Primjer.345x 2 - 137x - 208 = 0.

Pošto je a + b + c = 0 (345 - 137 - 208 = 0), onda je x 1 = 1, x 2 = -208/345.

Odgovor: x 1 =1; X 2 = -208/345 .

Primjer.132x 2 + 247x + 115 = 0

Jer a-b+c = 0 (132 - 247 +115=0), zatim x 1 = - 1, x 2 = - 115/132

Odgovor: x 1 = - 1; X 2 =- 115/132

Postoje i druga svojstva koeficijenata kvadratne jednačine. ali je njihova upotreba složenija.

8. Rješavanje kvadratnih jednadžbi pomoću nomograma.

Slika 1. Nomogram

Ovo je stara i trenutno zaboravljena metoda rješavanja kvadratnih jednačina, smještena na 83. strani zbirke: Bradis V.M. Matematičke tabele sa četiri cifre. - M., Prosveta, 1990.

Tabela XXII. Nomogram za rješavanje jednačine z 2 + pz + q = 0. Ovaj nomogram omogućava, bez rješavanja kvadratne jednačine, da se iz njenih koeficijenata odrede korijeni jednadžbe.

Krivolinijska skala nomograma se gradi prema formulama (slika 1):

Believing OS = p, ED = q, OE = a(sve u cm), sa Sl. 1 sličnosti trouglova SAN I CDF dobijamo proporciju

što, nakon zamjena i pojednostavljenja, daje jednačinu z 2 + pz + q = 0, i pismo z označava oznaku bilo koje tačke na zakrivljenoj skali.

Rice. 2 Rješavanje kvadratnih jednadžbi pomoću nomograma

Primjeri.

1) Za jednačinu z 2 - 9z + 8 = 0 nomogram daje korijene z 1 = 8,0 i z 2 = 1,0

Odgovor:8.0; 1.0.

2) Pomoću nomograma rješavamo jednačinu

2z 2 - 9z + 2 = 0.

Podelite koeficijente ove jednačine sa 2, dobijamo jednačinu z 2 - 4.5z + 1 = 0.

Nomogram daje korijene z 1 = 4 i z 2 = 0,5.

Odgovor: 4; 0.5.

9. Geometrijska metoda za rješavanje kvadratnih jednadžbi.

Primjer.X 2 + 10x = 39.

U originalu je ovaj problem formuliran na sljedeći način: "Kvadrat i deset korijena jednaki su 39."

Posmatrajmo kvadrat sa stranicom x, na njegovim stranicama su konstruirani pravokutnici tako da je druga strana svakog od njih 2,5, pa je površina svakog 2,5x. Rezultirajuća figura se zatim dopunjava novom kvadratu ABCD, gradeći četiri jednaka kvadrata u uglovima, stranica svakog od njih je 2,5, a površina 6,25

Rice. 3 Grafička metoda za rješavanje jednačine x 2 + 10x = 39

Površina S kvadrata ABCD može se predstaviti kao zbir površina: prvobitnog kvadrata x 2, četiri pravougaonika (4∙2,5x = 10x) i četiri dodatna kvadrata (6,25∙4 = 25), tj. S = x 2 + 10x = 25. Zamenivši x 2 + 10x brojem 39, dobijamo da je S = 39 + 25 = 64, što znači da je stranica kvadrata ABCD, tj. segment AB = 8. Za traženu stranu x originalnog kvadrata dobijamo

10. Rješavanje jednadžbi pomoću Bezoutove teoreme.

Bezoutova teorema. Ostatak dijeljenja polinoma P(x) sa binomom x - α jednak je P(α) (to jest, vrijednost P(x) na x = α).

Ako je broj α korijen polinoma P(x), tada je ovaj polinom djeljiv sa x -α bez ostatka.

Primjer.x²-4x+3=0

R(x)= x²-4x+3, α: ±1,±3, α =1, 1-4+3=0. Podijelite P(x) sa (x-1): (x²-4x+3)/(x-1)=x-3

x²-4x+3=(x-1)(x-3), (x-1)(x-3)=0

x-1=0; x=1, ili x-3=0, x=3; Odgovor: x1 =2, x2 =3.

zaključak: Sposobnost brzog i racionalnog rješavanja kvadratnih jednadžbi jednostavno je neophodna za rješavanje više složene jednačine, na primjer, frakcione racionalne jednadžbe, jednačine višim stepenima, bikvadratne jednačine, au srednjoj školi trigonometrijske, eksponencijalne i logaritamske jednačine. Nakon što smo proučili sve pronađene metode za rješavanje kvadratnih jednadžbi, možemo savjetovati kolegama iz razreda da, pored standardnih metoda, rješavaju metodom prijenosa (6) i rješavaju jednadžbe koristeći svojstvo koeficijenata (7), jer su pristupačnije do razumevanja.

književnost:

  1. Bradis V.M. Matematičke tabele sa četiri cifre. - M., Prosveta, 1990.
  2. Algebra 8. razred: udžbenik za 8. razred. opšte obrazovanje institucije Makarychev Yu. N., Mindyuk N. G., Neshkov K. I., Suvorova S. B. ur. S. A. Telyakovsky 15. izd., revidirano. - M.: Obrazovanje, 2015
  3. https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0 %B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5
  4. Glazer G.I. Istorija matematike u školi. Priručnik za nastavnike. / Ed. V.N. Mlađi. - M.: Prosveta, 1964.

Samo. Prema formulama i jasnim, jednostavnim pravilima. U prvoj fazi

potrebno je datu jednačinu dovesti u standardni oblik, tj. na obrazac:

Ako vam je jednačina već data u ovom obliku, ne morate raditi prvu fazu. Najvažnije je da to uradite kako treba

odrediti sve koeficijente, A, b I c.

Formula za pronalaženje korijena kvadratne jednadžbe.

Izraz pod znakom korijena se zove diskriminatorno . Kao što vidite, da bismo pronašli X, mi

koristimo samo a, b i c. One. koeficijenti iz kvadratna jednačina. Samo pažljivo ubacite

vrijednosti a, b i c Računamo u ovoj formuli. Zamjenjujemo sa njihov znakovi!

Na primjer, u jednadžbi:

A =1; b = 3; c = -4.

Zamjenjujemo vrijednosti i pišemo:

Primjer je skoro riješen:

Ovo je odgovor.

Najčešće greške su zabuna sa vrijednostima znakova a, b I With. Ili bolje rečeno, sa zamjenom

negativne vrijednosti u formulu za izračunavanje korijena. Ovdje u pomoć dolazi detaljan snimak formule

sa određenim brojevima. Ako imate problema sa proračunima, uradite to!

Pretpostavimo da trebamo riješiti sljedeći primjer:

Evo a = -6; b = -5; c = -1

Sve opisujemo detaljno, pažljivo, ne propuštajući ništa sa svim znakovima i zagradama:

Kvadratne jednadžbe često izgledaju malo drugačije. Na primjer, ovako:

Sada uzmite u obzir praktične tehnike koje dramatično smanjuju broj grešaka.

Prvi sastanak. Ne budi lijen prije rješavanje kvadratne jednačine dovesti ga u standardni oblik.

Šta to znači?

Recimo da nakon svih transformacija dobijete sljedeću jednačinu:

Nemojte žuriti s pisanjem korijenske formule! Gotovo sigurno ćete pomiješati šanse a, b i c.

Konstruirajte primjer ispravno. Prvo, X na kvadrat, zatim bez kvadrata, zatim slobodni član. Volim ovo:

Riješite se minusa. Kako? Moramo pomnožiti cijelu jednačinu sa -1. Dobijamo:

Ali sada možete sigurno zapisati formulu za korijene, izračunati diskriminanta i završiti rješavanje primjera.

Odlučite sami. Sada bi trebali imati korijene 2 i -1.

Prijem drugi. Provjerite korijene! By Vietin teorem.

Za rješavanje zadatih kvadratnih jednadžbi, tj. ako je koeficijent

x 2 +bx+c=0,

Ondax 1 x 2 =c

x 1 +x 2 =−b

Za potpunu kvadratnu jednačinu u kojoj a≠1:

x 2 +bx+c=0,

podijelite cijelu jednačinu sa O:

Gdje x 1 I x 2 - korijeni jednadžbe.

Prijem treći. Ako vaša jednadžba ima koeficijente razlomaka, riješite se razlomaka! Pomnožite

jednadžba sa zajedničkim nazivnikom.

Zaključak. Praktični savjeti:

1. Prije rješavanja, dovodimo kvadratnu jednačinu u standardni oblik i gradimo je U redu.

2. Ako postoji negativan koeficijent ispred X na kvadrat, eliminiramo ga množenjem svega

jednačine za -1.

3. Ako su koeficijenti razlomljeni, eliminiramo razlomke množenjem cijele jednačine odgovarajućim

faktor.

4. Ako je x na kvadrat čist, njegov koeficijent je jednak jedan, rješenje se može lako provjeriti pomoću

Prvi nivo

Kvadratne jednadžbe. Sveobuhvatan vodič (2019)

U terminu "kvadratna jednačina" ključna riječ je "kvadratna". To znači da jednačina mora nužno sadržavati promjenljivu (to isto x) na kvadrat, i ne bi trebalo biti x-ova na treći (ili veći) stepen.

Rješenje mnogih jednačina svodi se na rješavanje kvadratnih jednačina.

Naučimo odrediti da je ovo kvadratna jednačina, a ne neka druga jednačina.

Primjer 1.

Oslobodimo se nazivnika i pomnožimo svaki član jednačine sa

Pomaknimo sve na lijevu stranu i rasporedimo članove u opadajućem redoslijedu po stepenu X

Sada možemo sa sigurnošću reći da je ova jednačina kvadratna!

Primjer 2.

Pomnožite lijevu i desnu stranu sa:

Ova jednadžba, iako je prvobitno bila u njoj, nije kvadratna!

Primjer 3.

Pomnožimo sve sa:

Strašno? Četvrti i drugi stepen... Međutim, ako izvršimo zamjenu, vidjet ćemo da imamo jednostavnu kvadratnu jednačinu:

Primjer 4.

Čini se da postoji, ali hajde da pogledamo izbliza. Pomerimo sve na lijevu stranu:

Vidite, smanjen je - i sada je to jednostavna linearna jednačina!

Sada pokušajte sami odrediti koje su od sljedećih jednačina kvadratne, a koje nisu:

primjeri:

odgovori:

  1. kvadrat;
  2. kvadrat;
  3. ne kvadratna;
  4. ne kvadratna;
  5. ne kvadratna;
  6. kvadrat;
  7. ne kvadratna;
  8. kvadrat.

Matematičari konvencionalno dijele sve kvadratne jednadžbe na sljedeće vrste:

  • Potpune kvadratne jednadžbe- jednadžbe u kojima koeficijenti i, kao i slobodni član c, nisu jednaki nuli (kao u primjeru). Osim toga, među potpunim kvadratnim jednadžbama postoje dato- to su jednadžbe u kojima je koeficijent (jednačina iz primjera jedan ne samo potpuna, već i smanjena!)
  • Nepotpune kvadratne jednadžbe- jednadžbe u kojima su koeficijent i/ili slobodni član c jednaki nuli:

    Nepotpune su jer im nedostaje neki element. Ali jednačina uvijek mora sadržavati x na kvadrat!!! U suprotnom, to više neće biti kvadratna jednačina, već neka druga jednačina.

Zašto su smislili takvu podjelu? Čini se da postoji X na kvadrat, i u redu. Ova podjela je određena metodama rješenja. Pogledajmo svaki od njih detaljnije.

Rješavanje nepotpunih kvadratnih jednadžbi

Prvo, fokusirajmo se na rješavanje nepotpunih kvadratnih jednadžbi - one su mnogo jednostavnije!

Postoje vrste nepotpunih kvadratnih jednadžbi:

  1. , u ovoj jednačini koeficijent je jednak.
  2. , u ovoj jednačini slobodni član je jednak.
  3. , u ovoj jednačini koeficijent i slobodni član su jednaki.

1. i. Pošto znamo kako uzeti kvadratni korijen, izrazimo iz ove jednačine

Izraz može biti negativan ili pozitivan. Broj na kvadrat ne može biti negativan, jer kada se množe dva negativna ili dva pozitivna broja, rezultat će uvijek biti pozitivan broj, dakle: ako, onda jednačina nema rješenja.

A ako, onda dobijamo dva korijena. Nema potrebe da se ove formule pamte. Glavna stvar je da morate znati i uvijek zapamtiti da ne može biti manje.

Pokušajmo riješiti neke primjere.

Primjer 5:

Riješite jednačinu

Sada ostaje samo da izvadite korijen s lijeve i desne strane. Uostalom, sjećate li se kako izvaditi korijenje?

odgovor:

Nikada ne zaboravite na korijene sa negativnim predznakom!!!

Primjer 6:

Riješite jednačinu

odgovor:

Primjer 7:

Riješite jednačinu

Oh! Kvadrat broja ne može biti negativan, što znači da je jednačina

bez korijena!

Za takve jednačine koje nemaju korijen, matematičari su smislili posebnu ikonu - (prazan skup). A odgovor se može napisati ovako:

odgovor:

Dakle, ova kvadratna jednadžba ima dva korijena. Ovdje nema ograničenja, jer nismo izvukli root.
Primjer 8:

Riješite jednačinu

Izvadimo zajednički faktor iz zagrada:

dakle,

Ova jednadžba ima dva korijena.

odgovor:

Najjednostavniji tip nepotpunih kvadratnih jednadžbi (iako su sve jednostavne, zar ne?). Očigledno, ova jednadžba uvijek ima samo jedan korijen:

Ovdje ćemo izostati s primjerima.

Rješavanje potpunih kvadratnih jednadžbi

Podsjećamo vas da je potpuna kvadratna jednadžba jednačina oblika jednadžbe gdje je

Rješavanje kompletnih kvadratnih jednadžbi je malo teže (samo malo) od ovih.

zapamti, Bilo koja kvadratna jednadžba se može riješiti korištenjem diskriminanta! Čak i nepotpuna.

Druge metode će vam pomoći da to učinite brže, ali ako imate problema s kvadratnim jednadžbama, prvo savladajte rješenje pomoću diskriminanta.

1. Rješavanje kvadratnih jednadžbi pomoću diskriminanta.

Rješavanje kvadratnih jednadžbi ovom metodom je vrlo jednostavno; glavna stvar je zapamtiti slijed radnji i nekoliko formula.

Ako, onda jednačina ima korijen. Posebna pažnja napravi korak. Diskriminant () nam govori o broju korijena jednadžbe.

  • Ako, onda će se formula u koraku svesti na. Dakle, jednačina će imati samo korijen.
  • Ako, onda nećemo moći izvući korijen diskriminanta u koraku. Ovo ukazuje da jednačina nema korijena.

Vratimo se na naše jednadžbe i pogledajmo neke primjere.

Primjer 9:

Riješite jednačinu

Korak 1 preskačemo.

Korak 2.

Pronalazimo diskriminanta:

To znači da jednačina ima dva korijena.

Korak 3.

odgovor:

Primjer 10:

Riješite jednačinu

Jednačina je predstavljena u standardnom obliku, dakle Korak 1 preskačemo.

Korak 2.

Pronalazimo diskriminanta:

To znači da jednačina ima jedan korijen.

odgovor:

Primjer 11:

Riješite jednačinu

Jednačina je predstavljena u standardnom obliku, dakle Korak 1 preskačemo.

Korak 2.

Pronalazimo diskriminanta:

To znači da nećemo moći izvući korijen diskriminanta. Ne postoje korijeni jednadžbe.

Sada znamo kako ispravno zapisati takve odgovore.

odgovor: nema korijena

2. Rješavanje kvadratnih jednadžbi pomoću Vietine teoreme.

Ako se sjećate, postoji vrsta jednadžbe koja se zove redukovana (kada je koeficijent a jednak):

Takve je jednadžbe vrlo lako riješiti korištenjem Vietine teoreme:

Zbir korijena dato kvadratna jednadžba je jednaka, a proizvod korijena jednak.

Primjer 12:

Riješite jednačinu

Ova jednačina se može riješiti korištenjem Vietine teoreme jer .

Zbir korijena jednačine je jednak, tj. dobijamo prvu jednačinu:

A proizvod je jednak:

Sastavimo i riješimo sistem:

  • I. Iznos je jednak;
  • I. Iznos je jednak;
  • I. Iznos je jednak.

i su rješenje za sistem:

odgovor: ; .

Primjer 13:

Riješite jednačinu

odgovor:

Primjer 14:

Riješite jednačinu

Jednačina je data, što znači:

odgovor:

KVADRATNE JEDNAČINE. PROSJEČAN NIVO

Šta je kvadratna jednačina?

Drugim riječima, kvadratna jednačina je jednačina oblika, gdje je - nepoznato, - neki brojevi i.

Broj se naziva najvišim ili prvi koeficijent kvadratna jednadžba, - drugi koeficijent, A - besplatni član.

Zašto? Jer ako jednačina odmah postane linearna, jer će nestati.

U ovom slučaju, i može biti jednako nuli. U ovoj stolici jednačina se naziva nepotpuna. Ako su svi pojmovi na mjestu, to jest, jednačina je potpuna.

Rješenja različitih tipova kvadratnih jednadžbi

Metode za rješavanje nepotpunih kvadratnih jednadžbi:

Prvo, pogledajmo metode za rješavanje nepotpunih kvadratnih jednadžbi - one su jednostavnije.

Možemo razlikovati sljedeće vrste jednačina:

I., u ovoj jednačini koeficijent i slobodni član su jednaki.

II. , u ovoj jednačini koeficijent je jednak.

III. , u ovoj jednačini slobodni član je jednak.

Pogledajmo sada rješenje za svaki od ovih podtipova.

Očigledno, ova jednadžba uvijek ima samo jedan korijen:

Broj na kvadrat ne može biti negativan, jer kada pomnožite dva negativna ili dva pozitivna broja, rezultat će uvijek biti pozitivan broj. Zbog toga:

ako, onda jednačina nema rješenja;

ako imamo dva korena

Nema potrebe da se ove formule pamte. Glavna stvar koju treba zapamtiti je da ne može biti manje.

primjeri:

rješenja:

odgovor:

Nikada ne zaboravite na korijene sa negativnim predznakom!

Kvadrat broja ne može biti negativan, što znači da je jednačina

nema korijena.

Da bismo ukratko zapisali da problem nema rješenja, koristimo ikonu praznog skupa.

odgovor:

Dakle, ova jednadžba ima dva korijena: i.

odgovor:

Izvadimo zajednički faktor iz zagrada:

Proizvod je jednak nuli ako je barem jedan od faktora jednak nuli. To znači da jednačina ima rješenje kada:

Dakle, ova kvadratna jednadžba ima dva korijena: i.

primjer:

Riješite jednačinu.

Rješenje:

Faktorimo lijevu stranu jednačine i pronađemo korijene:

odgovor:

Metode za rješavanje kompletnih kvadratnih jednadžbi:

1. Diskriminant

Rješavanje kvadratnih jednadžbi na ovaj način je jednostavno, glavna stvar je zapamtiti slijed radnji i nekoliko formula. Zapamtite, svaka kvadratna jednadžba se može riješiti korištenjem diskriminanta! Čak i nepotpuna.

Jeste li primijetili korijen od diskriminanta u formuli za korijene? Ali diskriminant može biti negativan. sta da radim? Moramo obratiti posebnu pažnju na korak 2. Diskriminant nam govori o broju korijena jednačine.

  • Ako, onda jednačina ima korijen:
  • Ako, onda jednadžba ima iste korijene, a zapravo, jedan korijen:

    Takvi korijeni se nazivaju dvostrukim korijenima.

  • Ako, tada se korijen diskriminanta ne izdvaja. Ovo ukazuje da jednačina nema korijena.

Zašto je to moguće različite količine roots? Hajde da se okrenemo geometrijskog smisla kvadratna jednačina. Grafikon funkcije je parabola:

U posebnom slučaju, koji je kvadratna jednadžba, . To znači da su korijeni kvadratne jednadžbe točke presjeka sa osom apscise (osom). Parabola možda uopće ne siječe osu, ili je može sjeći u jednoj (kada vrh parabole leži na osi) ili dvije tačke.

Osim toga, koeficijent je odgovoran za smjer grana parabole. Ako, onda su grane parabole usmjerene prema gore, a ako, onda prema dolje.

primjeri:

rješenja:

odgovor:

Odgovor: .

odgovor:

To znači da nema rješenja.

Odgovor: .

2. Vietin teorem

Vrlo je lako koristiti Vietin teorem: samo trebate odabrati par brojeva čiji je proizvod jednak slobodnom članu jednačine, a zbir je jednak drugom koeficijentu uzetom sa suprotnim predznakom.

Važno je zapamtiti da se Vietina teorema može primijeniti samo u redukovane kvadratne jednadžbe ().

Pogledajmo nekoliko primjera:

Primjer #1:

Riješite jednačinu.

Rješenje:

Ova jednačina se može riješiti korištenjem Vietine teoreme jer . Ostali koeficijenti: ; .

Zbir korijena jednadžbe je:

A proizvod je jednak:

Odaberimo parove brojeva čiji je proizvod jednak i provjerimo da li je njihov zbir jednak:

  • I. Iznos je jednak;
  • I. Iznos je jednak;
  • I. Iznos je jednak.

i su rješenje za sistem:

Dakle, i su korijeni naše jednadžbe.

Odgovor: ; .

Primjer #2:

Rješenje:

Odaberimo parove brojeva koji daju u proizvodu, a zatim provjerimo da li je njihov zbir jednak:

i: daju ukupno.

i: daju ukupno. Da biste dobili, dovoljno je jednostavno promijeniti znakove navodnih korijena: i, na kraju krajeva, proizvoda.

odgovor:

Primjer #3:

Rješenje:

Slobodni član jednadžbe je negativan, pa je stoga proizvod korijena negativan broj. Ovo je moguće samo ako je jedan od korijena negativan, a drugi pozitivan. Stoga je zbir korijena jednak razlike njihovih modula.

Odaberimo parove brojeva koji daju u proizvodu, a čija je razlika jednaka:

i: njihova razlika je jednaka - ne uklapa se;

i: - nije prikladno;

i: - nije prikladno;

i: - pogodan. Ostaje samo zapamtiti da je jedan od korijena negativan. Pošto njihov zbir mora biti jednak, korijen sa manjim modulom mora biti negativan: . Provjeravamo:

odgovor:

Primjer #4:

Riješite jednačinu.

Rješenje:

Jednačina je data, što znači:

Slobodni član je negativan, pa je stoga proizvod korijena negativan. A to je moguće samo kada je jedan korijen jednadžbe negativan, a drugi pozitivan.

Odaberimo parove brojeva čiji je proizvod jednak, a zatim odredimo koji korijeni trebaju imati negativan predznak:

Očigledno, samo su korijeni i pogodni za prvi uvjet:

odgovor:

Primjer #5:

Riješite jednačinu.

Rješenje:

Jednačina je data, što znači:

Zbir korijena je negativan, što znači da prema najmanje, jedan od korijena je negativan. Ali budući da je njihov proizvod pozitivan, to znači da oba korijena imaju predznak minus.

Odaberimo parove brojeva čiji je proizvod jednak:

Očigledno, korijeni su brojevi i.

odgovor:

Slažete se, vrlo je zgodno doći do korijena usmeno, umjesto da brojite ovaj gadni diskriminator. Pokušajte koristiti Vietinu teoremu što je češće moguće.

Ali Vietin teorem je potreban kako bi se olakšalo i ubrzalo pronalaženje korijena. Da biste imali koristi od njegove upotrebe, radnje morate dovesti do automatizma. A za ovo riješite još pet primjera. Ali nemojte varati: ne možete koristiti diskriminator! Samo Vietina teorema:

Rješenja zadataka za samostalan rad:

Zadatak 1. ((x)^(2))-8x+12=0

Prema Vietovoj teoremi:

Kao i obično, odabir počinjemo s komadom:

Nije prikladno zbog količine;

: iznos je upravo ono što vam treba.

Odgovor: ; .

Zadatak 2.

I opet naša omiljena Vietina teorema: zbir mora biti jednak, a proizvod mora biti jednak.

Ali pošto mora biti ne, ali, mijenjamo znakove korijena: i (ukupno).

Odgovor: ; .

Zadatak 3.

Hmm... Gdje je to?

Morate premjestiti sve pojmove u jedan dio:

Zbir korijena jednak je proizvodu.

Ok, stani! Jednačina nije data. Ali Vietin teorem je primjenjiv samo u datim jednačinama. Dakle, prvo morate dati jednačinu. Ako ne možete voditi, odustanite od ove ideje i riješite je na drugi način (na primjer, kroz diskriminator). Dozvolite mi da vas podsjetim da dati kvadratnu jednačinu znači učiniti vodeći koeficijent jednakim:

Odlično. Tada je zbir korijena jednak proizvodu.

Ovdje je lako izabrati kruške: na kraju krajeva, to je prost broj (izvinite na tautologiji).

Odgovor: ; .

Zadatak 4.

Slobodni član je negativan. Šta je posebno u ovome? A činjenica je da će korijeni imati različite znakove. I sada, tokom odabira, ne provjeravamo zbir korijena, već razliku u njihovim modulima: ova razlika je jednaka, ali proizvod.

Dakle, korijeni su jednaki i, ali jedan od njih je minus. Vietina teorema nam govori da je zbir korijena jednak drugom koeficijentu suprotnog predznaka, tj. To znači da će manji korijen imati minus: i, pošto.

Odgovor: ; .

Zadatak 5.

Šta prvo treba da uradite? Tako je, dajte jednačinu:

Opet: biramo faktore broja, a njihova razlika bi trebala biti jednaka:

Korijeni su jednaki i, ali jedan od njih je minus. Koji? Njihov zbir bi trebao biti jednak, što znači da će minus imati veći korijen.

Odgovor: ; .

Dozvolite mi da rezimiram:
  1. Vietin teorem se koristi samo u datim kvadratnim jednačinama.
  2. Koristeći Vietin teorem, možete pronaći korijene odabirom, usmeno.
  3. Ako jednačina nije data ili nije pronađen odgovarajući par faktora slobodnog člana, onda nema cijelih korijena i morate je riješiti na drugi način (na primjer, preko diskriminanta).

3. Metoda za odabir cijelog kvadrata

Ako su svi članovi koji sadrže nepoznato predstavljeni u obliku pojmova iz skraćenih formula za množenje - kvadrata zbira ili razlike - tada se nakon zamjene varijabli jednačina može predstaviti u obliku nepotpune kvadratne jednadžbe tipa.

Na primjer:

Primjer 1:

Riješite jednačinu: .

Rješenje:

odgovor:

Primjer 2:

Riješite jednačinu: .

Rješenje:

odgovor:

Generalno, transformacija će izgledati ovako:

Ovo implicira: .

Ne podsjeća te ni na šta? Ovo je diskriminatorna stvar! Upravo tako smo dobili diskriminantnu formulu.

KVADRATNE JEDNAČINE. UKRATKO O GLAVNIM STVARIMA

Kvadratna jednadžba- ovo je jednačina oblika, gdje je - nepoznato, - koeficijenti kvadratne jednačine, - slobodni član.

Potpuna kvadratna jednadžba- jednačina u kojoj koeficijenti nisu jednaki nuli.

Redukovana kvadratna jednačina- jednačina u kojoj je koeficijent, odnosno: .

Nepotpuna kvadratna jednadžba- jednadžba u kojoj su koeficijent i/ili slobodni član c jednaki nuli:

  • ako je koeficijent, jednačina izgleda ovako: ,
  • ako postoji slobodni član, jednačina ima oblik: ,
  • ako i, jednačina izgleda ovako: .

1. Algoritam za rješavanje nepotpunih kvadratnih jednačina

1.1. Nepotpuna kvadratna jednadžba oblika, gdje je, :

1) Izrazimo nepoznato: ,

2) Provjerite predznak izraza:

  • ako, onda jednačina nema rješenja,
  • ako, onda jednačina ima dva korijena.

1.2. Nepotpuna kvadratna jednadžba oblika, gdje je, :

1) Uzmimo zajednički faktor iz zagrada: ,

2) Proizvod je jednak nuli ako je barem jedan od faktora jednak nuli. Dakle, jednadžba ima dva korijena:

1.3. Nepotpuna kvadratna jednadžba oblika, gdje je:

Ova jednadžba uvijek ima samo jedan korijen: .

2. Algoritam za rješavanje potpunih kvadratnih jednačina oblika gdje

2.1. Rješenje korištenjem diskriminanta

1) Dovedemo jednačinu u standardni oblik: ,

2) Izračunajmo diskriminant koristeći formulu: , koja označava broj korijena jednačine:

3) Pronađite korijene jednačine:

  • ako, onda jednadžba ima korijene, koji se nalaze po formuli:
  • ako, onda jednadžba ima korijen, koji se nalazi po formuli:
  • ako, onda jednačina nema korijena.

2.2. Rješenje korištenjem Vietine teoreme

Zbir korijena redukovane kvadratne jednadžbe (jednačina oblika gdje) je jednak, a proizvod korijena jednak, tj. , A.

2.3. Rješenje metodom odabira cijelog kvadrata

Ako kvadratna jednadžba oblika ima korijen, onda se može napisati u obliku: .

Pa, tema je gotova. Ako čitate ove redove, to znači da ste veoma cool.

Zato što je samo 5% ljudi sposobno nešto samostalno savladati. A ako pročitate do kraja, onda ste u ovih 5%!

Sada najvažnija stvar.

Razumjeli ste teoriju na ovu temu. I, ponavljam, ovo... ovo je jednostavno super! Već ste bolji od velike većine svojih vršnjaka.

Problem je što ovo možda nije dovoljno...

Za što?

Za uspešan polaganje Jedinstvenog državnog ispita, za upis na fakultet na budžetu i, NAJVAŽNIJE, doživotno.

Neću vas ni u šta ubeđivati, samo ću jedno reći...

Ljudi koji su primili dobro obrazovanje, zarađuju mnogo više od onih koji to nisu dobili. Ovo je statistika.

Ali to nije glavna stvar.

Glavna stvar je da su SREĆNIJI (ima takvih studija). Možda zato što se pred njima otvara još mnogo mogućnosti i život postaje svjetliji? ne znam...

Ali razmislite sami...

Šta je potrebno da biste bili sigurni da ćete biti bolji od drugih na Jedinstvenom državnom ispitu i na kraju biti... sretniji?

STVARITE SE RJEŠAVANJEM PROBLEMA NA OVU TEMU.

Od vas se neće tražiti teorija tokom ispita.

Trebaće ti rješavati probleme protiv vremena.

A, ako ih niste riješili (PUNO!), sigurno ćete negdje napraviti glupu grešku ili jednostavno nećete imati vremena.

To je kao u sportu - morate to ponoviti mnogo puta da biste sigurno pobijedili.

Pronađite kolekciju gde god želite, obavezno sa rešenjima, detaljna analiza i odluči, odluči, odluči!

Možete koristiti naše zadatke (opciono) i mi ih, naravno, preporučujemo.

Da biste bolje koristili naše zadatke, morate pomoći da produžite život YouClever udžbenika koji trenutno čitate.

Kako? Postoje dvije opcije:

  1. Otključajte sve skrivene zadatke u ovom članku - 299 rub.
  2. Otključajte pristup svim skrivenim zadacima u svih 99 članaka udžbenika - 499 rub.

Da, u našem udžbeniku imamo 99 takvih članaka i pristup svim zadacima i svim skrivenim tekstovima u njima može se odmah otvoriti.

Pristup svim skrivenim zadacima je omogućen za CIJELI vijek trajanja stranice.

U zakljucku...

Ako vam se ne sviđaju naši zadaci, pronađite druge. Samo nemojte stati na teoriji.

“Razumijem” i “Mogu riješiti” su potpuno različite vještine. Trebate oboje.

Pronađite probleme i riješite ih!

IN modernog društva sposobnost izvođenja operacija sa jednadžbama koje sadrže promjenljivu na kvadrat može biti korisna u mnogim područjima aktivnosti i široko se koristi u praksi u naučnom i tehničkom razvoju. Dokaz za to se može naći u dizajnu marine i riječni brodovi, avioni i projektili. Koristeći takve proračune, trajektorije kretanja najviše različita tijela, uključujući svemirske objekte. Primjeri sa rješenjem kvadratnih jednadžbi koriste se ne samo u ekonomskom predviđanju, u projektovanju i izgradnji zgrada, već iu najobičnijim svakodnevnim okolnostima. Mogu biti potrebni na planinarenju, na sportskim događajima, u trgovinama prilikom kupovine iu drugim vrlo čestim situacijama.

Podijelimo izraz na njegove sastavne faktore

Stepen jednačine je određen maksimalnom vrijednošću stepena varijable koju izraz sadrži. Ako je jednako 2, onda se takva jednadžba naziva kvadratnom.

Ako govorimo jezikom formula, onda se naznačeni izrazi, ma kako izgledali, uvijek mogu dovesti u formu kada lijeva strana izraz se sastoji od tri pojma. Među njima: ax 2 (tj. varijabla na kvadratu sa svojim koeficijentom), bx (nepoznata bez kvadrata sa svojim koeficijentom) i c (slobodna komponenta, odnosno običan broj). Sve ovo na desnoj strani jednako je 0. U slučaju kada takvom polinomu nedostaje jedan od njegovih sastavnih članova, sa izuzetkom ose 2, naziva se nepotpuna kvadratna jednačina. Prvo treba razmotriti primjere s rješavanjem takvih problema, vrijednosti varijabli u kojima je lako pronaći.

Ako izraz izgleda kao da ima dva člana na desnoj strani, tačnije ax 2 i bx, najlakši način da pronađete x je stavljanjem varijable iz zagrada. Sada će naša jednadžba izgledati ovako: x(ax+b). Zatim, postaje očigledno da je ili x=0, ili se problem svodi na pronalaženje varijable iz sljedećeg izraza: ax+b=0. Ovo je diktirano jednim od svojstava množenja. Pravilo kaže da proizvod dva faktora rezultira 0 samo ako je jedan od njih nula.

Primjer

x=0 ili 8x - 3 = 0

Kao rezultat, dobijamo dva korijena jednadžbe: 0 i 0,375.

Jednačine ove vrste mogu opisati kretanje tijela pod uticajem gravitacije, koja su se počela kretati iz određene tačke uzete kao ishodište koordinata. Ovdje matematička notacija poprima sljedeći oblik: y = v 0 t + gt 2 /2. Zamjenom potrebnih vrijednosti, izjednačavanjem desne strane sa 0 i pronalaženjem mogućih nepoznanica, možete saznati vrijeme koje prolazi od trenutka kada se tijelo diže do trenutka kada pada, kao i mnoge druge veličine. Ali o tome ćemo kasnije.

Faktoriranje izraza

Gore opisano pravilo omogućava rješavanje ovih problema u složenijim slučajevima. Pogledajmo primjere rješavanja kvadratnih jednadžbi ovog tipa.

X 2 - 33x + 200 = 0

Ovaj kvadratni trinom je potpun. Prvo, transformirajmo izraz i činimo ga faktorima. Ima ih dva: (x-8) i (x-25) = 0. Kao rezultat, imamo dva korijena 8 i 25.

Primjeri rješavanja kvadratnih jednadžbi u 9. razredu omogućavaju ovoj metodi da pronađe varijablu u izrazima ne samo drugog, već čak i trećeg i četvrtog reda.

Na primjer: 2x 3 + 2x 2 - 18x - 18 = 0. Kada se desna strana rastavlja na faktore s promjenljivom, postoje tri od njih, odnosno (x+1), (x-3) i (x+ 3).

Kao rezultat, postaje očigledno da ova jednadžba ima tri korijena: -3; -1; 3.

Kvadratni korijen

Drugi slučaj nepotpune jednačine drugog reda je izraz predstavljen jezikom slova na način da je desna strana konstruisana od komponenti ax 2 i c. Ovdje, da bi se dobila vrijednost varijable, slobodni termin se prenosi na desna strana, a nakon toga se kvadratni korijen uzima sa obje strane jednakosti. Treba napomenuti da u ovom slučaju obično postoje dva korijena jednačine. Jedini izuzetak mogu biti jednakosti koje uopće ne sadrže pojam s, gdje je varijabla jednaka nuli, kao i varijante izraza kada se desna strana pokaže kao negativna. U potonjem slučaju uopće nema rješenja, jer se gore navedene radnje ne mogu izvesti s korijenima. Treba razmotriti primjere rješenja kvadratnih jednačina ovog tipa.

U ovom slučaju, korijeni jednadžbe će biti brojevi -4 i 4.

Proračun površine zemljišta

Potreba za ovakvim proračunima pojavila se još u antičko doba, jer je razvoj matematike u tim dalekim vremenima u velikoj mjeri bio određen potrebom da se s najvećom preciznošću odrede površine i perimetri zemljišnih parcela.

Trebalo bi razmotriti i primjere rješavanja kvadratnih jednačina zasnovanih na problemima ove vrste.

Dakle, recimo da postoji pravougaona parcela čija je dužina 16 metara veća od širine. Trebali biste pronaći dužinu, širinu i obim lokacije ako znate da je njegova površina 612 m2.

Za početak, krenimo prvo potrebnu jednačinu. Označimo sa x širinu površine, tada će njena dužina biti (x+16). Iz napisanog proizilazi da je površina određena izrazom x(x+16), koji je, prema uslovima našeg zadatka, 612. To znači da je x(x+16) = 612.

Rješavanje kompletnih kvadratnih jednadžbi, a ovaj izraz je upravo to, ne može se raditi na isti način. Zašto? Iako lijeva strana još uvijek sadrži dva faktora, njihov proizvod uopće nije jednak 0, pa se ovdje koriste različite metode.

Diskriminantno

Prije svega, napravimo potrebne transformacije izgled ovog izraza će izgledati ovako: x 2 + 16x - 612 = 0. To znači da smo dobili izraz u obliku koji odgovara prethodno navedenom standardu, gdje je a=1, b=16, c=-612.

Ovo bi mogao biti primjer rješavanja kvadratnih jednadžbi pomoću diskriminanta. Ovdje se vrše potrebni proračuni prema šemi: D = b 2 - 4ac. Ova pomoćna veličina ne samo da omogućava pronalaženje traženih količina u jednačini drugog reda, već i određuje količinu moguće opcije. Ako je D>0, postoje dva; za D=0 postoji jedan korijen. U slučaju D<0, никаких шансов для решения у уравнения вообще не имеется.

O korijenima i njihovoj formuli

U našem slučaju, diskriminanta je jednaka: 256 - 4(-612) = 2704. Ovo sugerira da naš problem ima odgovor. Ako znate k, rješavanje kvadratnih jednadžbi mora se nastaviti pomoću formule u nastavku. Omogućava vam izračunavanje korijena.

To znači da je u prikazanom slučaju: x 1 =18, x 2 =-34. Druga opcija u ovoj dilemi ne može biti rešenje, jer se dimenzije parcele ne mogu meriti negativnim veličinama, što znači da je x (odnosno širina parcele) 18 m. Odavde izračunavamo dužinu: 18 +16=34, a obod 2(34+18)=104(m2).

Primjeri i zadaci

Nastavljamo naše proučavanje kvadratnih jednadžbi. Primjeri i detaljna rješenja nekoliko njih bit će dati u nastavku.

1) 15x 2 + 20x + 5 = 12x 2 + 27x + 1

Premjestimo sve na lijevu stranu jednakosti, izvršimo transformaciju, odnosno dobićemo onu vrstu jednačine koja se obično naziva standardnom i izjednačiti je sa nulom.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Sabiranjem sličnih odredimo diskriminanta: D = 49 - 48 = 1. To znači da će naša jednadžba imati dva korijena. Izračunajmo ih prema gornjoj formuli, što znači da će prvi od njih biti jednak 4/3, a drugi 1.

2) A sada da riješimo misterije druge vrste.

Hajde da saznamo ima li ovdje korijena x 2 - 4x + 5 = 1? Da bismo dobili sveobuhvatan odgovor, smanjimo polinom na odgovarajući uobičajeni oblik i izračunajmo diskriminant. U gornjem primjeru nije potrebno rješavati kvadratnu jednačinu, jer to uopće nije suština problema. U ovom slučaju, D = 16 - 20 = -4, što znači da zaista nema korijena.

Vietin teorem

Pogodno je rješavati kvadratne jednadžbe koristeći gornje formule i diskriminant, kada se iz vrijednosti potonjeg uzme kvadratni korijen. Ali to se ne dešava uvek. Međutim, u ovom slučaju postoji mnogo načina da se dobiju vrijednosti varijabli. Primjer: rješavanje kvadratnih jednadžbi pomoću Vietine teoreme. Ime je dobila po onom koji je živeo u 16. veku u Francuskoj i napravio briljantnu karijeru zahvaljujući njegovom matematičkom talentu i vezama na dvoru. Njegov portret se može vidjeti u članku.

Obrazac koji je slavni Francuz uočio bio je sljedeći. On je dokazao da se korijeni jednadžbe numerički sabiraju na -p=b/a, a njihov proizvod odgovara q=c/a.

Pogledajmo sada konkretne zadatke.

3x 2 + 21x - 54 = 0

Radi jednostavnosti, transformirajmo izraz:

x 2 + 7x - 18 = 0

Koristimo Vietin teorem, ovo će nam dati sljedeće: zbir korijena je -7, a njihov proizvod je -18. Odavde dobijamo da su korijeni jednadžbe brojevi -9 i 2. Nakon provjere, uvjerit ćemo se da se ove vrijednosti varijabli zaista uklapaju u izraz.

Parabola graf i jednadžba

Koncepti kvadratne funkcije i kvadratne jednadžbe su usko povezani. Primjeri za to su već navedeni ranije. Pogledajmo sada neke matematičke zagonetke malo detaljnije. Bilo koja jednačina opisanog tipa može se vizualno prikazati. Takav odnos, nacrtan kao graf, naziva se parabola. Njegove različite vrste prikazane su na donjoj slici.

Svaka parabola ima vrh, odnosno tačku iz koje izlaze njene grane. Ako je a>0, idu visoko do beskonačnosti, a kada je a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Vizuelni prikazi funkcija pomažu u rješavanju svih jednadžbi, uključujući one kvadratne. Ova metoda se naziva grafička. A vrijednost varijable x je koordinata apscise u tačkama gdje se linija grafikona seče sa 0x. Koordinate vrha se mogu pronaći pomoću formule koja je upravo data x 0 = -b/2a. I zamjenom rezultirajuće vrijednosti u originalnu jednadžbu funkcije, možete saznati y 0, odnosno drugu koordinatu vrha parabole, koja pripada osi ordinate.

Presjek grana parabole sa osom apscise

Postoji mnogo primjera rješavanja kvadratnih jednadžbi, ali postoje i opći obrasci. Pogledajmo ih. Jasno je da je presjek grafa sa 0x osom za a>0 moguć samo ako 0 ima negativne vrijednosti. I za a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Inače D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

Iz grafa parabole možete odrediti i korijene. Vrijedi i suprotno. To jest, ako nije lako dobiti vizualni prikaz kvadratne funkcije, možete izjednačiti desnu stranu izraza sa 0 i riješiti rezultirajuću jednadžbu. A znajući tačke preseka sa 0x osom, lakše je konstruisati graf.

Iz istorije

Koristeći jednadžbe koje sadrže kvadratnu varijablu, u starim danima nisu samo pravili matematičke proračune i određivali površine geometrijskih figura. Drevnima su takvi proračuni bili potrebni za velika otkrića u oblastima fizike i astronomije, kao i za pravljenje astroloških prognoza.

Kao što sugerišu savremeni naučnici, stanovnici Babilona bili su među prvima koji su rešili kvadratne jednačine. To se dogodilo četiri veka pre naše ere. Naravno, njihovi proračuni su se radikalno razlikovali od onih koji su trenutno prihvaćeni i ispali su mnogo primitivniji. Na primjer, mesopotamski matematičari nisu imali pojma o postojanju negativnih brojeva. Nisu im bile poznate i druge suptilnosti koje zna svaki savremeni školarac.

Možda čak i ranije od babilonskih naučnika, mudrac iz Indije Baudhayama počeo je rješavati kvadratne jednačine. To se dogodilo oko osam vekova pre Hristove ere. Istina, jednačine drugog reda, metode za rješavanje koje je on dao, bile su najjednostavnije. Osim njega, za slična pitanja nekada su se zanimali i kineski matematičari. U Evropi su kvadratne jednačine počele da se rešavaju tek početkom 13. veka, ali su ih kasnije u svojim radovima koristili veliki naučnici kao što su Newton, Descartes i mnogi drugi.

Učitavanje...Učitavanje...