Окислительно восстановительные реакции урок. Конспект урока по химии на тему;"Окислительно-восстановительные реакции". Анализ проведенного занятия

2 Урок химии в 8-м классе по теме «Окислительно-восстановительные реакции»

Аннотация: Урок химии по теме «Окислительно-во сстановительные реакции» предназначен для учащихся 8-х классов. На уроке раскрываются основные понятия об окислительно-вос становительных реакциях: степень окисления, окислитель, восстановитель, окисление, восстановление: формируется умение составлять записи ОВР методом электронного баланса.

Урок химии в 8-м классе по теме

«Окислительно-во сстановительные реакции»

ЦЕЛЬ УРОКА: формировать систему знаний об окислительно-вос становительных реакциях, научить составлять записи ОВР методом электронного баланса.

ЗАДАЧИ УРОКА:

Обучающие : рассмотреть сущность окислительно-вос становительных процессов, научить применять «степени окисления» для определения процессов окисления и восстановления; научить учащихся уравнивать записи окислительно-вос становительной реакции методом электронного баланса.

Развивающие : Совершенствовать умения высказывать суждение о типе химической реакции, анализируя степень окисления атомов в веществах; делать выводы, работать с алгоритмами, формировать интерес к предмету.

Воспитывающие : формировать потребность в познавательной деятельности и ценностное отношение к знаниям; анализировать ответы товарищей, прогнозировать результат работы, оценивать свою работу; воспитать культуру общения через работу в парах «ученик – ученик», «учитель – ученик».

Тип урока: Урок изучения нового материала.

Методы, используемые на уроке: Объяснительно-ил люстративный.

Понятия, вводимые на уроке: окислительно-вос становительные реакции; окислитель; восстановитель; процесс окисления; процесс восстановления.

Используемое оборудование и реактивы: таблица растворимости, периодическая система Д. И. Менделеева, соляная кислота, серная кислота, цинк в гранулах, магниевая стружка, раствор сульфата меди, железный гвоздь.

Форма работы: индивидуальная, фронтальная.

Время урока: (90 минут, 2 урока).

Ход урока

I . Организационный момент

II . Повторение пройденного материала

УЧИТЕЛЬ: Ребята, давайте вспомним с вами ранее изученный материал о степени окисления, который будет необходим нам на уроке.

Устный фронтальный опрос:

    Что такое электроотрицател ьность?

    Что такое степень окисления?

    Может ли степень окисления элемента быть равной нулю? В каких случаях?

    Какую степень окисления чаще всего проявляет кислород в соединениях?

Вспомните исключения.

    Какую степень окисления проявляют металлы в полярных и ионных соединениях?

    Как рассчитывается степень окисления по формулам соединений?

    Степень окисления кислорода почти всегда равна -2.

    Степень окисления водорода почти всегда равна +1.

    Степень окисления металлов всегда положительна и в максимальном значении почти всегда равна номеру группы.

    Степень окисления свободных атомов и атомов в простых веществах всегда равна 0.

    Суммарная степень окисления атомов всех элементов в соединении равна 0.

УЧИТЕЛЬ предлагает ученикам для закрепления сформулированных правил посчитать - найти степень окисления элементов в простых веществах и соединениях:

S , Н 2 , H 3 PO 4 , NaHSO 3, HNO 3 , Cu(NO 2 ) 2, NO 2 , Ва, Al.

Например: Какая будет степень окисления серы в серной кислоте?

В молекулах алгебраическая сумма степеней окисления элементов с учётом числа их атомов равна 0.

H 2 +1 S x O 4 -2

(+1) * 2 +X *1 + (-2) . 4 = 0

X = + 6

H 2 +1 S +6 O 4 -2

III . Изучение нового материала

УЧИТЕЛЬ: Многообразие классификаций химических реакций по различным признакам (направлению, числу и составу реагирующих и образующих веществ, использованию катализатора, тепловому эффекту) можно дополнить еще одним признаком. Это признак – изменение степени окисления атомов химических элементов, образующих реагирующие вещества.

По этому признаку различают реакции

Химические реакции

Реакции, протекающие с изменением реакции, протекающие без изменения степени окисления элементов степени окисления элементов

Например, в реакции

1 +5 -2 +1 -1 +1 -1 +1 +5 -2

AgNO 3 + HCl AgCl + HNO 3 (у доски пишет учащийся)

Степени окисления атомов химических элементов после реакции не изменились. А вот в другой реакции – взаимодействие соляной кислоты с цинком

2HCl + Zn ZnCl 2 + H 2 (у доски пишет учащийся)

атомы двух элементов, водорода и цинка, изменили свои степени окисления: водород с +1 на 0, а цинк – с 0 на +2. Следовательно, в этой реакции каждый атом водорода получил по одному электрону

2H + 2e H 2

а каждый атом цинка – отдал два электрона

Zn - 2е Zn

УЧИТЕЛЬ: Какие типы химических реакций вы знаете?

УАЩИЕСЯ: К ОВР относятся все реакции замещения, а также те реакции соединения и разложения, в которых участвуетхотя бы одно простое вещество .

УЧИТЕЛЬ: Дать определение ОВР.

Химические реакции, в результате которых происходит изменение степеней окисления атомов химических элементов или ионов, образующих реагирующие вещества, называют окислительно – восстановительны ми реакциями.

УЧИТЕЛЬ: Ребята, определите устно, какая из предложенных реакций окислительно-вос становительной не является :

1) 2Na + Cl 2 = 2NaCl
2) Na СL + AgNO 3 = NaNO 3 +AgCl↓
3) Zn + 2HCl = ZnCl
2 + H 2 ­

4) S +O 2 =SO 2

УЧАЩИЕСЯ: выполняют задание

УЧИТЕЛЬ: В качестве примеров ОВР продемонстрируем следующий опыт.

H 2 SO 4 + Mg MgSO 4 + H 2

Обозначим степень окисления всех элементов в формулах веществ – реагентов и продуктов этой реакции:

Как видно из уравнения реакции, атомы двух элементов магния и водорода, изменили свои степени окисления.

Что с ними произошло?

Магний из нейтрального атома превратился в условный ион в степени окисления +2, то есть отдал 2е:

Mg 0 – 2е Mg +2

Запишите в свой конспект:

Элементы или вещества, отдающие электроны называются восстановителями; в ходе реакции они окисляются .

Условный ион Н в степени окисления +1 превратился в нейтральный атом, то есть каждый атом водорода получил по одному электрону.

2Н +1 +2е Н 2

Элементы или вещества, принимающие электроны, называются окислителями ; в ходе реакции они восстанавливаютс я .<Приложение 1>

Эти процессы можно представить в виде схемы:

Соляная кислота + магний сульфат магния + водород

CuSO 4 + Fe (железный гвоздь) = Fe SO 4 + Cu (красивый красный гвоздь)

Fe 0 – 2 еFe +2

Cu +2 +2 еCu 0

Процесс отдачи электронов называется окислением , а принятия – восстановлением.

В процессе окисления степень окисления повышается , в процессе восстановления – понижается.

Эти процессы неразрывно связаны между собой.

УЧИТЕЛЬ: Давайте выполним задание по вышеописанному образцу.

Задание: Для окислительно – восстановительны х реакций укажите окислитель и восстановитель, процессы окисления и восстановления, составьте электронные уравнения:

1) BaO + SO 2 =BaSO 3

2) CuCl 2 + Fe = FeCl 2 + Cu

3) Li + O 2 = Li 2 O 3

4) CuSO 4 + 2KOH = Cu(OH) 2 ↓ + K 2 SO 4

II часть урока (2-ой урок)

Метод электронного баланса как способ составления уравнений ОВР

Далее рассмотрим составление уравнений окислительно-вос становительных реакций методом электронного баланса. В основе метода электронного баланса лежит правило: общее число электронов, которые отдаёт восстановитель, всегда равно общему числу электронов, которые присоединяет окислитель.

После объяснения учащиеся под руководством учителя составляют уравнения ОВР по планам, которые составил учитель к этому уроку <Приложение 2>.

Памятки находятся у каждого ученика на парте.

УЧИТЕЛЬ: Среди изученных нами реакций к окислительно – восстановительны м реакциям относятся:

    Взаимодействие металлов с неметаллами

2Mg + O 2 =2MgO

Окислитель O 2 +4e 2O -2 1 восстановление

2. Взаимодействие металлов с кислотой.

H 2 SO 4 + Mg =MgSO 4 +H 2

Восстановитель Mg 0 -2e Mg +2 2 окисление

Окислитель 2O -2 +4e O 2 0 1 восстановление

3. Взаимодействие металлов с солью.

Cu SO 4 + Mg =MgSO 4 +Cu

Восстановитель Mg 0 -2e Mg +2 2 окисление

Окислитель Cu +2 +2e Cu 0 1 восстановление

Диктуется реакция, один учащийся самостоятельно составляет схему реакции у доски:

H 2 + O 2 H 2 O

Определим, атомы каких элементов изменяют степень окисления.

(H 2 ° + O 2 ° → H 2 O 2).

Составим электронные уравнения процессов окисления и восстановления.

(H 2 ° -2e → 2H + – процесс окисления,

O 2 ° +4e → 2O - ² - процесс восстановления,

Н 2 – восстановитель, О 2 - окислитель)

Подберём общее делимое для отданных и принятых е и коэффициенты для электронных уравнений.

(∙2| Н 2 °-2е → 2Н + - процесс окисления, элемент – восстановитель;

∙1| O 2 ° +4e → 2O - ² - процесс восстановления, элемент – окислитель).

Перенесём эти коэффициенты в уравнение ОВР и подберём коэффициенты перед формулами других веществ.

2 H 2 + O 2 → 2 H 2 O .

IV . Закрепление изученного материала

Упражнения для закрепления материала:

    Какая схема превращения азота соответствует данному уравнению реакции

4NH 3 +5O 2 → 4NO + 6H 2 O

1) N +3 → N +2 3) N +3 → N -3

2) N -3 → N -2 4) N -3 → N +2

2) Установите соответствие между изменением степени окисления атома серы и схемой превращения вещества. Запишите цифры без пробелов и запятых.

СХЕМА ПРЕВРАЩЕНИЙ

A) H 2 S + O 2 → SO 2 + H 2 O

Б) H 2 SO 4 + Na → Na 2 SO 4 + H 2 S + H 2 O

В) SO 2 + Br 2 + H 2 O → H 2 SO 4 + HBr

ИЗМЕНЕНИЕ СТЕПЕНИ ОКИСЛЕНИЯ

1) Э +4 → Э +6

2) Э +6 → Э -2

3) Э +6 → Э +4

4) Э -2 → Э +6

5) Э -2 → Э +4 ответ (521)

3)Установите соответствие между схемой превращения и изменением степени окисления окислителя в ней.

СХЕМА ПРЕВРАЩЕНИЙ

A ) Cl 2 + K 2 MnO 4 → KMnO 4 + KCl

Б) NH 4 Cl + KNO 3 → KCl + N 2 O + H 2 O

В) HI + FeCl 3 → FeCl 2 + HCl + I 2

ИЗМЕНЕНИЕ СТЕПЕНИ

ОКИСЛЕНИЯ ОКИСЛИТЕЛЯ

1) Э +6 → Э +7

2) Э +5 → Э +1

3) Э +3 → Э +2

4) Э 0 → Э -1

5) Э -1 → Э 0 ответ (423)

V. Заключительное слово учителя

Окислительно-вос становительные реакции представляют собой единство двух противоположных процессов: окисления и восстановления. В этих реакциях число электронов, отдаваемых восстановителями, равно числу электронов, присоединяемых окислителями.Весь окружающий нас мир можно рассматривать как гигантскую химическую лабораторию, в которой ежесекундно протекают химические реакции, в основном окислительно-вос становительные.

V I . Рефлексия.

VI II . Домашнее задание: § 43, упр.1, 3, 7 стр.234-235.

Используемая литература:

    1.Габриелян О.С. «Химия. 8 класс: учеб. для общеобразоват. учреждений. –М. : Дрофа, 2010.

    Окислительно – восстановительны е реакции. Хомченко Г.П., Севастьянова К.И. - Из-во Просвещение, 1985.

    ПАМЯТКА ДЛЯ УЧАЩИХСЯ

    Приложение №1

    Важнейшие восстановители и окислители

    Восстановители

    Окислители

    Металлы, Н 2, уголь,

    СО – оксид углерода (II )

    H 2 S, SO 2 , H 2 SO 3 иеёсоли

    HJ, HBr, HCl

    SnCl 2 ,FeSO 4 ,MnSO 4 ,

    Cr 2 (SO 4 ) 3

    HNO 2 - азотистаякислота

    NH 3 – аммиак

    NO - оксид азота (II )

    Альдегиды, спирты,

    муравьиная и щавелевая кислоты,

    Катод при электролизе

    Галогены

    KMnO 4 , K 2 MnO 4 , MnO 2 , K 2 Cr 2 O 7 ,

    K 2 CrO 4

    HNO 3 -азотная кислота

    H 2 O 2 – пероксид водорода

    О 3 – озон, О 2

    H 2 SO 4 (конц.), H 2 S еO 4

    CuO , Ag 2 O , PbO 2

    Ионы благородных металлов

    (Ag + , Au 3+)

    FeCl 3

    Гипохлориты, хлораты и перхлораты

    «Царская водка»

    Анод при электролизе

    Приложение №2

    Алгоритм составления химических уравнений методом электронного баланса:

    1.Составить схему реакции.

    2.Определить степени окисления элементов в реагентах и продуктах реакции.

    Помните!

    • Степень окисления простых веществ равна 0;

      Степень окисления металлов в соединениях равна

    номеру группы этих металлов (для I - III группы).

      Степень окисления атома кислорода в

    соединениях обычно равна - 2, кроме H 2 O 2 -1 и ОF 2.

      Степень окисления атома водорода в

    соединениях обычно равна +1, кроме МеH (гидриды).

      Алгебраическая сумма степеней окисления

    элементов в соединениях равна 0.

    3.Определить, является реакция окислительно-вос становительной или она протекает без изменения степеней окисления элементов.

    4.Подчеркнуть элементы, степени окисления которых изменяются.

    5.Составить электронные уравнения процессов окисления и восстановления.

    6.Определить, какой элемент окисляется (его степень окисления повышается) и какой элемент восстанавливаетс я (его степень окисления понижается) в процессе реакции.

    7.В левой части схемы обозначить с помощью стрелок процесс окисления (смещение электронов от атома элемента) и процесс восстановления (смещение электронов к атому элемента)

    8.Определить восстановитель и окислитель.

    9.Сбалансировать число электронов между окислителем и восстановителем.

    10.Определить коэффициенты для окислителя и восстановителя, продуктов окисления и восстановления.

    11.Записать коэффициент перед формулой вещества, определяющего среду раствора.

    12.Проверить уравнение реакции.

    Приложение 3

    Самостоятельная работа для проверки знаний

    Вариант 1

    1. Проставьте степень окисления элементов в соединениях, формулы которых IBr , TeCl 4 , SeF e , NF 3 , CS 2 .

    2. В следующих схемах реакций укажите степень окисления каждого элемента и расставьте коэффициенты методом электронного баланса:

    1) F 2 + Хе → XeF 6 3) Na + Br 2 → NaBr

    2) S + H 2 → H 2 S 4) N 2 + Mg → Mg 3 N 2

    Вариант 2

    1.Проставьте степень окисления элементов в соединениях: H 2 S О 4 , HCN , HN О 2 , РС1 3

    2. Допишите уравнения реакций окисления-восста новления:

    1) CI 2 + Fe → 2) F 2 + I 2 → 3) Ca + С→ 4) С + H 2 →

    Укажите степени окисления элементов в полученных продуктах.

    Вариант 3

    1. Проставьте степень окисления в соединениях, формулы которых XeF 4 , CC 1 4 , РС1 б, SnS 2 .

    2. Напишите уравнения реакций: а) растворения магния в растворе серной кислоты; б) взаимодействия раствора бромида натрия с хлором. Какой элемент окисляется и какой восстанавливаетс я?

    Вариант 4

    1. Составьте формулы следующих соединений: а) нитрида лития (соединения лития с азотом); б) сульфида алюминия (соединения алюминия с серой); в) фторида фосфора, в которых электроположител ьный элемент проявляет максимальную степень окисления.

    2. Напишите уравнения реакций: а) иодида магния с бромом; б) растворения магния в растворе бромоводородной кислоты. Укажите, что в каждом случае является окислителем и что - восстановителем.

    Вариант 5

    1.Составьте формулы следующих соединений: а) фтора с ксеноном; б) бериллия с углеродом, в которых электроположител ьный элемент проявляет максимальную степень окисления.

    2. Расставьте коэффициенты методом электронного баланса в следующих схемах:

    1) KI + Cu(N О 3 ) 2 CuI + I 2 + KN О 3

    2) MnS + HN О 3 ( конц .) MnS О 4 + N О 2 + H 2 О

    Вариант 6

    1. Проставьте степени окисления каждого элемента в соединениях, формулы которых Na 2 S О 3 , КСЮ 3 , NaCIO , Na 2 Cr О 4 ,N Н 4 СlO 4 , BaMn О 4 .

    2. Напишите уравнения реакций: а) иодида лития с хлором; б) лития с соляной кислотой. Проставьте степени окисления всех элементов и коэффициенты по методу электронного баланса.

    Вариант 7

    1. Вычислите степени окисления марганца, хрома и азота в соединениях, формулы которых КMnO 4 , Na 2 Cr 2 О 7 , NH 4 N О 3 .

    2. Проставьте степени окисления каждого элемента и расставьте коэффициенты, используя метод электронного баланса в следующих схемах:

    2) H 2 S О 3 + I 2 + H 2 О → H 2 S О 4 + HI

    Вариант 8

    1. Какова степень окисления углерода в оксиде углерода (IV ) и изменяется ли

Тема урока: Окислительно-восстановительные реакции.

Цель урока: Обобщить, систематизировать и расширить знания учащихся об окислительно-восстановительных реакциях, важнейших окислителях и продуктах их восстановления.

Задачи:

    Закрепить умение определять степени окисления элементов, окислитель и восстановитель, расставлять коэффициенты методом электронного баланса.

    Совершенствовать умение определять окислительно-восстановительные свойства веществ, прогнозировать продукты реакций в зависимости от активности металлов, концентрации кислот и реакции среды раствора.

    Выработать умение составлять уравнения химических реакций, протекающих в различных средах на примере соединений марганца.

    Показать разнообразие и значение ОВР в природе и повседневной жизни.

    Продолжить подготовку к ЕГЭ по химии.

Ход урока

1. Организационный момент

Добрый день! Хорошего вам настроения!

Тема нашего урока: «Окислительно – восстановительные реакции» (Презентация. слайд 1)

Окислительно-восстановительные реакции принадлежат к числу наиболее распространенных химических реакций и имеют огромное значение в теории и практике. Важнейшие процессы на планете связаны с этим типом химических реакций. Человечество давно пользовалось ОВР, вначале не понимая их сущности. Лишь к началу XX века была создана электронная теория окислительно – восстановительных процессов. На уроке предстоит вспомнить основные положения этой теории, метод электронного баланса, научиться составлять уравнения химических реакций, протекающих в растворах, и выяснить от чего зависит механизм таких реакций.

2. Повторение и обощение изученного ранее материала

Для вас тема ОВР не нова, она проходит красной нитью через весь курс химии. Поэтому предлагаю повторить некоторые понятия и умения по данной теме.

Первый вопрос: «Что такое степень окисления?». Без этого понятия и умения расставлять степени окисления химических элементов не возможно рассмотрение данной темы.

/ Степень окисления – это условный заряд атома химического элемента в соединении, вычисленный на основе предположения, что все соединения состоят только из ионов. Степень окисления может быть положительной, отрицательной или равняться нулю, что зависит от природы соответствующих соединений./

Одни элементы имеют постоянные степени окисления, другие - переменные.

Например, к элементам с постоянной положительной степенью окисления относят щелочные металлы: Li +1 , Na +1 , K +1 , Rb +1 , Cs +1 , Fr +1 , следующие элементы II группы периодической системы: Ве +2 , Mg +2 , Ca +2 , Sr +2 , Ва +2 , Ra +2 , Zn +2 , а также элемент III А группы - А1 +3 и некоторые другие. Металлы в соединениях всегда имеют положительную степень окисления.

Из неметаллов постоянную отрицательную степень окисления (-1) имеет F.

В простых веществах, образованных атомами металлов или неметаллов, степени окисления элементов равны нулю, например: Na°, Al°, Fe°, Н 2 0 , О 2 0 , F 2 0 , Cl 2 0 , Br 2 0 .

Для водорода характерны степени окисления: +1 (Н 2 0), -1 (NaH).

Для кислорода характерны степени окисления: -2 (Н 2 0), -1 (Н 2 О 2), +2 (OF 2).

Следует помнить, что в целом молекула электронейтральна, поэтому в любой молекуле алгебраическая сумма степеней окисления равна нулю, а в сложном ионе – заряду иона.

Например, рассчитаем степень окисления хрома в дихромате калия K 2 Cr 2 O 7 .

    Степень окисления калия +1, кислорода -2.

    Подсчитаем число отрицательных зарядов: 7 (-2) = -14

    Число положительных зарядов должно быть + 14. На калий приходится два положительных заряда, следовательно, на хром – 12.

    Так как в формуле два атома хрома, 12 делим на два: 12: 2 = 6.

    6 – это степень окисления хрома.

Проверка: алгебраическая сумма положительных и отрицательных степеней окисления элементов равна нулю, молекула электронейтральна.

Самостоятельная работа № 1 по инструктивной карте: пользуясь приведенными сведениями, рассчитайте степени окисления элементов в соединениях: MnO 2 , H 2 SO 4 , K 2 SO 3 , H 2 S, KMnO 4.

Что же представляют собой окислительно – восстановительные реакции с точки зрения понятия «степень окисления химических элементов»? (слайд 2)

/ Окислительно – восстановительные реакции – это такие реакции, в которых одновременно протекают процессы окисления и восстановления и, как правило, изменяются степени окисления элементов./

Рассмотрим процесс на примере взаимодействия цинка с разбавленной серной кислотой:

При составлении этого уравнения используется метод электронного баланса. Метод основан на сравнении степеней окисления атомов в исходных веществах и продуктах реакции. Основное требование при составлении уравнений этим методом: число отданных электронов должно быть равно числу принятых электронов.

    Окислительно - восстановительные реакции – это такие реакции, при которых происходит переход электронов от одних атомов, молекул или ионов к другим.

    Окисление – это процесс отдачи электронов, степень окисления при этом повышается.

    Восстановление – это процесс присоединения электронов, степень окисления при этом понижается.

    Атомы, молекулы или ионы, отдающие электроны, окисляются; являются восстановителями.
    Атомы, ионы или молекулы, принимающие электроны, восстанавливаются; являются окислителями.

    Окисление всегда сопровождается восстановлением, восстановление связано с окислением.

    Окислительно – восстановительные реакции – единство двух противоположных процессов: окисления и восстановления.

Самостоятельная работа № 2 по инструктивной карте: методом электронного баланса найдите и поставьте коэффициенты в следующей схеме окислительно –восстановительной реакции:

MnO 2 + H 2 SO 4 → MnSO 4 + O 2 + H 2 O (2MnO 2 + 2H 2 SO 4 → 2MnSO 4 + O 2 +2H 2 O)

Однако научиться находить коэффициенты в ОВР еще не значит уметь их составлять. Нужно знать поведение веществ в ОВР, предусматривать ход реакций, определять состав образующихся продуктов в зависимости от условий реакции.

Для того чтобы разобраться, в каких случаях элементы ведут себя как окислители, а в каких – как восстановители, нужно обратиться к периодической системе Д.И.Менделеева. Если речь идет о простых веществах, то восстановительные свойства должны быть присущи тем элементам, которые имеют больший по сравнению с остальными атомный радиус и небольшое (1 - 3) число электронов на внешнем энергетическом уровне. Поэтому они могут сравнительно легко их отдавать. Это в основном металлы. Наиболее сильными восстановительными свойствами из них обладают щелочные и щелочноземельные металлы, расположенные в главных подгруппах I и II групп (например, натрий, калий, кальций и др.).

Наиболее типичные неметаллы, имеющие близкую к завершению структуру внешнего электронного слоя и значительно меньший по сравнению с металлами того же периода атомный радиус, довольно легко принимают электроны и ведут себя в окислительно-восстановительных реакциях как окислители. Наиболее сильными окислителями являются легкие элементы главных подгрупп VI – VII групп, например фтор, хлор, бром, кислород, сера и др.

Вместе с тем надо помнить, что деление простых веществ на окислители и восстановители так же относительно, как и деление на металлы и неметаллы. Если неметаллы попадают в среду, где присутствует более сильный окислитель, то они могут проявлять восстановительные свойства. Элементы в разных степенях окисления могут вести себя по-разному.

Если элемент имеет свою высшую степень окисления, то он может быть только окислителем. Например, в HN +5 O 3 азот в состоянии + 5 может быть только окислителем и принимать электроны.

Только восстановителем может быть элемент, находящийся в низшей степени окисления. Например, в N -3 Н 3 азот в состоянии -3 может отдавать электроны, т.е. является восстановителем.

Элементы в промежуточных положительных степенях окисления могут, как отдавать, так и принимать электроны и, следовательно, способны вести себя как окислители или восстановители в зависимости от условий. Например, N +3 , S +4 . Попадая в среду с сильным окислителем, ведут себя как восстановители. И, наоборот, в восстановительной среде они ведут себя как окислители.

По окислительно – восстановительным свойствам вещества можно разделить на три группы:

    окислители

    восстановители

    окислители - восстановители

Самостоятельная работа № 3 по инструктивной карте: в какой из приведенных схем уравнений реакций MnO 2 проявляет свойства окислителя, а в какой – свойства восстановителя:

    2MnO 2 + O 2 + 4KOH = 2K 2 MnO 4 + 2H 2 O (MnO 2 – восстановитель)

    MnO 2 + 4HCI = MnCI 2 + CI 2 + 2H 2 O (MnO 2 – окислитель)

3. Углубление и расширение знаний

Важнейшие окислители и продукты их восстановления

1. Серная кислота - Н 2 SO 4 является окислителем

А) Уравнение взаимодействия цинка с разбавленной Н 2 SO 4 (слайд 3)

Какой ион является окислителем в данной реакции? (H +)

Продуктом восстановления металлом, стоящим в ряду напряжения до водорода, является H 2 .

Б) Рассмотрим другую реакцию – взаимодействие цинка с концентрированной Н 2 SO 4 (слайд 4)

Какие атомы меняют степень окисления? (цинк и сера)

Концентрированная серная кислота (98%) содержит 2% воды, и соль получается в растворе. В реакции участвуют фактически сульфат – ионы. Продуктом восстановления является сероводород.

В зависимости от активности металла продукты восстановления концентрированной Н 2 SO 4 разные: H 2 S, S, SO 2 .

2. Другая кислота – азотная – также окислитель за счет нитрат – иона NO 3 - . Окислительная способность нитрат – иона значительно выше иона H + , и ион водорода не восстанавливается до атома, поэтому при взаимодействии азотной кислоты с металлами, никогда не выделяется водород, а образуются различные соединения азота. Это зависит от концентрации кислоты и активности металла. Разбавленная азотная кислота восстанавливается глубже, чем концентрированная (для одного и того же металла) (слайд 6)

На схемах указаны продукты, содержание которых максимально среди возможных продуктов восстановления кислот

Золото и платина не реагируют с HNO 3 , но эти металлы растворяются в «царской водке» - смеси концентрированных соляной и азотной кислот в соотношении 3: 1.

Au + 3HCI (конц.) + HNO 3 (конц.) = AuCI 3 + NO + 2H 2 O

3. Наиболее сильным окислителем из числа простых веществ является фтор. Но он слишком активен, и его трудно получить в свободном виде. Поэтому в лабораториях в качестве окислителя используют перманганат калия KMnO 4 . Его окислительная способность зависит от концентрации раствора, температуры и среды.

Создание проблемной ситуации: Я готовила к уроку раствор перманганата калия («марганцовка»), пролила стакан с раствором и испачкала свой любимый химический халат. Предложите (проделав лабораторный опыт) вещество, с помощью которого можно очистить халат.

Реакции окисления – восстановления могут протекать в различных средах. В зависимости от среды может изменяться характер протекания реакции между одними и теми же веществами: среда влияет на изменение степеней окисления атомов.

Обычно для создания кислотной среды добавляют серную кислоту. Соляную и азотную применяют реже, т.к. первая способна окисляться, а вторая сама являетсясильным окислителем и может вызвать побочные процессы. Для создания щелочной среды применяют гидроксид калия или натрия, нейтральной – воду.

Лабораторный опыт: (правила ТБ)

В четыре пронумерованные пробирки налито по 1-2 мл разбавленного раствора перманганата калия. В первую пробирку добавьте несколько капель раствора серной кислоты, во вторую – воду, в третью – гидроксид калия, четвертую пробирку оставьте в качестве контрольной. Затем в первые три пробирки прилейте, осторожно взбалтывая, раствор сульфита натрия. Отметьте. Как изменяется окраска раствора в каждой пробирке. (слайды 7, 8)

Результаты лабораторного опыта:

Продукты восстановления KMnO 4 (MnO 4 -):

    в кислой среде – Mn +2 (соль), бесцветный раствор;

    в нейтральной среде – MnO 2 , бурый осадок;

    в щелочной среде - MnO 4 2- , раствор зеленого цвета. (слайд 9,)

К схемам реакций:

KMnO 4 + Na 2 SO 3 + H 2 SO 4 → MnSO 4 + Na 2 SO 4 + K 2 SO 4 + H 2 O

KMnO 4 + Na 2 SO 3 + H 2 O → MnO 2 ↓ + Na 2 SO 4 + KOH

KMnO 4 + Na 2 SO 3 + К OH → Na 2 SO 4 + K 2 MnO 4 + H 2 O

Подберите коэффициенты методом электронного баланса. Укажите окислитель и восстановитель (слайд 10)

(Задание разноуровневое: сильные учащиеся записывают продукты реакции самостоятельно)

Вы проделали лабораторный опыт, предложите вещество, с помощью которого можно очистить халат.

Демонстрационный опыт:

Пятна от раствора перманганата калия быстро выводятся раствором пероксида водорода, подкисленным уксусной кислотой:

2KMnO 4 + 9H 2 O 2 + 6CH 3 COOH = 2Mn(CH 3 COO) 2 +2CH 3 COOK + 7O 2 + 12H 2 O

Старые пятна перманганата калия содержат оксид марганца (IV), поэтому будет протекать еще одна реакция:

MnO 2 + 3H 2 O 2 + 2CH 3 COOH = Mn(CH 3 COO) 2 + 2O 2 + 4H 2 O (слайд 12)

После выведения пятен кусок ткани необходимо промыть водой.

Значение окислительно – восстановительных реакций

В рамках одного урока невозможно рассмотреть все многообразие окислительно-восстановительных реакций. Но их значение в химии, технологии, повседневной жизни человека трудно переоценить.

Ученик: Окислительно-восстановительные реакции лежат в основе получения металлов и сплавов, водорода и галогенов, щелочей и лекарственных препаратов.

С окислительно – восстановительными реакциями связано функционирование биологических мембран, многие природные процессы: обмен веществ, брожение, дыхание, фотосинтез. Без понимания сущности и механизмов протекания окислительно-восстановительных реакций невозможно представить работу химических источников тока (аккумуляторов и батареек), получение защитных покрытий, виртуозную обработку металлических поверхностей изделий.

Для целей отбеливания и дезинфекции пользуются окислительными свойствами таких наиболее известных средств, как пероксид водорода, перманганат калия, хлор и хлорная, или белильная, известь.

Хлор как сильный окислитель используют для стерилизации чистой воды и обеззараживания сточных вод.

4. Закрепление изученного материала

Тест :

    В кислой среде KMnO 4 восстанавливается до:

  1. Концентрированная H 2 SO 4 при обычной температуре пассивирует:

  2. Концентрированная HNO 3 не реагирует с металлом:

  3. Разбавленная HNO 3 с активными металлами восстанавливается до:

  4. Какой продукт восстановления KMnO 4 пропущен: 2KMnO 4 + 3K 2 SO 3 + H 2 O = + 3K 2 SO 4 + 2KOH

(взаимопроверка тестов в парах)

5. Домашнее задание

Используя схемы, данные на уроке, закончите уравнения реакций и расставьте в них коэффициенты методом электронного баланса:

    AI + H 2 SO 4 (конц.) →

    Ag + HNO 3 (конц.) →

    KBr + KMnO 4 + H 2 SO 4 → …….. + Br 2 + K 2 SO 4 + H 2 O (слайд 13)

6.Подведение итогов урока

Инструктивная карта

I . Повторение и обобщение изученного ранее материала

Задание 1: Рассчитайте степени окисления элементов в соединениях:

MnO 2 , H 2 SO 4 , K 2 SO 3 , H 2 S, KMnO 4 .

Задание 2: Методом электронного баланса найдите и поставьте коэффициенты в следующей схеме окислительно – восстановительной реакции:

MnO 2 + H 2 SO 4 → MnSO 4 + O 2 + H 2 O

Задание 3: В какой из приведенных схем уравнений реакций MnO 2 проявляет свойства окислителя, а в какой – свойства восстановителя:

А) 2 MnO 2 + O 2 + 4 KOH = 2 K 2 MnO 4 + 2 H 2 O Б) MnO 2 + 4 HCI = MnCI 2 + CI 2 + 2 H 2 O

II . Углубление и расширение знаний:

Лабораторный опыт: (соблюдайте правила ТБ)

В четыре пронумерованные пробирки налито по 1-2 мл разбавленного раствора перманганата калия. В первую пробирку добавьте несколько капель раствора серной кислоты, во вторую – воду, в третью – гидроксида калия, четвертую пробирку оставьте в качестве контрольной. Затем в первые три пробирки прилейте, осторожно взбалтывая, раствор сульфита натрия.

Отметьте как изменяется окраска раствора в каждой пробирке:

1 пробирка -

2 пробирка –

3 пробирка –

4 пробирка - контроль

Задание: К схемам реакций:

KMnO 4 + Na 2 SO 3 + H 2 SO 4 MnSO 4 + Na 2 SO 4 + K 2 SO 4 + H 2 O

KMnO 4 + Na 2 SO 3 + H 2 O MnO 2 ↓ + Na 2 SO 4 + KOH

KMnO 4 + Na 2 SO 3 + К OH Na 2 SO 4 + K 2 MnO 4 + H 2 O

Подберите коэффициенты методом электронного баланса. Укажите окислитель и восстановитель.

III . Закрепление изученного материала

Тест:

1.В кислой среде KMnO 4 восстанавливается до:

А) соль Mn +2 Б) MnO 2 В) K 2 MnO 4

2.Концентрированная H 2 SO 4 при обычной температуре пассивирует:

А) Zn Б) Сu В) AI

3.Концентрированная HNO 3 не реагирует с металлом:

А) Ca Б) Au В) Mg

4.Разбавленная HNO 3 с активными металлами восстанавливается до:

А)NO Б) N 2 В) N 2 O

5. Какой продукт восстановления KMnO 4 пропущен:

2KMnO 4 + 3K 2 SO 3 + H 2 O = + 3K 2 SO 4 + 2KOH

А) MnO 2 Б) 2MnSO 4 В) K 2 MnO 4

Оценка за тест (по результатам взаимопроверки)

IV . Домашнее задание

Используя схемы, данные на уроке, закончите уравнения реакций и расставьте в них коэффициенты:

1. AI + H 2 SO 4 (конц.) →

2. Ag + HNO 3 (конц.) →

3. KBr + KMnO 4 + H 2 SO 4 → …….. + Br 2 + K 2 SO 4 + H 2 O

    Степень окисления

    Окислительно-восстановительные свойства веществ

    Виды реакций окисления-восстановления

    Направление окислительно-восстановительных реакций

К окислительно-восстановительным реакциям относятся такие, которые сопровождающиеся перемещением электронов от одних частиц к другим. При рассмотрении закономерностей протекания окислительно-восстановительных реакций используется понятие степени окисления.

1. Степень окисления

Понятие степени окисления введено для характеристики состояния элементов в соединениях. Под степенью окисления понимается условный заряд атома в соединении, вычисленный исходя из предположения, что соединение состоит из ионов . Степень окисления обозначается арабской цифрой со знаком плюс при смещении электронов от данного атома к другому атому и цифрой со знаком минус при смещении электронов в обратном направлении. Цифру со знаком “+” или “-“ ставят над символом элемента. Степень окисления указывает состояние окисления атома и представляет собой всего лишь удобную форму для учета переноса электронов: ее не следует рассматривать ни как эффективный заряд атома в молекуле (например, в молекуле LiF эффективные заряды Li и F равны соответственно + 0,89 и -0,89, тогда как степени окисления +1 и -1), ни как валентность элемента (например, в соединениях CH 4 , CH 3 OH, HCOOH, CO 2 валентность углерода равна 4, а степени окисления соответственно равны -4, -2, +2, +4). Численные значения валентности и степени окисления могут совпадать по абсолютной величине лишь при образовании соединений с ионной структурой.

При определении степени окисления используют следующие правила:

Атомы элементов, находящихся в свободном состоянии или в виде молекул простых веществ, имеют степень окисления, равную нулю, например Fe, Cu, H 2 , N 2 и т.п.

Степень окисления элемента в виде одноатомного иона в соединении, имеющем ионное строение, равна заряду данного иона,

1 -1 +2 -2 +3 -1

например, NaCl , Cu S, AlF 3 .

Водород в большинстве соединений имеет степень окисления +1, за исключением гидридов металлов (NaH, LiH), в которых степень окисления водорода равна -1.

Наиболее распространенная степень окисления кислорода в соединениях -2 , за исключением пероксидов (Na 2 O 2 , Н 2 О 2), в которых степень окисления кислорода равна –1 и F 2 O, в котором степень окисления кислорода равна +2.

Для элементов с непостоянной степенью окисления ее значение можно рассчитать, зная формулу соединения и учитывая, что алгебраическая сумма степеней окисления всех элементов в нейтральной молекуле равна нулю. В сложном ионе эта сумма равна заряду иона. Например, степень окисления атома хлора в молекуле HClO 4 , вычисленная исходя из суммарного заряда молекулы = 0, где х – степень окисления атома хлора), равна +7. Степень окисления атома серы в ионе (SO 4) 2- [х + 4(-2) = -2] равна +6.

2. Окислительно-восстановительные свойства веществ

Любая окислительно-восстановительная реакция состоит из процессов окисления и восстановления. Окисление - это процесс отдачи электронов атомом, ионом или молекулой реагента. Вещества, которые отдают свои электроны в процессе реакции и при этом окисляются, называют восстановителями.

Восстановление – это процесс принятия электронов атомом, ионом или молекулой реагента.

Вещества, которые принимают электроны и при этом восстанавливаются, называют окислителями.

Реакции окисления-восстановления всегда протекают как единый процесс, называемый окислительно-восстановительной реакцией. Например, при взаимодействии металлического цинка с ионами меди восстановитель (Zn) отдает свои электроны окислителю – ионам меди (Cu 2+):

Zn + Cu 2+ Zn 2+ + Cu

Медь выделяется на поверхности цинка, а ионы цинка переходят в раствор.

Окислительно-восстановительные свойства элементов связаны со строением их атомов и определяются положением в периодической системе Д.И. Менделеева. Восстановительная способность элемента обусловлена слабой связью валентных электронов с ядром. Атомы металлов, содержащие на внешнем энергетическом уровне небольшое число электронов склонны к их отдаче, т.е. легко окисляются, играя роль восстановителей. Самые сильные восстановители – наиболее активные металлы.

Критерием окислительно-восстановительной активности элементов может служить величина их относительной электроотрицательности : чем она выше, тем сильнее выражена окислительная способность элемента, и чем ниже, тем ярче проявляется его восстановительная активность. Атомы неметаллов (например, F, O) обладают высоким значением сродства к электрону и относительной электроотрицательности, они легко принимают электроны, т.е. являются окислителями.

Окислительно-восстановительные свойства элемента зависят от степени его окисления. У одного и того же элемента различают низшую, высшую и промежуточные степени окисления.

В качестве примера рассмотрим серу S и ее соединения H 2 S, SO 2 и SO 3 . Связь между электронной структурой атома серы и его окислительно-восстановительными свойствами в этих соединениях наглядно представлена в таблице 3.1.

В молекуле H 2 S атом серы имеет устойчивую октетную конфигурацию внешнего энергетического уровня 3s 2 3p 6 и поэтому не может больше присоединять электроны, но может их отдавать.

Состояние атома, в котором он не может больше принимать электроны, называется низшей степенью окисления.

В низшей степени окисления атом теряет окислительную способность и может быть только восстановителем.

Таблица.1.

Формула вещества

Электронная формула

Окислительно-восстановительные свойства

1s 2 2s 2 2p 6 3s 2 3p 6

–2
; - 6
; - 8
восстановитель

1s 2 2s 2 2p 6 3s 2 3p 4

+ 2

окислитель

–4
;

- 6

восстановитель

1s 2 2s 2 2p 6 3s 2 3p o

+ 4
;

+ 6

окислитель

-2
восстановитель

1s 2 2s 2 2p 6 3s o 3p 0

+ 2
; + 6
;

+ 8

окислитель

В молекуле SO 3 все внешние электроны атома серы смещены к атомам кислорода. Следовательно, в этом случае атом серы может только принимать электроны, проявляя окислительные свойства.

Состояние атома, в котором он отдал все валентные электроны, называется высшей степенью окисления. Атом, находящийся в высшей степени окисления, может быть только окислителем.

В молекуле SO 2 и элементарной сере S атом серы находится в промежуточных степенях окисления , т.е., имея валентные электроны, атом может их отдавать, но, не имея завершенного р - подуровня, может и принимать электроны до его завершения.

Атом элемента, имеющий промежуточную степень окисления, может проявлять как окислительные, так и восстановительные свойства, что определяется его ролью в конкретной реакции.

Так, например роль сульфит - аниона SOв следующих реакциях различна:

5Na 2 SO 3 +2KMnO 4 + 3H 2 SO 4  2MnSO 4 + 5Na 2 SO 4 + K 2 SO 4 + 3H 2 O (1)

H 2 SO 3 + 2 H 2 S  3 S + 3 H 2 O (2)

В реакции (1) сульфит-анион SOв присутствии сильного окислителяKMnO 4 играет роль восстановителя; в реакции (2) сульфит-анион SO- окислитель, так как H 2 S может проявлять только восстановительные свойства.

Таким образом, среди сложных веществ восстановителями могут быть:

1. Простые вещества, атомы которых обладают низкими значениями энергии ионизации и электроотрицательности (в частности, металлы).

2. Сложные вещества, содержащие атомы в низших степенях окисления:

HCl ,H 2 S ,N H 3

Na 2 S O 3 , Fe Cl 2 , Sn (NO 3) 2 .

Окислителями могут быть:

1. Простые вещества, атомы которых обладают высокими значениями сродства к электрону и электроотрицательности - неметаллы.

2. Сложные вещества, содержащие атомы в высших степенях окисления: +7 +6 +7

KMn O 4 , K 2 Cr 2 O 7 , HClO 4 .

3. Сложные вещества, содержащие атомы в промежуточных степенях окисления:

Na 2 S O 3 , Mn O 2 , Mn SO 4 .


Девиз урока: «Кто-то теряет, а кто-то находит…»

Цели урока:
Обучающие:
закрепить понятия “степень окисления”, процессы “окисления”, “восстановления”;
закрепить навыки в составлении уравнений окислительно-восстановительных реакций методом электронного баланса;
научить прогнозировать продукты окислительно-восстановительных реакций.
Развивающие:
Продолжить развитие логического мышления, умений наблюдать, анализировать и сравнивать, находить причинно-следственные связи, делать выводы, работать с алгоритмами, формировать интерес к предмету.
Воспитательные:
Формировать научное мировоззрение учащихся; совершенствовать трудовые навыки;
научить слушать учителя и своих одноклассников, быть внимательным к себе и окружающим, оценивать себя и других, вести беседу.

I. Организационный момент

Объявляется тема урока, обосновывается актуальность данной темы и её связь с жизнью. Окислительно-восстановительные процессы принадлежат к чис¬лу наиболее распространенных химических реакций и имеют огромное значение в теории и практике. С ними связаны процессы обмена веществ, протекающие в жи¬вом организме, гниение и брожение, фотосинтез. Окислительно-восстановительные процессы сопровождают круговороты веществ в приро¬де. Их можно наблюдать при сгорании топлива, в процессах коррозии металлов, при электролизе и выплавке металлов. С их помощью получают щёлочи, кислоты и другие ценные продукты.
Окислительно-восстановительные реакции лежат в основе преобразования энергии взаимодействующих химических веществ в электрическую энергию в гальванических и топливных элементах. Человечество давно пользовалось ОВР, вначале не понимая их сущности. Лишь к началу 20-го века была создана электронная теория окислительно-восстановительных процессов. На уроке предстоит вспомнить основные положения этой теории, а также научиться составлять уравнения химических реакций, протекающих в растворах, и выяснить от чего зависит механизм таких реакций.
II. Повторение и обобщение изученного ранее материала
1. Степень окисления.
Организация беседы, направленной на актуализацию опорных знаний о степени окисления и правилах ее определения, по следующим вопросам:
- Что такое электроотрицательность?
- Что такое степень окисления?
- Может ли степень окисления элемента быть равной нулю? В каких случаях?
- Какую степень окисления чаще всего проявляет кислород в соединениях?
- Вспомните исключения.
- Какую степень окисления проявляют металлы в полярных и ионных соединениях?
По итогам беседы формулируются правила определения степеней окисления
Для закрепления сформулированных правил предлагается определить степень окисления элементов в соединениях:
H2SO4, Н2, H2SO3, HCIO4, Ва, KMnO4, AI2(SO4)3, HNO3, Ba(NO3)2, HCN, K4, NH3, (HN4)2SO4 .
Данное задание с выборочными ответами используется для устного фронтального опроса.
2. Процессы окисления и восстановления. Окислительно-восстановительные реакции.
В ходе беседы происходит актуализация знаний об окислительно-восстановительных процессах.
Укажите тип химической реакции справа. По необходимости расставьте коэффициенты. Если с.о. элементов до и после реакции изменяются, то слева напишите слово «да», если не изменяются, то напишите слово «нет».
I вариант:
Hg + S → Hg S
NaNO3 →NaNO2 + O2
CuSO4 + NaOH →Na 2SO4 + Cu(OH)2
II вариант:
Al(OH)3 → Al 2O3 + H2O
H2O + P2O5 → H3PO4
Fe + HCl → FeCl2 + H2
Все виды работ проверяются вместе с классом. На доске остаются уравнения химических реакций, и далее классу предлагается ответить на вопросы:
1) Во всех ли случаях происходит изменение степеней окисления химических элементов? (нет).
2) Зависит ли это от типа химических реакций по числу реагентов и продуктов реакции? (нет).
Предлагаются вопросы:
- Что называется процессом восстановления?
- Как изменяется степень окисления элемента при восстановлении?
- Что такое окисление?
- Как изменяется степень окисления элемента при окислении?
- Дайте определение понятиям «окислитель» и «восстановитель».
С современной точки зрения изменение степени окисления связано с оттягиванием или перемещением электронов. Поэтому наряду с приведенным можно дать и другое определение: это такие реакции, при которых происходит переход электро¬нов от одних атомов, молекул или ионов к другим.
Делаем вывод: «В чем же заключается суть ОВР?»
Окислительно-восстановительные реакции представляют со¬бой единство двух противоположных процессов - окисления и восста¬новления. В этих реакциях число электронов, отдаваемых восстановителями, равно числу электронов, присоединяемых окислителями. При этом независимо от того, переходят ли электроны с одного атома на другой полностью или лишь частично, оттягиваются к одному из атомов, условно говорят только об отдаче или присоеди¬нении электронов. Вот почему выбран девиз урока: «Кто-то теряет, а кто-то находит…»
3. Функции соединений в ОВР.
1.Вычислив степени окисления элементов, докажите, что данные вещества проявляют свойства окислителей.
Cl2 , HClO4 , H2SO4 , KMnO4 , SO2
2.Вычислите степени окисления элементов, докажите, что данные вещества проявляют свойства восстановителей:
HCl, NH3, H2S, K, SO2
В результате выполнения этой работы учащиеся формируют правила определения функции соединения в ОВР:
1.Если элемент проявляет в соединении высшую степень окисления, то это соединение может быть только окислителем.
2. Если элемент проявляет в соединении низшую степень окисления, то это соединение может быть восстановителем
Решение проблемных вопросов:
- Может ли одно и то же вещество быть как окислителем, так и восстановителем?
- Может ли один и тот же элемент проявлять свойства как окислителя, так и восстановителя?
Формулирование третьего правила.
3. Если элемент проявляет в соединении промежуточную степень окисления, то это соединение может быть как восстановителем, так и окислителем.

III. Расстановка коэффициентов в уравнениях ОВР методом электронного баланса.

Отработка навыков определения степени окисления, составления схем окислительно-восстановительных реакций методом электронного баланса (работа у доски и в тетрадях) с развитием навыков рассуждения и анализа через комментарии ответов учащимися.
Методом электронного баланса подберите коэффициенты в схемах окислительно-восстановительных реакций и укажите процесс окисления и восстановления:
K2Cr2O7 + H2S + H2SO4 → K2SO4 + Cr2(SO4)3 + S + H2O

H2S + K2Cr2O7 + H2SO4 → S + Cr2(SO4)3 + K2SO4 + H2O

K2Cr2O7 + HCl → Cl2 + KCl + CrCl3 + H2O

H2O2 + KMnO4 + H2SO4 → O2 + K2SO4 + MnSO4 + H2O

Вопросы из части С (С1) КИМов ЕГЭ:

NaNO2 + KMnO4 + H2SO4 →NaNO3 + MnSO4 + …+ …

NaNO3 + NaI + H2SO4 →NO + I2 + … + …

KMnO4 + Na2SO3 + H2SO4 → MnSO4 + … + … + …

Проверка - фронтальный опрос, уточнение признаков окислительно-восстановительных реакций.
Вопросы из части В (В2) КИМов ЕГЭ:
Установите соответствие между уравнением реакции и изменением степени окисления окислителя в данной реакции:

A) S02 + N02 = S03+NO 1) -1 → 0
Б) 2NH3 + 2Na = 2NaNH2 + H2 2) 0 → -2
В) 4N02 + 02 + 2H20 = 4HN03 3) +4 → +2
Г) 4NH3 + 6NO = 5N2 + 6Н20 4) +1 → 0
5) +2 → 0
6) 0 → - 1

Уравнение реакции Изменение степени окисления окислителя

A) 2NH3 + 2Na = 2NaNH2 + Н2 1) -1 → 0
Б) H2S + 2Na = Na2S + H2 2) 0 → - 1
4NH3 + 6NO = 5N2 + 6Н20 3) +2→ 0
Г) 2H2S + 302 = 2S02 + 2Н20 4) + 1 → 0
5) +4 → +2
6) 0→ -2
Установите соответствие между уравнением реакции и вещества, являющегося восстановителем в данной реакции
Уравнение реакции Восстановитель
A) NO + N02 + H20 = 2HN02 1) N02
Б) SO2 + 2H2S = 3S + 2H20 2) H2S
Br2 + S02 + 2H20 = 2HBr + H2SO4 3) Br2
Г) 2КI + Вr2 = 2КВг + I2 4) S02
5) NO
6) KI
IV. Этап закрепления знаний (завершается тестом).
Тест
1) Чему равна низшая степень окисления серы?
а) –6; б) –4; в) –2; г) 0; д) +6.

2) Чему равна степень окисления фосфора в соединении Mg3P2?
а) +3; б) +5; в) 0; г) –2; д) –3.

3) Какие элементы имеют постоянную степень окисления +1?
а) Водород; б) литий; в) медь;
г) магний; д) селен.

4) Чему равна высшая степень окисления марганца?
а) –1; б) 0; в) +7; г) +4; д) +6.

5) Чему равна степень окисления хлора в соединении Са(СlO)2?
а) +2; б) +1; в) 0; г) –1; д) –2.

6) Какие из следующих веществ могут являться только окислителями?
а) NH3; б) Br2; в) KClO3; г) Fe; д) HNO3.

7) Как называется представленный ниже процесс и сколько электронов в нем участвует?

а) восстановление, 1е; б) окисление, 2е;
в) восстановление, 2е; г) окисление, 1е.

8) Какие из перечисленных веществ могут являться и окислителями, и восстановителями? Возможно несколько вариантов ответа.
а) SO2; б) Na; в) H2; г) K2Cr2O7; д) HNO2.

9) Как называется представленный ниже процесс и сколько электронов в нем участвует?

а) восстановление, 8е; б) окисление, 4е;
в) окисление, 8е; г) восстановление, 4е.

10) Какие из перечисленных ниже веществ могут быть только восстановителями? Возможно несколько вариантов ответа.
а) Н2S; б) KMnO4; в) SO2; г) NH3; д) Na.

Ответы. 1 – в; 2 – д; 3 – б, г; 4 – в; 5 – б; 6 – д; 7 – б; 8 – а, в, д; 9 – а; 10 – а, г, д.
V. Углубление и расширение знаний (Лекционная часть урока)
Значение окислительно-восстановительных реакций
Окислительно-восстановительные реакции сопровождают многие процессы, осуществляемые в промышленности и в различных сферах быта: горение газа в газовой плите, приготовление пищи, стирка, чистка предметов домашнего обихода, изготовление обуви, парфюмерных, текстильных изделий…
Зажигаем ли мы спичку, горят ли в небе причудливые фейерверки – все это окислительно-восстановительные процессы.
Для целей отбеливания и дезинфекции пользуются окислительными свойствами таких наиболее известных средств, как пероксид водорода, перманганат калия, хлор и хлорная, или белильная, известь.
Если требуется окислить с поверхности изделия какое-либо легко разрушающееся вещество, применяют пероксид водорода. Он служит для отбеливания шелка, перьев, меха. С его помощью также реставрируют старинные картины. Ввиду безвредности для организма пероксид водорода применяют в пищевой отрасли промышленности для отбеливания шоколада, рубцов и оболочек в производстве сосисок.
Дезинфицирующее действие перманганата калия тоже основано на его окислительных свойствах.
Хлор как сильный окислитель используют для стерилизации чистой воды и обеззараживания сточных вод. Хлор разрушает многие краски, на чем основано его применение при белении бумаги и тканей. Хлорная, или белильная, известь – это один из самых распространенных окислителей как в быту, так и в производственных масштабах.
В природе окислительно-восстановительные реакции чрезвычайно распространены. Они играют большую роль в биохимических процессах: дыхании, обмене веществ, нервной деятельности человека и животных. Проявление различных жизненных функций организма связано с затратой энергии, которую наш организм получает из пищи в результате окислительно-восстановительных реакций.
VI. Подведение итогов.

Выставляются оценки за урок и дается домашнее задание:
А. Определить степени окисления элементов по формулам:
HNO2, Fe2(SO4)3, NH3, NH4Cl, KClO3, Ва(NО3)2, НСlО4
Б. Расставить коэффициенты методом электронного баланса:
KMnO4 +Na2SO3+H2O → MnO2+ Na2 SO4+ KOH
С. KMnO4 + Na2SO3+ KOH → … + K2 MnO4 + …

Литература:

Габриелян О.С. Химия-8. М.: Дрофа, 2002;
Габриелян О.С., Воскобойникова Н.П., Яшукова А.В. Настольная книга учителя. 8 класс. М.: Дрофа, 2002;
Малая детская энциклопедия. Химия. М.: Русское энциклопедическое товарищество, 2001; Энциклопедия для детей «Аванта+». Химия. Т. 17. М.: Аванта+, 2001;
Хомченко Г.П., Севастьянова К.И. Окислительно-восстановительные реакции. М.: Просвещение, 1989.
В.А. Шелонцев. Знаковые модели и задачи: окислительно-восстановительные реакции. ООИПКРО, Омск- 2002
А.Г. Кульман. Общая химия, Москва-1989.
Полный текст материала Конспект урока для 8 класса "Окислительно-восстановительные реакции" смотрите в скачиваемом файле .
На странице приведен фрагмент.

Разработки уроков (конспекты уроков)

Основное общее образование

Линия УМК О. С. Габриеляна. Химия (8-9)

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Использованная литература:

  1. Настольная книга учителя химии. 8 класс. О.С. Габриелян, Н.П.Воскобойникова, А.В.Яшукова (М.:Дрофа). 2003г.
  2. ЭФУ Химия 8 класс. О.С. Габриелян, (М.:Дрофа).
  3. Рабочая тетрадь к учебнику О.С. Габриеляна Химия 8 класс. О.С. Габриелян, А.С. Сладков (М.:Дрофа-2013).

Цели урока :

  • обучающие: познакомить учащихся с новой классификацией химических реакций по признаку изменения степеней окислений элементов – окислительно-восстановительными реакциями, повторить понятия “окислитель”, “восстановитель”, “окисление”, “восстановление”;
  • развивающие : продолжить развитие логического мышления, формирование интереса к предмету, используя современные технологии в обучении.
  • воспитательные: формировать научное мировоззрение обучающихся, формирование культуры межличностного общения: оценивать свою работу..

Средства обучения :

  • Электронное приложение к учебнику «Химия 8 класс». О.С. Габриелян, (М.:Дрофа).
  • Интерактивное учебное пособие «НАГЛЯДНАЯ ХИМИЯ. Химия. 8-9 класс.» Москва: ООО «Экзамен-Медиа» 2011-2013

Учебник: ЭФУ Габриелян О.С. Химия.8 класс:– М.: Дрофа, 2015

Ход урока

1. Организационный этап

Подготовка обучающихся к работе на уроке. Правила работы и ТБ в смарт-классе при работе с ноутбуками

2. Актуализация знаний обучающихся

А) Вспомним все известные вам классификации химических реакций и признаки, которые лежат в основе каждой классификации. Повторение. «Типы химических реакций» (по средству обучения 2)

Работа по литературе 1:

1. По типу и составу реагирующих и образующихся веществ бывают реакции:

а) соединения;
б) разложения;
в) замещения;
г) обмена (в том числе и реакция нейтрализации).

2. По агрегатному состоянию веществ (фазе) различают реакции:

а) гомогенные;
б) гетерогенные.

3. По тепловому эффекту реакции делятся на:

а) экзотермические (в том числе реакции горения);
б) эндотермические.

4. По использованию катализатора выделяют реакции:

а) каталитические (в том числе ферментативные);
б) некаталитические.

5. По направлению различают реакции:

а) обратимые;
б) необратимые.

Б) Дать полную характеристику реакции синтеза оксида серы(6) из оксида серы(4) и кислорода:

3. Усвоение новых знаний по ЭФУ

А) Вспомним что такое С.О. и как он меняется при ХР. (Повторение с последующей проверкой по средству обучения 2.)


Б) Объяснение материала по ЭФУ стр. 263–265.



В) Работа по электронному приложению ЭФУ.


Г) Работа по литературе 2


4. Первичное закрепление знаний

А) Обучающиеся выполняют задание. ЭЛЕКТРОННОГО ПРИЛОЖЕНИЯ


При затруднении используем стр. 264-265 ЭФУ.

Б) Выполнение задания по электронному приложению, нахождение окислителя, восстановителя, переход электронов, работа у доски.

Loading...Loading...