Самые крупные из лейкоцитов. Лейкоциты, их виды, количество. Лейкоциты и лейкопении. Лейкоцитарная формула. Функции различных видов лейкоцитов. Причины понижения уровня лейкоцитов при беременности

Кровь беспрерывно циркулирует в системе кровеносных сосудов. Она выполняет в организме очень важные функции: дыхательную, транспортную, защитную и регуляторную, обеспечивая постоянство внутренней среды нашего организма.

Кровь - это одна из соединительных тканей, которая состоит из жидкого межклеточного вещества, имеющего сложный состав. Она включает в себя плазму и взвешенные в ней клетки или так называемые форменные элементы крови: лейкоциты, эритроциты и тромбоциты. Известно, что в 1 мм 3 крови находится лейкоцитов от 5 до 8 тыс., эритроцитов - от 4,5 до 5 млн, и тромбоцитов - от 200 до 400 тысяч.

Количество крови в организме здорового человека составляет примерно от 4,5 до 5 литров. 55-60% по объему занимает плазма, а на форменные элементы остается 40-45% всего объема. Плазма - это полупрозрачная жидкость желтоватого цвета, в составе которой имеется вода (90%), органические и минеральные вещества, витамины, аминокислоты, гормоны, продукты обмена.

Строение лейкоцитов

Эритроциты

В крови присутствуют эритроциты и лейкоциты. Их строение и функции отличны друг от друга. Эритроцит является клеткой, которая имеет форму двояковогнутого диска. Он не содержит ядра, а большую часть цитоплазмы занимает белок, который получил название гемоглобин. Он состоит из атома железа и белковой части, имеет сложную структуру. Гемоглобин переносит кислород в организме.

Эритроциты появляются в костном мозгу из клеток эритробластов. Большинство эритроцитов двояковогнутой формы, а остальные могут различаться. Например, они могут быть сферические, овальные, надкусанные, чашеобразные и т. д. Известно, что форма этих клеток может нарушаться вследствие разных болезней. Каждый эритроцит находится в крови от 90 до 120 дней, а после этого погибает. Гемолиз - это явление разрушения эритроцитов, что происходит преимущественно в селезенке, а также в печени и сосудах.

Тромбоциты

Строение лейкоцитов и тромбоцитов также отличается. Тромбоциты не имеют ядра, это маленькие клетки овальной или круглой формы. Если эти клетки активны, то на них образуются выросты, они напоминают звезду. Тромбоциты появляются в костном мозгу из мегакариобласта. «Работают» они всего от 8 до 11 дней, потом гибнут в печени, селезенке или легких.

Очень важны. Они способны поддерживать целостность сосудистой стенки, восстановить ее при повреждениях. Тромбоциты образуют тромб и тем самым останавливают кровотечение.

В современной диагностике расчет числа лейкоцитов считается одним из важнейших лабораторных исследований. Ведь быстрота увеличения концентрации белых кровяных клеток свидетельствует, насколько сильна иммунная система и возможность организма защитить себя от поражений. Это может быть обычный порез пальца в бытовых условиях, инфекция, грибок и вирус. Как помогают лейкоцитарные клетки справиться с чужеродными агентами, поговорим в статье.

Что такое лейкоциты?

Лейкоциты – белые кровяные тельца, с медицинской точки зрения – неоднородные группы клеток, разные по внешнему виду и функциональному назначению. Они формируют надежную линию защиты организма от неблагоприятного внешнего воздействия, бактерий, микробов, инфекций, грибков и прочих чужеродных агентов. Выделяются по признакам присутствия ядра и отсутствия собственного окраса.

Строение белых клеток

Строение и функции клеток отличаются, но все они обладают способностью эмигрировать через капиллярные стенки и передвигаться по кровотоку для поглощения и уничтожения чужеродных частиц. При воспалении и заболеваниях инфекционного или грибкового характера лейкоциты увеличиваются в размерах, поглощая патологические клетки. А со временем происходит их самоуничтожение. Но в результате высвобождаются вредные микроорганизмы, которые вызвали воспалительный процесс. При этом наблюдается отечность, повышение температуры тела и покраснение места локализации воспаления.

Термины! Хемотаксис лейкоцитов – это их миграция в очаг воспаления из кровяного русла.

Частички, которые вызывают реакцию воспаления, привлекают нужное количество белых лейкоцитов для борьбы с чужеродными телами. И в процессе борьбы они разрушаются. Гной – это скопление отмерших лейкоцитарных клеток.

Где образуются лейкоциты?

В процессе обеспечения защитной функции лейкоциты вырабатывают защитные антитела, которые проявят себя при воспалении. Но большая их часть умрет. Место образования белых клеток: костный мозг, селезенка, лимфоузлы и миндалины.

Термины! Лейкопоэз – процесс появления лейкоцитарных клеток. Чаще всего это происходит в костном мозге.

Сколько живут лейкоцитарные клетки?

Продолжительность жизни лейкоцитов составляет 12 дней.

Лейкоциты в крови и их норма

Чтобы определить уровень лейкоцитов необходимо провести общий анализ крови. Единицы измерения концентрации лейкоцитарных клеток – 10*9/л. Если анализы показывают объем в 4-10*9/л, стоит радоваться. Для взрослого здорового человека – это нормативное значение. Для детей уровень лейкоцитов иной и составляет 5,5-10*9/л. Общий анализ крови определит соотношение разного вида фракций лейкоцитов.

Отклонения от нормативного предела лейкоцитарных клеток могут оказаться ошибкой лаборатории. Поэтому лейкоцитоз или лейкоцитопения не диагностируется по одному исследованию крови. В этом случае дается направление на еще один анализ для подтверждения результата. И только потом рассматривается вопрос курса лечения патологии.

Важно ответственно относится к своему здоровью и интересоваться у врача, что показывают анализы. Приближение к критической границе уровня лейкоцитов – показатель того, что нужно изменить образ жизни и рацион питания. Без активных действий, когда люди не делают правильных выводов, приходит заболевание.


Таблица норм лейкоцитов в крови

Как измеряется число лейкоцитов в плазме

Измеряются лейкоцитарные клетки в процессе исследования крови посредством специального оптического прибора – камеры Горяева. Подсчет считается автоматическим, и обеспечивает высокий уровень точности (с минимальной погрешностью).


Камера Горяева определяет количество лейкоцитов в крови

Оптическое устройство представляет собой стекло особой толщины в виде прямоугольника. На нем нанесена микроскопическая сетка.

Лейкоциты подсчитываются следующим образом:

  1. Заливается в стеклянную пробирку уксусная кислота, подкрашенная метиленовой синькой. Это реактив, в который нужно с помощью пипетки капнуть немного крови для анализа. После все хорошо перемешивается.
  2. Стекло и камеру протереть марлей. Далее происходит притирание стекла к камере до того времени, пока не начнут образовываться кольца различных цветов. Камера полностью заполняется плазмой. Выжидать нужно 60 секунд до прекращения движения клеток. Расчет проводится по специальной формуле.

Функции лейкоцитов

  • В первую очередь следует упомянуть о защитной функции. Она предполагает формирование иммунной системы в специфическом и неспецифическом воплощении. Механизм работы такой обороны предполагает фагоцитоз.

Термины! Фагоцитоз – процесс захвата кровяными тельцами враждебных агентов или их удачное уничтожение.

  • Транспортная функция лейкоцитов у взрослого человека обеспечивает адсорбцию аминокислот, ферментов и прочих веществ, их доставку в место назначение (к нужному органу по кровяному руслу).
  • Гемостатическая функция в крови человека имеет особое значение при свертываемости.
  • Определение санитарной функции заключается в расщеплении тканей и клеток, которые умерли в процессе травм, инфекций и повреждений.

Лейкоциты и их функции
  • Синтетическая функция обеспечит нужное количество лейкоцитов в периферической крови для синтеза биологически активных компонентов: гепарина или гистамина.

Если рассматривать свойства лейкоцитов и их функциональное назначение подробнее, стоит упомянуть, что они обладают специфическими характеристиками и возможностями из-за своей разновидности.

Состав лейкоцитов

Чтобы понять, что такое лейкоциты, нужно рассмотреть их разновидности.

Нейтрофильные клетки

Нейтрофилы – распространенный вид лейкоцитов, который составляет 50-70 процентов от общего объема. Вырабатываются и перемещаются лейкоциты этой группы в костном мозге и относятся к фагоцитам. Молекулы с сегментными ядрами именуют зрелыми (сегментоядерными), а с удлиненным ядром – палочкоядерными (незрелыми). Выработка третьего вида юных клеток происходит в наименьшем объеме. Тогда как зрелых лейкоцитов больше всего. Благодаря определению соотношения объема зрелых и незрелых лейкоцитов можно узнать, насколько интенсивен процесс кровотечения. Это означает, что существенные кровопотери не дают возможности клеткам созреть. И концентрация молодых форм превысит сородичей.

Лимфоциты

Лимфоцитарные клетки обладают специфической способностью не просто отличать сородичей от чужеродного агента, но и “запоминают” каждый микроб, грибок и инфекцию, с которыми им хоть раз приходилось сталкиваться. Именно лимфоциты первыми стремятся в очаг воспаления для ликвидации “непрошеных гостей”. Они и выстраивают оборонную линию, запуская целую цепочку иммунных реакций для локализации воспалительных тканей.

Важно! Лимфоцитарные клетки в крови – центральное звено иммунной системы организма, что мгновенно перемещается в воспалительный очаг.

Эозинофилы

Эозинофильные кровяные клетки по своему числу уступают нейтрофильным. Но по функциональному направлению они похожи. Их основная задача – движение в направлении очага поражения. Они с легкостью проходят сквозь сосуды и могут поглощать небольшие чужеродные агенты.

Моноцитарные клетки по своей функциональной принадлежности способны поглощать более крупные частицы. Это пораженные воспалительным процессом ткани, микроорганизмы и отмершие лейкоциты, которые самоуничтожились в процессе борьбы с чужеродными агентами. Моноциты не гибнут, а занимаются подготовкой и очисткой тканей для регенерации и окончательного восстановления после поражения инфекционного, грибкового или вирусного характера.


Моноциты

Базофилы

Это наименьшая по своей массе группа лейкоцитарных клеток, что в соотношении со своими сородичами составляет один процент от общего числа. Это те клетки, которые как первая медицинская помощь появляются там, где нужно мгновенно реагировать на интоксикацию или поражение вредными ядовитыми веществами или парами. Ярким примером такого поражения считается укус ядовитой змеи или паука.

Из-за того, что моноциты богаты серотонином, гистамином, простагландином и другими медиаторами воспалительного и аллергического процесса, клетки осуществляют блокировку ядов и дальнейшее их распространение в организме.

Что означает повышение концентрации лейкоцитарных частиц в крови?

Повышение числа лейкоцитов именуют лейкоцитозом. Физиологическая форма этого состояния наблюдается даже у здорового человека. И это – не признак патологии. Это происходит после долгосрочного нахождения под прямыми солнечными лучами, из-за стрессов и негативных эмоций, тяжелых физических упражнений. У женского пола высокие лейкоциты наблюдаются во время беременности и менструального цикла.

Когда концентрация лейкоцитарных клеток превышает норму в несколько раз, нужно бить тревогу. Это опасный сигнал, свидетельствующий о протекании патологического процесса. Ведь организм пытается защититься от чужеродного агента, вырабатывая больше защитников – лейкоцитов.

После постановки диагноза лечащему врачу стоит решить еще одну задачу – найти первопричину состояния. Ведь лечится не лейкоцитоз, а то, что его вызвало. Как только причина патологии устранена, через пару дней уровень лейкоцитарных клеток в крови восстановится к норме самостоятельно.

Кровь – важнейшая ткань человеческого организма, выполняющая важные функции: транспортную, метаболическую, защитную. Последняя, защитная функция крови обеспечивается специальными клетками – лейкоцитами. В зависимости от строения и специального предназначения они подразделяются на отдельные типы.

Классификация лейкоцитов:

  1. Гранулоцитарные:
  • нейтрофилы;
  • базофилы;
  • эозинофилы.
  1. Агранулоцитарные:
  • моноциты;
  • лимфоциты.

Виды лейкоцитов

Белые кровяные клетки принято разделять, прежде всего, по структуре. Одни содержат внутри гранулы, поэтому называются гранулоцитами, в других такие образования отсутствуют – агранулоциты.

В свою очередь, гранулоциты классифицируются по способности воспринимать определенные красители на нейтрофилы, базофилы, эозинофилы. Клетки, не имеющие гранул в своей цитоплазме, – моноциты и лимфоциты.

Виды лейкоцитов

Нейтрофилы

Одни из самых многочисленных популяций лейкоцитов у взрослых. Своё название получили в связи со способностью окрашиваться красителями с нейтральной pH. В результате гранулы внутри цитоплазмы приобретают цвет от фиолетового до коричневого. Что же представляют собой эти гранулы? Это своеобразные резервуары для биологически активных веществ, действие которых направлено на уничтожение генетически чужеродных объектов, поддержание и регуляцию жизнедеятельности самой иммунной клетки.

Дифференцируются нейтрофилы в костном мозге из стволовых клеток. В процессе созревания они претерпевают структурные изменения. В основном это касается изменения размера ядра, оно приобретает характерную сегментацию, соответственно, уменьшаясь в размерах. Этот процесс протекает в шесть стадий – от юных до взрослых форм: миелобласт, промиелоцит, миелоцит, метамиелоцит, палочкоядерный, а затем сегментоядерный нейтрофил.

Наблюдая нейтрофилы различной зрелости в микроскоп, можно увидеть, что ядро у миелоцита круглое, а у метамиелоцита – овальной формы. Палочкоядерный обладает вытянутым ядром, а сегментоядерный – из 3-5 сегментов с перетяжками.


Нейтрофилы

Нейтрофилы живут и зреют в костном мозге порядка 4-5 дней, а затем выходят в сосудистое русло, где находятся около 8 часов. Циркулируя в плазме крови, они сканируют ткани организма и, при обнаружении «проблемных зон», проникают туда и борются с инфекцией. В зависимости от интенсивности воспалительного процесса, продолжительность их жизни в тканях колеблется от нескольких часов до трех дней. После этого нейтрофилы, доблестно выполнив их функции, разрушаются в селезенке и печени. В целом нейтрофилы живут порядка двух недель.

Итак, как же действует нейтрофил, обнаружив болезнетворный агент или клетку с измененным генетическим материалом? Цитоплазма белых клеток крови пластична, способна растягиваться в любом направлении. Приблизившись к вирусу или бактерии, нейтрофил захватывает его и поглощает. Внутри подключаются те самые гранулы, из которых выделяются ферменты, направленные на уничтожение чужеродного объекта. Помимо этого, параллельно нейтрофил способен передавать информацию другим клеткам, запуская процесс иммунного ответа.

Базофилы

По структуре очень напоминают нейтрофилы, но только гранулы этих клеток чувствительны к основным красителям с более щелочной рН. После окрашивания зернистость базофилов приобретает характерный темно-фиолетовый, почти черный цвет.

Созревают базофилы тоже в костном мозге и проходят те же стадии развития от миелобласта до зрелых клеток. Затем они выходят в кровь, циркулируют там порядка двух дней и проникают в ткани.

На эти клетки возложена ответственность за формирование воспалительной реакции, привлечения иммунных клеток в ткани и передачи информации между ними. Интересна роль базофилов и в развитии реакций анафилактического типа. Биологически активные вещества, выделяющиеся из гранул, привлекают эозинофилы, от количества которых зависит интенсивность аллергических проявлений.


Базофилы

Эозинофилы

Чтобы в мазке крови найти эти клетки потребуется краситель с кислой рН. В практике чаще всего используют эозин, собственно, отсюда эти клетки и получили свое название. После окрашивания они становятся ярко-оранжевыми. Характерной отличительной чертой является размер гранул – они гораздо больше по размеру, чем у нейтрофилов или базофилов.

Развитие эозинофилов кардинально не отличается от такового у других гранулоцитов, оно тоже происходит в костном мозге. Однако после выхода в сосудистое русло эозинофилы устремляются основной массой в слизистые оболочки. Они способны поглощать болезнетворные агенты, как и нейтрофилы, только работают в слизистых, к примеру, пищеварительного тракта, трахеи и бронхов.

Вместе с этим эозинофилы выполняют огромную роль в развитии аллергических реакций. Большое количество биологически активных веществ, выделяющихся при разрыве гранул эозинофила, обуславливают симптомы, характерные для людей, страдающих атопическим дерматитом, бронхиальной астмой, крапивницей, аллергическим ринитом.


Эозинофил

Моноциты

Это агранулоцитарные клетки могут быть различной формы: с палочковидным, овальным или сегментированным ядром.

Образуются в костном мозге из монобласта и практически сразу выходят в кровь, где циркулируют 2-4 дня. Главная функция моноцитов – регуляция иммунного ответа посредством выброса из гранул различных регуляторных веществ, которые усиливают или ослабляют воспаление. Кроме того, моноциты способствуют регенерации тканей, заживлению кожи, восстановлению нервных волокон.

Макрофаги

Это все те же моноциты, но перекочевавшие в ткани из сосудистого русла. При окрашивании зрелая клетка приобретает голубоватую окраску. В её цитоплазме находится большое количество вакуолей, поэтому макрофаги по-другому называют «пенистыми клетками». В тканях они живут на протяжении нескольких месяцев. Особенностью является то, что некоторые из них могут быть «блуждающими» и циркулировать по разным тканям, а некоторые «стационарными». Такие клетки в определенных тканях имеют разные названия, к примеру, макрофаги печени – купферовские клетки, мозга – клетки микроглии, а обеспечивающие обновление костей – остеокласты. Обеспечивают фагоцитоз болезнетворных объектов.

Лимфоциты

Клетки округлой формы с относительно большим ядром. Образуются лимфоциты в костном мозге из клетки-предшественницы – лимфобласта, проходят несколько стадий. Причем в костном мозге происходит первичная дифференцировка, а вторичная – в селезенке, лимфатических узлах, Пейеровых бляшках и, главным образом, в тимусе.

Лимфоциты, прошедшие дополнительное дозревание в тимусе, называют Т-лимфоцитами, а в остальных иммунных органах – В-лимфоцитами. Такая двойная подготовка крайне необходима, ведь это самые главные иммунокомпетентные клетки, обеспечивающие защиту организма. Они циркулируют в крови на протяжении трех месяцев и при необходимости проникают в ткани, выполняя свои функции.

Т-лимфоциты обеспечивают неспецифический иммунитет, борясь со всеми объектами, несущими чужеродные гены: бактериями, вирусами, опухолевыми клетками. Кроме того, Т-клетки подразделяются на разновидности, в зависимости от выполняемой функции.

  • Т-киллеры – это клетки первой линии обороны, они обеспечивают сверхбыстрые реакции клеточного иммунитета, уничтожают зараженные вирусом или опухолевоизменные клетки.
  • Т-хелперы – клетки, помогающие передавать информацию о чужеродном материале, кооперирующие работу других иммунных клеток. В результате такого влияния ответ развивается интенсивнее и быстрее.
  • Т-супрессоры – клетки, в обязанности которых входит регуляция работы Т-килеров и Т-хелперов. Они предотвращают чрезмерно активную реакцию иммунитета на различные антигены. Если функция Т-супрессоров нарушена и снижена, то развиваются аутоиммунные заболевания, бесплодие.

В-лимфоциты создают специфический иммунитет, обладая способностью к образованию антител против определенных агентов. Причем Т-лимфоциты активны большей частью против вирусов, а В-лимфоциты – против бактерий.

В-клетки обеспечивают формирование иммунных клеток памяти. Встретившись однажды с чужеродным агентом, организм формирует иммунитет и устойчивость к определенным бактериям и вирусам. По такому же принципу работает и вакцинация. Только в препаратах для прививок бактерии и вирусы находятся в убитом или ослабленном состоянии, в отличие от тех, с которыми можно встретиться в обычной среде обитания. Одни клетки памяти особо устойчивы и обеспечивают пожизненный иммунитет, другие погибают через время, поэтому для профилактики особо опасных инфекций проводят ревакцинацию.


Лимфоциты

Количество лейкоцитов в норме и при патологии

Грамотно расшифровать клинический анализ крови может, конечно же, только врач. Ведь количество лейкоцитов даже у полностью здорового человека непостоянно, на это может повлиять прием пищи, физические нагрузки, беременность. Для углубленного изучения иммунного статуса требуется консультация врача-иммунолога и иммуннограмма, в которой подробно отображается количество основных видов лейкоцитов, популяций и субпопуляций иммунных клеток.

Таблица нормальных показателей лейкоцитов у разных групп людей

Изменения лейкоцитарной формулы носят специфический характер. Разобраться самостоятельно в сложных лабораторных показателях сложно, это под силу только лишь врачам. Ориентируясь на анализы и клиническую картину заболевания, они могут вовремя и правильно поставить диагноз. Поэтому не занимайтесь самодиагностикой и самолечением, обращайтесь за квалифицированной медицинской помощью и будьте здоровы!

Рассматривая под микроскопом кровь, можно обнаружить довольно крупные клетки с ядрами; выглядят они прозрачными. Это – белые кровяные тельца или лейкоциты.


ЛЕЙКОЦИТЫ (от греч. leukos – белый и от греч. kytos — вместилище, здесь — клетка), бесцв. клетки крови человека и животных. Все типы Л. (лимфоциты, моноциты, базофилы, эозинофилы и нейтрофилы) имеют ядро и способны к активному амебоидному движению. В организме поглощают бактерии и отмершие клетки, вырабатывают антитела. В 1 мм3 крови здорового человека содержится 4-9 тыс. Л.

Их количество меняется в зависимости от приема пищи и физической нагрузки. Лейкоциты делятся на гранулоциты (содержащие зернышки, гранулы) и агранулоциты (незернистые лейкоциты).

    Лейкоцитоз (leukocytosis, leukos – белый, cytos – клетка) – патологическая реакция организма, проявляющаяся увеличением содержания лейкоцитов в крови свыше 9´109/л.

  1. Лейкопения (leukopenia, leukos – белый, penia – бедность) – патологическая реакция организма, проявляющаяся уменьшением содержания лейкоцитов в крови ниже 4´ 109/л.

    ГРАНУЛОЦИТЫ, лейкоциты позвоночных ж-ных и человека, содержащие в цитоплазме зерна (гранулы). Образуются в костном мозге. По способности зерен окрашиваться спец. красками делятся на базофилы, нейтрофилы, эозинофилы. Защищают организм от бактерий и токсинов.

    АГРАНУЛОЦИТЫ (незернистые лейкоциты), лейкоциты ж-ных и человека, не содержащие в цитоплазме зерен (гранул). А. — клетки иммунологич. и фагоцитарной системы; делятся на лимфоциты и моноциты.

    Зернитстые лейкоциты делятся на эозинофилы (зерна которых окрашиваются кислыми красителями), базофилы (зерна которых окрашиваются основными красителями), и нейтрофилы (окрашиваются и теми, и другими красителями).

    ЭОЗИНОФИЛЫ, один из типов лейкоцитов. Окрашиваются кислыми красителями, в т. ч. эозином, в красный цвет. Участвуют в аллергич. реакциях организма.

    БАЗОФИЛЫ, клетки, содержащие в цитоплазме структуры, окрашиваемые основными (щелочными) красителями, вид зернистых лейкоцитов крови, а также определ. клетки передней доли гипофиза.

    НЕЙТРОФИЛЫ, (от лат. neuter — ни тот, ни другой и …фил) (микрофаги), один из типов лейкоцитов. Н. способны к фагоцитозу мелких инородных частиц, в т. ч. бактерий, могут растворять (лизировать) омертвевшие ткани.

    Агранулоциты делятся на лимфоциты (клетки с круглым темным ядром) и моноциты (с ядром неправильной формы).

    ЛИМФОЦИТЫ (от лимфа и …цит), одна из форм незернистых лейкоцитов. Выделяют 2 осн. класса Л. В-Л. происходят из фабрициевой сумки (у птиц) или костного мозга; из них формируются плазматич. клетки, вырабатывающие антитела. Т-Л. происходят из тимуса. Л. участвуют в развитии и сохранении иммунитета, а также, вероятно, поставляют питат. в-ва др. клеткам.

    МОНОЦИТЫ (от моно… и …цит), один из типов лейкоцитов. Способны к фагоцитозу; выделяясь из крови в ткани при воспалит. реакциях, функционируют как макрофаги.

    ВИЛОЧКОВАЯ ЖЕЛЕЗА (зобная железа, тимус), центр. орган иммунной системы позвоночных. У большинства млекопитающих расположена в области переднего средостения. Хорошо развита в молодом возрасте. Участвует в формировании иммунитета (продуцирует Т-лимфоциты), в регуляции роста и общего развития организма.

    Лейкоциты сложны по своему строению. Цитоплазма лейкоцитов у здоровых людей обычно розовая, зернистость в одних клетках красная, в других – фиолетовая, в третьих – темно-синяя, а в некоторых окраски нет совсем. Немецкий ученый Пауль Эрлиг обработал мазки крови специальной краской и разделил лейкоциты на зернистые и незернистые. Его исследования углубил и развил Д.Л.Романовский. Он выяснил, какие пути проходят клетки крови в своем развитии. Составленный им раствор для окрашивания крови помог раскрыть многие ее тайны. Это открытие вошло в науку как знаменитый принцип «окраски Романовского». Немецкий ученый Артур Паппенгейн и русский ученый А.Н.Крюков создали стройную теорию кроветворения.

    По количеству содержания в крови лейкоцитов судят о болезни человека. Лейкоциты могут самостоятельно двигаться, проходить через тканевые щели и межклеточные пространства. Самая главная функция лейкоцитов – защитная. Они вступают в борьбу с микробами, поглощают их и переваривают (фагоцитоз); открыт И.И.Мечниковым в 1883 г. Упорными многолетними исследованиями он доказал существование фагоцитоза.

    МАКРОФАГИ (от макро… и …фаг) (полибласты), клетки мезенхимного происхождения у ж-ных и человека, способные к активному захвату и перевариванию бактерий, остатков клеток и др. чужеродных или токсичных для организма частиц (см. Фагоцитоз). К М. относят моноциты, гистиоциты и др.

    МИКРОФАГИ, то же, что нейтрофилы,

    Лейкоцитарная формула процентное соотношение различных форм лейкоцитов в крови (в окрашенном мазке). Изменения лейкоцитарной формулы могут быть типичными для определенного заболевания.

    2. Плазма крови, понятие о сыворотке. Белки плазмы

    Плазма крови – жидкая часть крови. В плазме крови находятся форменные элементы крови (эритроциты, лейкоциты, тромбоциты). Изменения в составе плазмы крови имеют диагностическое значение при различных заболеваниях (ревматизм, сахарный диабет и др.). Из плазмы крови готовят лекарственные препараты (альбумин, фибриноген, гаммаглобулин и др.).\ В плазме крови человека содержится около 100 различных белков. По подвижности при электрофорезе (см. ниже) их можно грубо разделить на пять фракций: альбумин, α 1 -, α 2 -, β- и γ-глобулины . Разделение на альбумин и глобулин первоначально основывалось на различии в растворимости: альбумины растворимы в чистой воде, а глобулины - только в присутствии солей.

    В количественном отношении среди белков плазмы наиболее представлен альбумин (около 45 г/л), который играет существенную роль в поддержании коллоидно-осмотического давления в крови и служит для организма важным резервом аминокислот. Альбумин обладает способностью связывать липофильные вещества, вследствие чего он может функционировать в качестве белка-переносчика длинноцепочечных жирных кислот, билирубина, лекарственных веществ, некоторых стероидных гормонов и витаминов. Кроме того, альбумин связывает ионы Са 2+ и Mg 2+ .

    К альбуминовой фракции принадлежит также транстиретин (преальбумин), который вместе с тироксинсвязывающим глобулином [ТСГл (TBG)] и альбумином транспортирует гормон тироксин и его метаболит иодтиронин.

    В таблице приведены другие свойства важных глобулинов плазмы крови. Эти белки участвуют в транспорте липидов, гормонов, витаминов и ионов металлов, они образуют важные компоненты системы свертывания крови; фракция γ-глобулинов содержит антитела иммунной системы.

    3. Гемопоэз. Факторы эритропоэза, лейкопоэза и тромбоцитопоэза. Понятие о системе крови (Г.Ф. Ланг)

    Гематопоэз это процес генерации зрелых клеток крови, которых за день организм человека производит не много не мало 400 миллиардов. Гематопоэтические клетки происходят от очень небольшого числа тотипотентных стволовых клеток, которые дифференцируются, давая все линии клеток крови. Тотипотентные стволовые клетки наименее специализированы. Более специализированы плюрипотентные стволовые клетки. Они способны дифференцироваться, давая только определенные линии клеток. Различают две популяции плюрипотентных клеток — лимфоидные и миелоидные.


    Эритроциты происходят из полипотентной стволовой клетки костного мозга, которая может дифференцироваться в клетки-предшественицы эритропоэза. Эти клетки морфологически не различаются. Далее происходит дифференцировка клеток-предшественниц в эритробласты и нормобласты, последние в процессе деления теряют ядро, все в большей степени накапливая гемоглобин, образуются ретикулоциты и зрелые эритроциты, которые поступают из костного мозга в периферическую кровь. Железо соединяется с циркулирующим транспортным белком трансферрином, который связывается со специфическими рецепторами на поверхности клеток-предшественниц эритропоэза. Основная часть железа включается в состав гемоглобина, остальная резервируется в виде ферритина. По завершении созревания эритроцит попадает в общий кровоток, срок его жизни составляет примерно 120 дней, затем он захватывается макрофагами и разрушается, главным образом, в селезенке. Железо гема включается в состав ферритина, а также может вновь связываться с трансферрином и доставляться к клетками костного мозга.

    Важнейшим фактором регуляции эритропоэза является эритропоэтин — гликопротеид с молекулярной массой 36000. Он вырабатывается преимущественно в почках под влиянием гипоксии. Эритропоэтин контролирует процесс дифференцироки клеток-предшественниц в эритробласты и стимулирует синтез гемоглобина. На эритропоэз влияют и другие факторы — катехоламины, стероидные гормоны, гормон роста, циклические нуклеотиды. Существенными факторами нормального эритропоэза являются витамин В 12 и фолиевая кислота и достаточное количество железа.

    Лейкопоэз (leucopoesis, leucopoiesis: лейко- + греч. poiesis выработка, образование; син.: лейкогенез, лейкоцитопоэз) - процесс образования лейкоцитов

    Тромбоцитопоэз (thrombocytopoesis; тромбоцит + греч. poiēsis выработка, образование) - процесс образования тромбоцитов.

    Система крови — понятие ввёл российский терапевт Георгий Фёдорович Ланг (1875-1948).

    Обозначает систему, включающую периферическую кровь, органы кроветворения и кроверазрушения, а также нейрогуморальный аппарат их регуляции.

    4. Зубчатый и гладкий тетанус. Понятие о тонусе мышц. Понятие об оптимуме и пессимуме

    В естественных условиях к скелетной мышце из ЦНС поступают не одиночные импульсы, а серия импульсов, следующих друг за другом с определенными интервалами, на которую мышца отвечает длительным сокращением. Такое длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение получило название тетанического сокращения или тетануса. Различают два вида тетануса: зубчатый и гладкий.

    Если каждый последующий импульс возбуждения поступает к мышце в тот период, когда она находится в фазе укорочения, то возникает гладкий тетанус, а если в фазу расслабления — зубчатый тетанус.

    Амплитуда тетанического сокращения превышает амплитуду одиночного мышечного сокращения. Исходя из этого Гельмгольц объяснил процесс тетанического сокращения простой суперпозицией, т. е. простой суммацией амплитуды одного мышечного сокращения с амплитудой другого. Однако в дальнейшем было показано, что при тетанусе имеет место не простое сложение двух механических эффектов, т. к. эта сумма может быть то большей, то меньшей. Н. Е. Введенский объяснил это явление с точки зрения состояния возбудимости мышцы, введя понятие об оптимуме и пессимуме частоты раздражения.

    Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу повышенной возбудимости. Тетанус при этом будет максимальным по амплитуде — оптимальным.

    Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости. Тетанус при этом будет минимальным по амплитуде — пессимальным.

    Тонус
    мышцы — базовый уровень
    активности мышцы, обеспечиваемый её тоническим сокращением .

    В нормальном
    состоянии
    покоя все двигательные единицы различных мышц находятся в хорошо организованной сложной фоновой стохастической активности. В пределах одной мышцы в данный случайный
    момент
    времени одни двигательные единицы возбуждены , другие находятся в состоянии покоя. В следующий случайный момент времени активируются другие двигательные единицы. Таким образом активация двигательных единиц есть стохастическая функция двух случайных переменных — пространства и времени. Такая активность двигательных единиц обеспечивает тоническое сокращение мышцы , тонус данной мышцы и тонус всех мышц двигательной системы . Определенное взаимное отношение тонуса различных групп мышц обеспечивает позу тела .

    В основе управления тонусом мышц и позой тела в покое или при совершении движений решающее значение имеет генеральная стратегия управления в живых
    системах — прогнозирование

    5. Современное биофизическое и физиологическое преставление о механизме возникновения мембранного потенциала и возбуждения

    Каждая клетка в состоянии покоя характеризуется наличием трансмембранной разности потенциалов (потенциала покоя). Обычно разность зарядов между внутренней и внешней поверхностями мембран составляет от -30 до -100 мВ и может быть измерена с помощью внутриклеточного микроэлектрода.

    Создание потенциала покоя обеспечивается двумя основными процессами — неравномерным распределением неорганических ионов между внутри- и внеклеточным пространством и неодинаковой проницаемостью для них клеточной мембраны. Анализ химического состава вне- и внутриклеточной жидкости свидетельствует о крайне неравномерном распределении ионов

    Исследования с применением микроэлектродов показали, что потенциал покоя клетки скелетных мышц лягушки колеблется от -90 до -100 мВ. Такое хорошее соответствие экспериментальных данных теоретическим подтверждает, что потенциал покоя в значительной степени определяется простыми диффузионными потенциалами неорганических ионов.

    Важное значение для возникновения и поддержания мембранного потенциала имеет активный транспорт ионов натрия и калия через клеточную мембрану. При этом перенос ионов происходит против электрохимического градиента и осуществляется с затратой энергии. Активный транспорт ионов натрия и калия осуществляется Na + /K + — АТФазным насосом.

    В некоторых клетках активный транспорт принимает прямое участие в формировании потенциала покоя. Это обусловлено тем, что калий-натриевый насос за одно и то же время больше удаляет ионов натрия из клетки, чем приносит в клетку калия. Это соотношение составляет 3/2. Поэтому калий-натриевый насос называется электрогенным, поскольку он сам создает небольшой, но постоянный ток положительных зарядов из клетки, а потому вносит прямой вклад в формирование отрицательного потенциала внутри нее.

    Мембранный потенциал не является стабильной величиной, поскольку существует много факторов, влияющих на величину потенциала покоя клетки: воздействие раздражителя, изменение ионного состава среды, воздействие некоторых токсинов, нарушение кислородного снабжения ткани и т.д. Во всех случаях, когда мембранный потенциал уменьшается, говорят о деполяризации мембраны, противоположный сдвиг потенциала покоя называют гиперполяризацией.

    Мембранная теория возбуждения — теория, объясняющая возникновение и распространение возбуждения в центральной нервной системе явлением полупроницаемости мембран нейронов, ограничивающих движение ионов одного вида и пропускающих ионы другого вида через ионные каналы.

    6. Скелетная мускулатура как пример пастклеточных структур – симпласт

    Скелетные мышцы входят в структуру опорно-двигательного аппарата, крепятся к костям скелета и при сокращении приводят в движение отдельные звенья скелета.

    Они участвуют в удержании положения тела и его частей в пространстве, обеспечивают движения при ходьбе, беге, жевании, глотании, дыхании и т.д., вырабатывая при этом тепло. Скелетные мышцы обладают способностью возбуждаться под влиянием нервных импульсов. Возбуждение проводится до сократительных структур (миофибрилл), которые, сокращаясь, выполняют двигательный акт — движение или напряжение.

    У человека насчитывается около 600 мышц и большинство из них парные. В каждой мышце различают активную часть (тело мышцы) и пассивную (сухожилие).

    Мышцы, действие которых направлено противоположно, называются антогонистами, однонаправленно — синергистами. Одни и те же мышцы в различных ситуациях могут выступать в том и другом качестве.

    По функциональному назначению и направлению движений в суставах различают мышцы сгибатели и разгибатели, приводящие и отводящие, сфинктеры (сжимающие) и расширители.

    Симпласт – (от греч. syn — вместе и plastos — вылепленный), тип ткани у животных и растений, характеризующийся отсутствием границ между клетками и расположением ядер в сплошной массе цитоплазмы. Напр., поперечнополосатые мышцы у животных, многоядерные протопласты некоторых одноклеточных водорослей.

    7. Регуляция работы сердца (внутриклеточная, гетерометрическая и гомеометрическая). Закон Старлинга. Влияние симпатической и парасимпатической нервной системы на деятельность сердца

    Хотя сердце само генерирует импульсы, вызывающие его сокращение, деятельность сердца контролируется рядом регуляторных механизмов, которые можно разделить на две группы - внесердечные механизмы (экстракардиальные), к которым относится нервная и гуморальная регуляция, и внутрисердечные механизмы (интракардиальные).

    Первый уровень регуляции - экстракардиальный (нервный и гуморальный). Он включает в себя регуляцию главных факторов, определяющих величину минутного объема, частоты и силы сердечных сокращений с помощью нервной системы и гуморальных влияний. Нервная и гуморальная регуляция тесно связаны между собой и образуют единый нервно-гуморальный механизм регуляции работы сердца.

    Второй уровень представлен внутрисердечными механизмами, которые, в свою очередь, могут быть подразделены на механизмы, регулирующие работу сердца на органном уровне, и внутриклеточные механизмы, которые регулируют преимущественно силу сердечных сокращений, а также скорость и степень расслабления миокарда.

    Центральная нервная система постоянно контролирует работу сердца
    посредством нервных импульсов. Внутри полостей самого сердца и в стенках крупных сосудов расположены нервные окончания - рецепторы, воспринимающие колебания давления в сердце и сосудах. Импульсы от рецепторов вызывают рефлексы, влияющие на работу сердца. Существуют два вида нервных влияний на сердце: одни - тормозящие,
    т. е. снижающие частоту сокращений сердца, другие - ускоряющие.

    Импульсы передаются к сердцу по нервным волокнам от нервных центров, расположенных в продолговатом и спинном мозге. Влияния, ослабляющие работу сердца, передаются по парасимпатическим нервам, а усиливающие его работу - по симпатическим.

    Например, у человека учащаются сокращения сердца, когда он быстро встает из положения лежа. Дело в том, что переход в вертикальное положение приводит к накоплению крови в нижней части туловища и уменьшает кровенаполнение верхней части, особенно головного мозга. Чтобы восстановить кровоток в верхней части туловища, от рецепторов сосудов поступают импульсы в центральную нервную систему.

    Оттуда к сердцу по нервным волокнам передаются импульсы, ускоряющие сокращение сердца. Эти факты - наглядный пример саморегуляции деятельности сердца.

    Болевые раздражения также изменяют ритм сердца. Болевые импульсы поступают в центральную нервную систему и вызывают замедление или ускорение сердцебиений. Мышечная работа всегда сказывается на деятельности сердца. Включение в работу большой группы мышц по законам рефлекса возбуждает центр, ускоряющий деятельность сердца. Большое влияние на сердце оказывают эмоции. Под воздействием положительных
    эмоций люди могут совершать колоссальную работу, поднимать тяжести, пробегать большие расстояния. Отрицательные эмоции, наоборот, снижают работоспособность сердца и могут приводить к нарушениям его деятельности.

    Наряду с нервным контролем деятельность сердца регулируется
    химическими веществами, постоянно поступающими в кровь. Такой способ регуляции через жидкие среды,называется гуморальной регуляцией.
    Веществом, тормозящим работу сердца, является ацетилхолин.

    Чувствительность сердца к этому веществу так велика, что в дозе 0,0000001 мг ацетилхолин отчетливо замедляет его ритм. Противоположное действие оказывает другое химическое вещество - адреналин. Адреналин даже в очень малых дозах усиливает работу сердца.

    Например, боль вызывает выделение в кровь адреналина в количестве нескольких микрограммов, который заметно изменяет деятельность сердца. В медицинской практике адреналин вводят иногда прямо в остановившееся сердце, чтобы заставить его вновь сокращаться. Нормальная работа сердца зависит от количества в крови солей калия и кальция. Увеличение содержания солей калия в крови угнетает, а кальция усиливает
    работу сердца. Таким образом, работа сердца изменяется с изменением условий внешней среды и состояния самого организма.

    Закон сердца Старлинга, который показывает зависимость силы сердечных сокращений от степени растяжения миокарда. Этот закон применим не только к сердечной мышце в целом, но и к отдельному мышечному волокну. Увеличение силы сокращения при растяжении кардиомоцита обусловлено лучшим взаимодействием сократительных белков актина и миозина, причем в этих условиях концентрация свободного внутриклеточного кальция (главного регулятора силы сердечных сокращений на клеточном уровне) остается неизменной. В соответствии с законом Старлинга, сила сокращения миокарда тем больше, чем сильнее растянута сердечная мышца в период диастолы под влиянием притекающей крови. Это один из механизмов, обеспечивающих увеличение силы сердечных сокращений адекватное необходимости перекачивать в артериальную систему именно того количества крови, которое притекает к нему из вен.

    8. Кровяное давление в разных отделах сосудистого русла, методика регистрации и определения

    Кровяное давление – гидродинамическое давление крови в сосудах, обусловленное работой сердца и сопротивлением стенок сосудов. Понижается по мере удаления от сердца (наибольшее в аорте, значительно ниже в капиллярах, в венах наименьшее). Нормальным для взрослого человека условно считают артериальное давление 100-140 мм ртутного столба (систолическое) и 70-80 мм ртутного столба (диастолическое); венозное — 60-100 мм водяного столба. Повышенное артериальное давление (гипертония) — признак гипертонической болезни, пониженное (гипотония) сопровождает ряд заболеваний, но возможно и у здоровых людей.

    9. Типы кардиомиоцитов. Морфологические отличия сократительных клеток от проводящих

    Тонкие и длинные

    Эллиптические

    Толстые и длинные

    Длина, мкм

    ~ 60 ё140

    ~ 20

    ~ 150 ё200

    Диаметр, мкм

    ~ 20

    ~ 5 ё6

    ~ 35 ё40

    Объем, мкм 3

    ~ 15 ё45000

    ~ 500

    135000 ё250000

    Наличие поперечных трубочек

    Много

    Встречаются редко или отсутствуют

    Отсутствуют

    Наличие вставочных дисков

    Многочисленные щелевые соединения клеток из конца в конец, обеспечивающие высокую скорость взаимодействия .

    Боковые соединения клеток или соединения из конца в конец.

    Многочисленные щелевые соединения клеток из конца в конец, обеспечивающие высокую скорость взаимодействия.

    Общий вид в составе мышцы

    Большое число митохондрий и саркомеров .

    Пучки мышцы предсердий разделены обширными областями коллагена.

    Меньше саркомеров, меньшая поперечная исчерченность

    10. Перенос газов кровью. Кривая диссоциации оксигемоглобина. Особенности транспорта углекислого газа

    Перенос (транспорт) дыхательных газов , кислорода, O2 и двуокиси углерода, СO2 с кровью — это второй из трёх этапов дыхания : 1. внешнее дыхание , 2. транспорт газов кровью, 3. клеточное дыхание .

    Конечные этапы дыхания, тканевое
    дыхание , биохимическое окисление являются частью метаболизма . В процессе метаболизма образуются конечные продукты , главным из которых является двуокись углерода . Условием
    нормальной жизнедеятельности является своевременное удаление двуокиси углерода из организма.

    Механизмы
    управления переносом двуокиси углерода взаимодействуют с механизмами регулирования
    кислотно-щелочного равновесия крови, регулированием внутренней среды организма в целом .

    11. Дыхание в условиях повышенного и пониженного атмосферного давления. Кессонная болезнь. Горная болезнь

    Кессонная болезнь – декомпрессионное заболевание, возникающее большей частью после кессонных и водолазных работ при нарушении правил декомпрессии (постепенного перехода от высокого к нормальному атмосферному давлению). Признаки: зуд, боли в суставах и мышцах, головокружение, расстройства речи, помрачение сознания, параличи. Применяют шлюз лечебный.

    Горная болезнь – развивается в условиях высокогорья вследствие снижения парциального напряжения атмосферных газов, главным образом кислорода. Может протекать остро (разновидность высотной болезни) или хронически, проявляясь сердечной и легочной недостаточностью и другими симптомами.

    12. Краткая характеристика стенок воздухоносных путей. Типы бронхов, морфофункциональная характеристика мелких бронхов

    Бронхи (от греч. brónchos - дыхательное горло, трахея), ветви дыхательного горла у высших позвоночных (амниот) и человека. У большинства животных дыхательное горло, или трахея , делится на два главных бронхов. Лишь у гаттерии продольная борозда в заднем отделе дыхательного горла намечает парные Б., не имеющие обособленных полостей. У остальных пресмыкающихся, а также у птиц и млекопитающих Б. хорошо развиты и продолжаются внутри лёгких. У пресмыкающихся от главных Б. отходят Б. второго порядка, которые могут делиться на Б. третьего, четвёртого порядка и т.д.; особенно сложно деление Б. у черепах и крокодилов. У птиц Б. второго порядка соединяются между собой парабронхами - каналами, от которых по радиусам ответвляются так называемые бронхиоли, ветвящиеся и переходящие в сеть воздушных капилляров. Бронхиоли и воздушные капилляры каждого парабронха сливаются с соответствующими образованиями др. парабронхов, образуя, таким образом, систему сквозных воздушных путей. Как главные Б., так и некоторые боковые Б. на концах расширяются в так называемые воздушные мешки . У млекопитающих от каждого главного Б. отходят вторичные Б., которые делятся на всё более мелкие ветви, образуя так называемое бронхиальное дерево. Самые мелкие ветви переходят в альвеолярные ходы, оканчивающиеся альвеолами . Помимо обычных вторичных Б., у млекопитающих различают предартериальные вторичные Б., отходящие от главных Б. перед тем местом, где через них перекидываются лёгочные артерии. Чаще имеется только один правый предартериальный Б., который у большинства парнокопытных отходит непосредственно от трахеи. Фиброзные стенки крупных Б. содержат хрящевые полукольца, соединённые сзади поперечными пучками гладких мышц. Слизистая оболочка Б. покрыта мерцательным эпителием. В мелких Б. хрящевые полукольца заменены отдельными хрящевыми зёрнами. В бронхиолях хрящей нет, и кольцеобразные пучки гладких мышц лежат сплошным слоем. У большинства птиц первые кольца Б. участвуют в образовании нижней гортани.

    У человека деление трахеи на 2 главных Б. происходит на уровне 4-5-го грудных позвонков. Каждый из Б. затем делится на всё более мелкие, заканчиваясь микроскопически малыми бронхиолями, переходящими в альвеолы лёгких . Стенки Б. образованы гиалиновыми хрящевыми кольцами, препятствующими спадению Б., и гладкими мышцами; изнутри Б. выстланы слизистой оболочкой. По ходу разветвлений Б. расположены многочисленные лимфатические узлы, принимающие лимфу из тканей лёгкого. Кровоснабжение Б. осуществляется бронхиальными артериями, отходящими от грудной аорты, иннервация - ветвями блуждающих, симпатических и спинальных нервов.

    13. Обмен жиров и его регуляция

    Жиры важный источник энергии в организме, необходимая составная часть клеток. Излишки жиров могут депонироваться в организме. Откладываются они главным образом в подкожной жировой клетчатке, сальнике, печени и других внутренних органах. В желудочно-кишечном тракте жир распадается на глицерин и жирные кислоты, которые всасываются в тонких кишках. Затем он вновь синтезируется в клетках слизистой кишечника. Образовавшийся жир качественно отличается от пищевого и является специфическим для человеческого организма. В организме жиры могут синтезироваться также из белков и углеводов. Жиры, поступающие в ткани из кишечника и из жировых депо, путем сложных превращений окисляются, являясь, таким образом, источником энергии. При окислении 1 г жира освобождается 9,3 ккал энергии. Как энергетический материал жир используется при состоянии покоя и выполнении длительной малоинтенсивной физической работы. В начале напряженной мышечной деятельности окисляются углеводы. Но через некоторое время, в связи с уменьшением запасов гликогена, начинают окисляться жиры и продукты их расщепления. Процесс замещения углеводов жирами может быть настолько интенсивным, что 80% всей необходимой в этих условиях энергии освобождается в результате расщепления жира. Жир используется как пластический и энергетический материал, покрывает различные органы, предохраняя их от механического воздействия. Скопление жира в брюшной полости обеспечивает фиксацию внутренних органов. Подкожная жировая клетчатка, являясь плохим проводником тепла, защищает тело от излишних теплопотерь. Пищевой жир содержит некоторые жизненно важные витамины. Обмен жира и липидов в организме сложен. Большую роль в этих процессах играет печень, где осуществляется синтез жирных кислот из углеводов и белков. Обмен липидов тесно связан с обменом белков и углеводов. При голодании жировые запасы служат источником углеводов. Регуляция жирового обмена. Обмен липидов в организме регулируется центральной нервной системой. При повреждении некоторых ядер гипоталамуса жировой обмен нарушается и происходит ожирение организма или его истощение.

    14. Обмен белков. Азотистое равновесие. Положительный и отрицательный баланс азота. Регуляция обмена белков

    Белки - необходимый строительный материал протоплазмы клеток. Они выполняют в организме специальные функции. Все ферменты, многие гормоны, зрительный пурпур сетчатки, переносчики кислорода, защитные вещества крови являются белковыми телами. Белки состоят из белковых элементов - аминокислот, которые образуются при переваривании животного и растительного белка и поступают в кровь из тонкого кишечника. Аминокислоты делятся на незаменимые и заменимые. Незаменимыми называются те, которые организм получает только с пищей. Заменимые могут быть синтезированы в организме из других аминокислот. По содержанию аминокислот определяется ценность белков пищи. Вот почему белки, поступающие с пищей, делятся на две группы: полноценные, содержащие все незаменимые аминокислоты, и неполноценные, в составе которых отсутствуют некоторые незаменимые аминокислоты. Основным источником полноценных белков служат животные белки. Растительные белки (за редким исключением) неполноценные. В тканях и клетках непрерывно идет разрушение и синтез белковых структур. В условно здоровом организме взрослого человека количество распавшегося белка равно количеству синтезированного. Так как баланс белка в организме имеет большое практическое знамение, разработано много методов его изучения. Регуляция белкового равновесия осуществляется гуморальным и нервным путями (через гормоны коры надпочечников и гипофиза, промежуточный мозг).

    15. Теплоотдача. Способы отдачи тепла с поверхности тепла

    Способность организма человека сохранять постоянную температуру обусловлена сложными биологическими и физико-химическими процессами терморегуляции. В отличие от холоднокровных (пойкилотермных) животных, температура тела теплокровных (гамойотермных) животных при колебаниях температуры внешней среды поддерживается на определенном уровне, наиболее выгодно для жизнедеятельности организма. Поддержание теплового баланс осуществляется благодаря строгой соразмерности в образовании тепла и в ее отдаче. Величина теплообразования зависит от интенсивности химических реакций, характеризующих уровень обмена веществ. Теплоотдача регулируется преимущественно физическими процессами (теплоизлучение, теплопроведение, испарение).

    Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания температуры внешней среды. Это постоянство температуры тела носит название изотермии. Изотермия в процессе онтогенеза развивается постепенно.

    Постоянство температуры тела у человека может сохранят лишь при условии равенства теплообразования и теплопотери организма. Это достигается посредством физиологических терморегуляции, которую принято разделять на химическую и физическую. Способность человека противостоять воздействию тепла и холода, сохраняя стабильную температуру тела, имеет известные пределы. При чрезмерно низкой или очень высокой температуре среды защитные терморегуляционные механизмы оказывав недостаточными, и температура тела начинает резко падать или повышаться. В первом случае развивается состояние гипотермии, втором- гипертермии.

    Образование тепла в организме происходит главным образом в результате химических реакций обмена веществ. При окислении пищевых компонентов и других реакций тканевого метаболизма образуется тепло. Величина теплообразования находится в тесной связи уровнем метаболической активности организма. Поэтому теплопродукцию называют также химической терморегуляцией.

    Химическая терморегуляция имеет особо важное значение поддержания постоянства температуры тела в условиях охлаждения При понижении температуры окружающей среды происходит увеличение интенсивности обмена веществ и, следовательно, теплобразования. У человека усиление теплообразования отмечается в 1 случае, когда температура окружающей среды становится ниже оптимальной температуры или зоны комфорта. В обычной легко одежде эта зона находится в пределах 18-20°, а для обнаженного человека -28°С.

    Суммарное теплообразование в организме происходит в ходе химических реакций обмена веществ (окисление, гликолиз), что ее составляет так называемое первичное тепло и при расходов энергии макроэргических соединений (АТФ) на выполнение раб (вторичное тепло). В виде первичного тепла рассеивается 60-70% энергии. Остальные 30-40% после расщепления АТФ обеспечивают работу мышц, различные процессы су секреции и др. Но и при этом та или иная часть энергии переход затем в тепло. Таким образом, и вторичное тепло образуется вследствие экзотермических химических реакций, а при сокращении мышечных волокон-в результате их трения. В конечном итоге переходит в тепло или вся энергия, или подавляющая ее часть.

    Наиболее интенсивное теплообразование в мышцах при их сокращении Относительно небольшая двигатели активность ведет к увеличению теплообразования в 2 раза, а тяжелая работа - в 4-5 раз и более. Однако в этих условиях существенно возрастают потери тепла с поверхности тела.

    При продолжительном охлаждении организма возникают непроизвольные периодические сокращения скелетной мускулатуры. При этом почти вся метаболическая энергия в мышце освобождается в виде тепла. Активация в условиях холода симпатической нервной системы стимулирует липолиз в жировой ткани. В кровоток выделяются и в последующем окисляются с образованием большого количества тепла свободные жирные кислоты. Наконец, значение теплопродукции связано с усилением функций надпочечников и щитовидной железы. Гормоны этих желез, усиливая обмен веществ, вызывает повышенное теплообразование. Следует также иметь в виду, что все физиологические механизмы, которые регулируют окислительные процессы, влияют в то же время и на уровень теплообразования.

    Отдача тепла организмом осуществляется путем излучения и испарения.

    Излучением теряется примерно 50-55% шла в окружающую среду путем лучеиспускания за счет инфракрасной части спектра. Количество тепла, рассеиваемого организмом (окружающую среду с излучением, пропорционально площади поверхности частей тела, которые соприкасаются с воздухом, и разностью средних значений температур кожи и окружающей среды. Отдача шла излучением прекращается, если выравнивается температура кожи и окружающей среды.

    Теплопроведение может происходить путем кондукции и испарения. Кондукцией тепло теряется при непосредственном контакте участков тела человека с другими физическими средами. При этом количество теряемого тепла пропорционально разнице средних температур контактирующих поверхностей и времени теплового контакта. Конвекция- способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха.

    Конвекцией тепло рассеивается при обтекании поверхности тела потоком воздуха с более низкой температурой, чем температура воздуха. Движение воздушных потоков (ветер, вентиляция) увеличивает количество отдаваемого тепла. Путем теплопроведения организм теряет 15-20% тепла, при этом конвекция представляет более обширный механизм теплоотдачи, чем кондукция.

    Теплоотдача путем испарения - это способ рассеивания организмом тепла (около 30%) в окружающую среду за счет его затраты на испарение пота или влаги с поверхности кожи и слизистых дыхательных путей. При температуре внешней среды 20″ испарение влаги у человека составляет 600-800 г в сутки. При переходе в 1 г воды организм теряет 0.58 ккал тепла. Если внешняя темпер превышает среднее значение температуры кожи, то организм отдает во внешнюю среду тепло излучением и проведением, а нас поглощает тепло извне. Испарение жидкости с поверхности происходит при влажности воздуха менее 100%.
    Микроскопические грибы как основные продуценты различных микотоксинов ОБЩЕЕ ПРЕДСТАВЛЕНИЕ О СТРОЕНИИ И ФУНКЦИЯХ НЕРВНОЙ СИСТЕМЫ Функции финансов торговли

    2014-11-07

Которые характеризуются отсутствием окраски, наличием ядра и способностью к передвижению. Название переводится с греческого как «белые клетки». Группа лейкоцитов неоднородна. В нее входят несколько разновидностей, которые отличаются по происхождению, развитию, внешнему виду, строению, размерам, форме ядра, функциям. Образуются лейкоциты в лимфатических узлах и костном мозге. Их основная задача – защита организма от внешних и внутренних «врагов». Находятся лейкоциты в крови и в различных органах и тканях: в миндалинах, в кишечнике, в селезенке, в печени, в легких, под кожей и слизистыми. Они могут мигрировать во все части организма.

Белые клетки делятся на две группы:

  • Зернистые лейкоциты – гранулоциты. Они содержат крупные ядра неправильной формы, состоящие из сегментов, которых тем больше, чем старше гранулоцит. К этой группе относятся нейтрофилы, базофилы и эозинофилы, которые различают по восприятию ими красителей. Гранулоциты – это полиморфноядерные лейкоциты. .
  • Незернистые – агранулоциты. К ним относятся лимфоциты и моноциты, содержащие одно простое ядро овальной формы и не имеющие характерной зернистости.

Где образуются и сколько живут?

Основная часть белых клеток, а именно гранулоциты, производится красным костным мозгом из стволовых клеток. Из материнской (стволовой) образуется клетка-предшественница, затем переходит в лейкопоэтиночувствительную, которая под действием специфического гормона развивается по лейкоцитарному (белому) ряду: миелобласты – промиелоциты – миелоциты – метамиелоциты (юные формы) – палочкоядерные – сегментоядерные. Незрелые формы находятся в костном мозге, созревшие поступают в кровяное русло. Гранулоциты живут примерно 10 суток.

В лимфатических узлах вырабатываются лимфоциты и значительная часть моноцитов. Часть агранулоцитов из лимфатической системы поступает в кровь, которая их переносит к органам. Лимфоциты живут долго – от нескольких дней и до нескольких месяцев и лет. Срок жизни моноцитов – от нескольких часов до 2-4 дней.

Строение

Строение лейкоцитов разных видов отличается, и выглядят они по-разному. Общее для всех – это наличие ядра и отсутствие собственной окраски. Цитоплазма может быть зернистой или однородной.

Нейтрофилы

Нейтрофилы – полиморфноядерные лейкоциты. Они имеют круглую форму, их диаметр составляет около 12 мкм. В цитоплазме находится два вида гранул: первичные (азурофильные) и вторичные (специфические). Специфические мелкие, более светлые и составляют около 85 % от всех гранул, имеют в составе бактерицидные вещества, белок лактофферин. Аузорофильные крупнее, их содержится порядка 15 %, в них присутствуют ферменты, миелопероксидаза. В специальном красителе гранулы окрашиваются в сиреневый цвет, а цитоплазма – в розовый. Зернистость мелкая, состоит из гликогена, липидов, аминокислот, РНК, ферментов, за счет которых происходит расщепление и синтез веществ. У юных форм ядро бывает бобовидным, у палочкоядерных – в виде палочки или подковы. У зрелых клеток – сегментоядерных – оно имеет перетяжки и выглядит разделенным на сегменты, которых может быть от 3 до 5. В ядре, которое может иметь отростки (придатки) содержится много хроматина.

Эозинофилы

Эти гранулоциты достигают в диаметре 12 мкм, имеют мономорфную крупную зернистость. В цитоплазме содержатся гранулы овальной и сферической формы. Зернистость окрашивается кислыми красителями в розовый цвет, цитоплазма становится голубой. Присутствуют гранулы двух видов: первичные (азурофильные) и вторичные, или специфические, заполняющие почти всю цитоплазму. В центре гранул содержится кристаллоид, в котором находится основной белок, ферменты, пероксидаза, гистаминаза, эозинофильный катионный белок , фосфолипаза, цинк, коллагеназа, катепсин. Ядро эозинофилов состоит из двух сегментов.

Базофилы

Эта разновидность лейкоцитов с полиморфной зернистостью имеет размеры от 8 до 10 мкм. Гранулы разных размеров окрашиваются основным красителем в темный сине-фиолетовый цвет, цитоплазма – в розовый. Зернистость содержит гликоген, РНК, гистамин, гепарин, ферменты. В цитоплазме находятся органеллы: рибосомы, эндоплазматическая сеть, гликоген, митохондрии, аппарат Гольджи. Ядро чаще всего состоит из двух сегментов.

Лимфоциты

По размеру их можно разделить на три вида: крупные (от 15 до 18 мкм), средние (около 13 мкм), мелкие (6-9 мкм). Последних в крови больше всего. По форме лимфоциты овальные или круглые. Ядро крупное, занимает практически всю клетку и окрашивается в синий цвет. В небольшом количестве цитоплазмы содержится РНК, гликоген, ферменты, нуклеиновые кислоты, аденозинтрифосфат.

Моноциты

Это самые большие по размеру белые клетки, которые могут достигать в диаметре 20 мкм и более. В цитоплазме содержатся вакуоли, лизосомы, полирибосомы, рибосомы, митохондрии, аппарат Гольджи. Ядро моноцитов крупное, неправильной, бобовидной или овальной формы, может иметь выпуклости и вмятины, окрашивается в красновато-фиолетовый. Цитоплазма приобретает под воздействием красителя серо-голубой или серо-синий цвет. В ней содержатся ферменты, сахариды, РНК.

Лейкоциты в крови здоровых мужчин и женщин содержатся в следующем соотношении:

  • нейтрофилы сегментоядерные – от 47 до 72%;
  • нейтрофилы палочкоядерные – от 1 до 6%;
  • эозинофилы – от 1 до 4%;
  • базофилы – около 0,5%;
  • лимфоциты – от 19 до 37%;
  • моноциты – от 3 до 11%.

Абсолютный уровень лейкоцитов в крови у мужчин и женщин в норме имеет следующие значения:

  • нейтрофилы палочкоядерные – 0,04-0,3Х10⁹ на литр;
  • нейтрофилы сегментоядерные – 2-5,5Х10⁹ на литр;
  • нейтрофилы юные – отсутствуют;
  • базофилы – 0,065Х10⁹ на литр;
  • эозинофилы – 0,02-0,3Х10⁹ на литр;
  • лимфоциты – 1,2-3Х10⁹ на литр;
  • моноциты – 0,09-0,6Х10⁹ на литр.

Функции

Общие функции лейкоцитов следующие:

  1. Защитная – заключается в формировании иммунитета специфического и неспецифического. Основной механизм – фагоцитоз (захват клеткой патогенного микроорганизма и лишение его жизни).
  2. Транспортная – заключается в способности белых клеток адсорбировать аминокислоты, ферменты и другие вещества, находящиеся в плазме, и переносить их в нужные места.
  3. Гемостатическая – участвуют в свертывании крови.
  4. Санитарная – способность с помощью содержащихся в лейкоцитах ферментов рассасывать ткани, погибшие при травмах.
  5. Синтетическая – способность некоторых белков синтезировать биоактивные вещества (гепарин, гистамин и другие).

Каждому виду лейкоцитов отводятся свои функции, в том числе специфические.

Нейтрофилы

Главная роль – защита организма от инфекционных агентов. Эти клетки захватывают бактерии в свою цитоплазму и переваривают. Кроме этого, они могут вырабатывать противомикробные вещества. При проникновении инфекции в организм они устремляются к месту внедрения, накапливаются там в большом количестве, поглощают микроорганизмы и погибают сами, превращаясь в гной.

Эозинофилы

При заражении глистами эти клетки проникают в кишечник, разрушаются и выделяют токсические вещества, убивающие гельминтов. При аллергиях эозинофилы удаляют избыточный гистамин.

Базофилы

Эти лейкоциты принимают участие в формировании всех аллергических реакций. Их называют скорой помощью при укусах ядовитых насекомых и змей.

Лимфоциты

Они постоянно патрулируют организм с целью обнаружения чужеродных микроорганизмов и вышедших из-под контроля клеток собственного организма, которые могут мутировать, затем быстро делиться и образовывать опухоли. Среди них есть информаторы – макрофаги, которые постоянно перемещаются по организму, собирают подозрительные объекты и доставляют их лимфоцитам. Лимфоциты делятся на три вида:

  • Т-лимфоциты отвечают за клеточный иммунитет, вступают в контакт с вредными агентами и уничтожают их;
  • В-лимфоциты определяют чужеродные микроорганизмы и вырабатывают против них антитела;
  • NK-клетки. Это настоящие киллеры, которые поддерживают в норме клеточный состав. Их функция – распознавать дефектные и раковые клетки и уничтожать их.

Как подсчитывают


Для подсчета лейкоцитов используется оптический прибор – камера Горяева

Уровень белых клеток (WBC) определяют во время проведения клинического анализа крови. Подсчет лейкоцитов осуществляется автоматическими счетчиками или в камере Горяева – оптического прибора, названного в честь его разработчика – профессора Казанского университета. Этот прибор отличается высокой точностью. Состоит из толстого стекла с углублением прямоугольной формы (собственно камерой), где нанесена микроскопическая сетка, и тонкого покровного стекла.

Подсчет происходит следующим образом:

  1. Уксусную кислоту (3-5%) подкрашивают метиленовой синью и наливают в пробирку. В капиллярную пипетку набирают кровь и осторожно добавляют ее в приготовленный реактив, после чего как следует перемешивают.
  2. Покровное стекло и камеру вытирают насухо марлей. Покровное стекло притирают к камере, чтобы появились цветные кольца, заполняют камеру кровью и ждут в течение минуты, пока не остановится движение клеток. Подсчитывают количество лейкоцитов в ста больших квадратах. Рассчитывают по формуле X = (a х 250 х 20): 100, где «a» – количество лейкоцитов в 100 квадратах камеры, «х» – количество лейкоцитов в одном мкл крови. Полученный по формуле результат умножают на 50.

Заключение

Лейкоциты – разнородная группа элементов крови, которые осуществляют защиту организма от внешних и внутренних заболеваний. Каждый вид белых клеток выполняет определенную функцию, поэтому важно, чтобы их содержание соответствовало норме. Любые отклонения могут указывать на развитие болезней. Анализ крови на лейкоциты позволяет на ранних этапах заподозрить патологию, даже если отсутствует симптоматика. Это способствует своевременной диагностике и дает больше шансов на выздоровление.

Loading...Loading...