Cum se calculează aria unui triunghi formula. Cum să găsiți aria unui triunghi. Formule triunghiulare. Formule generale pentru situația în care se cunosc razele cercurilor înscrise sau circumscrise

Uneori, în viață există situații în care trebuie să vă adânciți în memorie în căutarea cunoștințelor școlare de mult uitate. De exemplu, trebuie să determinați suprafața unui teren de formă triunghiulară sau a venit rândul următoarei reparații într-un apartament sau o casă privată și trebuie să calculați cât material va fi nevoie. pentru o suprafata cu forma triunghiulara. A fost un moment în care ai putea rezolva o astfel de problemă în câteva minute, iar acum încerci cu disperare să-ți amintești cum să determini aria unui triunghi?

Nu trebuie să vă faceți griji pentru asta! La urma urmei, este destul de normal când creierul uman decide să schimbe cunoștințele neutilizate de mult timp undeva într-un colț îndepărtat, din care uneori nu este atât de ușor să le extragi. Pentru a nu fi nevoit să suferiți în căutarea cunoștințelor școlare uitate pentru a rezolva o astfel de problemă, acest articol conține diverse metode care ușurează găsirea zonei necesare a unui triunghi.

Este bine cunoscut faptul că un triunghi este un tip de poligon care este limitat de numărul minim posibil de laturi. În principiu, orice poligon poate fi împărțit în mai multe triunghiuri conectând vârfurile sale cu segmente care nu îi intersectează laturile. Prin urmare, cunoscând triunghiul, puteți calcula aria aproape oricărei figuri.

Dintre toate triunghiurile posibile care apar în viață, se pot distinge următoarele tipuri particulare: și dreptunghiulare.

Cel mai simplu mod de a calcula aria unui triunghi este atunci când unul dintre colțurile acestuia este drept, adică în cazul unui triunghi dreptunghic. Este ușor de observat că este o jumătate de dreptunghi. Prin urmare, aria sa este egală cu jumătate din produsul laturilor, care formează un unghi drept între ele.

Dacă cunoaștem înălțimea triunghiului, coborât de la unul dintre vârfurile sale pe latura opusă, și lungimea acestei laturi, care se numește bază, atunci aria se calculează ca jumătate din produsul înălțimii și bazei. Aceasta se scrie folosind următoarea formulă:

S = 1/2*b*h, în care

S este aria dorită a triunghiului;

b, h - respectiv, înălțimea și baza triunghiului.

Este atât de ușor să calculați aria unui triunghi isoscel, deoarece înălțimea va diviza latura opusă și poate fi măsurată cu ușurință. Dacă aria este determinată, atunci este convenabil să luați lungimea uneia dintre laturile care formează un unghi drept ca înălțime.

Toate acestea sunt cu siguranță bune, dar cum să determinați dacă unul dintre colțurile unui triunghi este drept sau nu? Dacă dimensiunea figurii noastre este mică, atunci puteți utiliza un unghi de construcție, un triunghi de desen, o carte poștală sau alt obiect cu formă dreptunghiulară.

Dar dacă avem un teren triunghiular? În acest caz, procedați astfel: din partea de sus a presupusului unghi drept pe o parte, se măsoară un multiplu de distanță de 3 (30 cm, 90 cm, 3 m), iar pe cealaltă parte un multiplu de distanță de 4 (40 cm, 160 cm, 4 m). Acum trebuie să măsurați distanța dintre punctele de capăt ale acestor două segmente. Dacă valoarea este un multiplu de 5 (50 cm, 250 cm, 5 m), atunci se poate argumenta că unghiul este corect.

Dacă valoarea lungimii fiecăreia dintre cele trei laturi ale figurii noastre este cunoscută, atunci aria triunghiului poate fi determinată folosind formula lui Heron. Pentru ca acesta să aibă o formă mai simplă, se folosește o nouă valoare, care se numește semiperimetru. Aceasta este suma tuturor laturilor triunghiului nostru, împărțite la jumătate. După ce se calculează semiperimetrul, puteți începe să determinați zona folosind formula:

S = sqrt(p(p-a)(p-b)(p-c)), unde

sqrt - rădăcină pătrată;

p este valoarea semiperimetrului (p =(a+b+c)/2);

a, b, c - muchiile (laturile) triunghiului.

Dar dacă triunghiul are o formă neregulată? Există două moduri posibile aici. Prima dintre acestea este să încercați să împărțiți o astfel de figură în două triunghiuri dreptunghiulare, a căror sumă a ariilor este calculată separat și apoi adăugată. Sau, dacă unghiul dintre cele două laturi și dimensiunea acestor laturi sunt cunoscute, atunci aplicați formula:

S = 0,5 * ab * sinC, unde

a,b - laturile triunghiului;

c este unghiul dintre aceste laturi.

Cel din urmă caz ​​este rar în practică, dar, cu toate acestea, totul este posibil în viață, așa că formula de mai sus nu va fi de prisos. Succes cu calculele tale!

Triunghiul este o figură binecunoscută. Și asta, în ciuda varietății bogate a formelor sale. Dreptunghiular, echilateral, acut, isoscel, obtuz. Fiecare dintre ele este oarecum diferit. Dar pentru orice este necesar să cunoașteți aria triunghiului.

Formule comune pentru toate triunghiurile care folosesc lungimile laturilor sau înălțimii

Denumirile adoptate în ele: laturile - a, b, c; înălțimi pe laturile corespunzătoare pe a, n in, n s.

1. Aria unui triunghi se calculează ca produsul lui ½, latura și înălțimea coborâte pe acesta. S = ½ * a * n a. În mod similar, ar trebui să scrieți formule pentru celelalte două părți.

2. Formula lui Heron, în care apare semiperimetrul (se obișnuiește să-l notăm cu litera p mică, în contrast cu întregul perimetru). Semi-perimetrul trebuie calculat după cum urmează: se adună toate laturile și se împart la 2. Formula semi-perimetru: p \u003d (a + b + c) / 2. Apoi egalitatea pentru aria de \ u200b\u200bfigura arată astfel: S \u003d √ (p * (p - a) * ( p - c) * (p - c)).

3. Dacă nu doriți să utilizați un semi-perimetru, atunci o astfel de formulă va fi utilă, în care sunt prezente doar lungimile laturilor: S \u003d ¼ * √ ((a + b + c) * ( b + c - a) * (a + c - c) * (a + b - c)). Este oarecum mai lung decât precedentul, dar vă va ajuta dacă ați uitat cum să găsiți semi-perimetrul.

Formule generale în care apar unghiurile unui triunghi

Notația care este necesară pentru a citi formulele: α, β, γ - unghiuri. Ele se află laturi opuse a, b, c, respectiv.

1. Potrivit acestuia, jumătate din produsul celor două laturi și sinusul unghiului dintre ele este egal cu aria triunghiului. Adică: S = ½ a * b * sin γ. Formulele pentru celelalte două cazuri ar trebui scrise într-un mod similar.

2. Aria unui triunghi poate fi calculată dintr-o latură și trei unghiuri cunoscute. S \u003d (a 2 * sin β * sin γ) / (2 sin α).

3. Există și o formulă cu o latură cunoscută și două unghiuri adiacente acesteia. Arata astfel: S = c 2 / (2 (ctg α + ctg β)).

Ultimele două formule nu sunt cele mai simple. E destul de greu să-i amintești.

Formule generale pentru situația în care se cunosc razele cercurilor înscrise sau circumscrise

Denumiri suplimentare: r, R — razele. Primul este folosit pentru raza cercului înscris. Al doilea este pentru cel descris.

1. Prima formulă prin care se calculează aria unui triunghi este legată de semiperimetrul. S = r * r. Într-un alt mod, poate fi scris după cum urmează: S \u003d ½ r * (a + b + c).

2. În al doilea caz, va trebui să înmulțiți toate laturile triunghiului și să le împărțiți la raza cvadruplă a cercului circumscris. În termeni literali, arată astfel: S \u003d (a * b * c) / (4R).

3. A treia situație vă permite să faceți fără a cunoaște laturile, dar aveți nevoie de valorile tuturor celor trei unghiuri. S \u003d 2 R 2 * sin α * sin β * sin γ.

Caz special: triunghi dreptunghic

Aceasta este cea mai simplă situație, deoarece este necesară doar lungimea ambelor picioare. Ele sunt notate cu literele latine a și b. Aria unui triunghi dreptunghic este egală cu jumătate din aria dreptunghiului adăugat acestuia.

Matematic, arată astfel: S = ½ a * b. Ea este cel mai ușor de reținut. Deoarece arată ca formula pentru aria unui dreptunghi, apare doar o fracție, denotă jumătate.

Caz special: triunghi isoscel

Deoarece cele două laturi ale sale sunt egale, unele formule pentru zona sa par oarecum simplificate. De exemplu, formula lui Heron, care calculează aria unui triunghi isoscel, ia următoarea formă:

S = ½ in √((a + ½ in)*(a - ½ in)).

Dacă îl converti, va deveni mai scurt. În acest caz, formula lui Heron pentru un triunghi isoscel este scrisă după cum urmează:

S = ¼ în √(4 * a 2 - b 2).

Formula ariei pare oarecum mai simplă decât pentru un triunghi arbitrar dacă laturile și unghiul dintre ele sunt cunoscute. S \u003d ½ a 2 * sin β.

Caz special: triunghi echilateral

De obicei, în problemele despre el, latura este cunoscută sau poate fi cumva recunoscută. Apoi formula pentru găsirea ariei unui astfel de triunghi este următoarea:

S = (a 2 √3) / 4.

Sarcini pentru găsirea zonei dacă triunghiul este reprezentat pe hârtie în carouri

Cea mai simplă situație este atunci când un triunghi dreptunghic este desenat astfel încât picioarele acestuia să coincidă cu liniile hârtiei. Apoi trebuie doar să numărați numărul de celule care se potrivesc în picioare. Apoi înmulțiți-le și împărțiți-le la doi.

Când triunghiul este acut sau obtuz, trebuie să fie desenat într-un dreptunghi. Apoi, în figura rezultată vor fi 3 triunghiuri. Unul este cel dat în sarcină. Iar celelalte două sunt auxiliare și dreptunghiulare. Zonele ultimelor două trebuie determinate prin metoda descrisă mai sus. Apoi calculați aria dreptunghiului și scădeți din el cele calculate pentru cele auxiliare. Se determină aria triunghiului.

Mult mai dificilă este situația în care niciuna dintre laturile triunghiului nu coincide cu liniile hârtiei. Apoi trebuie să fie înscris într-un dreptunghi, astfel încât vârfurile figurii originale să se afle pe laturile sale. În acest caz, vor exista trei triunghiuri dreptunghiulare auxiliare.

Un exemplu de problemă cu formula lui Heron

Condiție. Unele triunghiuri au laturi. Sunt egale cu 3, 5 și 6 cm. Trebuie să-i cunoașteți aria.

Acum puteți calcula aria unui triunghi folosind formula de mai sus. Sub rădăcina pătrată se află produsul a patru numere: 7, 4, 2 și 1. Adică, aria este √ (4 * 14) = 2 √ (14).

Dacă nu aveți nevoie de mai multă precizie, atunci puteți lua rădăcina pătrată a lui 14. Este 3,74. Atunci aria va fi egală cu 7,48.

Răspuns. S \u003d 2 √14 cm 2 sau 7,48 cm 2.

Un exemplu de problemă cu un triunghi dreptunghic

Condiție. Un picior al unui triunghi dreptunghic este cu 31 cm mai lung decât al doilea. Este necesar să aflați lungimile lor dacă aria triunghiului este de 180 cm 2.
Soluţie. Trebuie să rezolvi un sistem de două ecuații. Primul are legătură cu zona. Al doilea este cu raportul picioarelor, care este dat în problemă.
180 \u003d ½ a * b;

a \u003d b + 31.
În primul rând, valoarea lui „a” trebuie înlocuită în prima ecuație. Se dovedește: 180 \u003d ½ (in + 31) * in. Are o singură cantitate necunoscută, deci este ușor de rezolvat. După deschiderea parantezelor, se obține o ecuație pătratică: în 2 + 31 in - 360 \u003d 0. Oferă două valori \u200b\u200bpentru "în": 9 și - 40. Al doilea număr nu este potrivit ca răspuns , deoarece lungimea laturii triunghiului nu poate fi o valoare negativă.

Rămâne de calculat al doilea etapă: la numărul rezultat se adaugă 31. Rezultă 40. Acestea sunt cantitățile căutate în problemă.

Răspuns. Lamele triunghiului au 9 și 40 cm.

Sarcina de a găsi latura prin zona, latura și unghiul unui triunghi

Condiție. Aria unui triunghi este de 60 cm2. Este necesar să se calculeze una dintre laturile sale dacă a doua latură este de 15 cm, iar unghiul dintre ele este de 30º.

Soluţie. Pe baza denumirilor acceptate, latura dorită este „a”, cunoscutul „b”, unghiul dat este „γ”. Apoi formula zonei poate fi rescrisă după cum urmează:

60 \u003d ½ a * 15 * sin 30º. Aici sinusul de 30 de grade este 0,5.

După transformări, „a” se dovedește a fi egal cu 60 / (0,5 * 0,5 * 15). Adică 16.

Răspuns. Latura dorită este de 16 cm.

Problema unui pătrat înscris într-un triunghi dreptunghic

Condiție. Vârful unui pătrat cu latura de 24 cm coincide cu unghiul drept al triunghiului. Ceilalți doi se întind pe picioare. Al treilea aparține ipotenuzei. Lungimea unuia dintre picioare este de 42 cm Care este aria unui triunghi dreptunghic?

Soluţie. Luați în considerare două triunghiuri dreptunghiulare. Primul este specificat în sarcină. Al doilea se bazează pe catelul cunoscut al triunghiului original. Sunt asemănătoare deoarece au un unghi comun și sunt formate din linii paralele.

Atunci rapoartele picioarelor lor sunt egale. Picioarele triunghiului mai mic sunt 24 cm (latura pătratului) și 18 cm (cu cât este 42 cm minus latura pătratului 24 cm). Picioarele corespunzătoare ale triunghiului mare sunt de 42 cm și x cm. Acest „x” este necesar pentru a calcula aria triunghiului.

18/42 \u003d 24 / x, adică x \u003d 24 * 42 / 18 \u003d 56 (cm).

Atunci aria este egală cu produsul dintre 56 și 42, împărțit la doi, adică 1176 cm 2.

Răspuns. Suprafața dorită este de 1176 cm2.

Conceptul de zonă

Conceptul de zonă a oricărei figuri geometrice, în special un triunghi, va fi asociat cu o astfel de figură precum un pătrat. Pentru o unitate de suprafață a oricărei figuri geometrice, vom lua aria unui pătrat, a cărui latură este egală cu unu. Pentru a fi complet, amintim două proprietăți de bază pentru conceptul de zone ale formelor geometrice.

Proprietatea 1: Dacă figurile geometrice sunt egale, atunci și zonele lor sunt egale.

Proprietatea 2: Orice figură poate fi împărțită în mai multe figuri. Mai mult, aria figurii originale este egală cu suma valorilor ariilor tuturor figurilor care o alcătuiesc.

Luați în considerare un exemplu.

Exemplul 1

Este evident că una dintre laturile triunghiului este diagonala dreptunghiului, unde o latură este $5$ (din moment ce $5$ celule) și cealaltă este $6$ (din moment ce $6$ celule). Prin urmare, aria acestui triunghi va fi egală cu jumătate dintr-un astfel de dreptunghi. Aria dreptunghiului este

Atunci aria triunghiului este

Răspuns: $15$.

În continuare, luați în considerare mai multe metode pentru găsirea ariilor triunghiurilor, și anume folosind înălțimea și baza, folosind formula Heron și aria unui triunghi echilateral.

Cum să găsiți aria unui triunghi folosind înălțimea și baza

Teorema 1

Aria unui triunghi poate fi găsită ca jumătate din produsul lungimii unei laturi cu înălțimea trasă de acea latură.

Matematic arată așa

$S=\frac(1)(2)αh$

unde $a$ este lungimea laturii, $h$ este înălțimea trasă la ea.

Dovada.

Considerăm triunghiul $ABC$ unde $AC=α$. Înălțimea $BH$ este trasă în această parte și este egală cu $h$. Să o construim până la pătratul $AXYC$ ca în Figura 2.

Aria dreptunghiului $AXBH$ este $h\cdot AH$, iar cea a dreptunghiului $HBYC$ este $h\cdot HC$. Apoi

$S_ABH=\frac(1)(2)h\cdot AH$, $S_CBH=\frac(1)(2)h\cdot HC$

Prin urmare, aria dorită a triunghiului, conform proprietății 2, este egală cu

$S=S_ABH+S_CBH=\frac(1)(2)h\cdot AH+\frac(1)(2)h\cdot HC=\frac(1)(2)h\cdot (AH+HC)=\ frac(1)(2)αh$

Teorema a fost demonstrată.

Exemplul 2

Găsiți aria triunghiului din figura de mai jos, dacă celula are o zonă egală cu unu

Baza acestui triunghi este $9$ (deoarece $9$ este $9$ celule). Înălțimea este, de asemenea, de 9 USD. Apoi, prin teorema 1, obținem

$S=\frac(1)(2)\cdot 9\cdot 9=40.5$

Răspuns: 40,5 USD.

Formula lui Heron

Teorema 2

Dacă ni se dau trei laturi ale unui triunghi $α$, $β$ și $γ$, atunci aria acestuia poate fi găsită după cum urmează

$S=\sqrt(ρ(ρ-α)(ρ-β)(ρ-γ))$

aici $ρ$ înseamnă jumătate de perimetru al acestui triunghi.

Dovada.

Luați în considerare următoarea figură:

Prin teorema lui Pitagora, din triunghiul $ABH$ obtinem

Din triunghiul $CBH$, după teorema lui Pitagora, avem

$h^2=α^2-(β-x)^2$

$h^2=α^2-β^2+2βx-x^2$

Din aceste două relații obținem egalitatea

$γ^2-x^2=α^2-β^2+2βx-x^2$

$x=\frac(γ^2-α^2+β^2)(2β)$

$h^2=γ^2-(\frac(γ^2-α^2+β^2)(2β))^2$

$h^2=\frac((α^2-(γ-β)^2)((γ+β)^2-α^2))(4β^2)$

$h^2=\frac((α-γ+β)(α+γ-β)(γ+β-α)(γ+β+α))(4β^2)$

Deoarece $ρ=\frac(α+β+γ)(2)$, atunci $α+β+γ=2ρ$, deci

$h^2=\frac(2ρ(2ρ-2γ)(2ρ-2β)(2ρ-2α))(4β^2)$

$h^2=\frac(4ρ(ρ-α)(ρ-β)(ρ-γ))(β^2 )$

$h=\sqrt(\frac(4ρ(ρ-α)(ρ-β)(ρ-γ))(β^2))$

$h=\frac(2)(β)\sqrt(ρ(ρ-α)(ρ-β)(ρ-γ))$

Prin teorema 1, obținem

$S=\frac(1)(2) βh=\frac(β)(2)\cdot \frac(2)(β) \sqrt(ρ(ρ-α)(ρ-β)(ρ-γ) )=\sqrt(ρ(ρ-α)(ρ-β)(ρ-γ))$

Conceptul de zonă

Conceptul de zonă a oricărei figuri geometrice, în special un triunghi, va fi asociat cu o astfel de figură precum un pătrat. Pentru o unitate de suprafață a oricărei figuri geometrice, vom lua aria unui pătrat, a cărui latură este egală cu unu. Pentru a fi complet, amintim două proprietăți de bază pentru conceptul de zone ale formelor geometrice.

Proprietatea 1: Dacă figurile geometrice sunt egale, atunci și zonele lor sunt egale.

Proprietatea 2: Orice figură poate fi împărțită în mai multe figuri. Mai mult, aria figurii originale este egală cu suma valorilor ariilor tuturor figurilor care o alcătuiesc.

Luați în considerare un exemplu.

Exemplul 1

Este evident că una dintre laturile triunghiului este diagonala dreptunghiului, unde o latură este $5$ (din moment ce $5$ celule) și cealaltă este $6$ (din moment ce $6$ celule). Prin urmare, aria acestui triunghi va fi egală cu jumătate dintr-un astfel de dreptunghi. Aria dreptunghiului este

Atunci aria triunghiului este

Răspuns: $15$.

În continuare, luați în considerare mai multe metode pentru găsirea ariilor triunghiurilor, și anume folosind înălțimea și baza, folosind formula Heron și aria unui triunghi echilateral.

Cum să găsiți aria unui triunghi folosind înălțimea și baza

Teorema 1

Aria unui triunghi poate fi găsită ca jumătate din produsul lungimii unei laturi cu înălțimea trasă de acea latură.

Matematic arată așa

$S=\frac(1)(2)αh$

unde $a$ este lungimea laturii, $h$ este înălțimea trasă la ea.

Dovada.

Considerăm triunghiul $ABC$ unde $AC=α$. Înălțimea $BH$ este trasă în această parte și este egală cu $h$. Să o construim până la pătratul $AXYC$ ca în Figura 2.

Aria dreptunghiului $AXBH$ este $h\cdot AH$, iar cea a dreptunghiului $HBYC$ este $h\cdot HC$. Apoi

$S_ABH=\frac(1)(2)h\cdot AH$, $S_CBH=\frac(1)(2)h\cdot HC$

Prin urmare, aria dorită a triunghiului, conform proprietății 2, este egală cu

$S=S_ABH+S_CBH=\frac(1)(2)h\cdot AH+\frac(1)(2)h\cdot HC=\frac(1)(2)h\cdot (AH+HC)=\ frac(1)(2)αh$

Teorema a fost demonstrată.

Exemplul 2

Găsiți aria triunghiului din figura de mai jos, dacă celula are o zonă egală cu unu

Baza acestui triunghi este $9$ (deoarece $9$ este $9$ celule). Înălțimea este, de asemenea, de 9 USD. Apoi, prin teorema 1, obținem

$S=\frac(1)(2)\cdot 9\cdot 9=40.5$

Răspuns: 40,5 USD.

Formula lui Heron

Teorema 2

Dacă ni se dau trei laturi ale unui triunghi $α$, $β$ și $γ$, atunci aria acestuia poate fi găsită după cum urmează

$S=\sqrt(ρ(ρ-α)(ρ-β)(ρ-γ))$

aici $ρ$ înseamnă jumătate de perimetru al acestui triunghi.

Dovada.

Luați în considerare următoarea figură:

Prin teorema lui Pitagora, din triunghiul $ABH$ obtinem

Din triunghiul $CBH$, după teorema lui Pitagora, avem

$h^2=α^2-(β-x)^2$

$h^2=α^2-β^2+2βx-x^2$

Din aceste două relații obținem egalitatea

$γ^2-x^2=α^2-β^2+2βx-x^2$

$x=\frac(γ^2-α^2+β^2)(2β)$

$h^2=γ^2-(\frac(γ^2-α^2+β^2)(2β))^2$

$h^2=\frac((α^2-(γ-β)^2)((γ+β)^2-α^2))(4β^2)$

$h^2=\frac((α-γ+β)(α+γ-β)(γ+β-α)(γ+β+α))(4β^2)$

Deoarece $ρ=\frac(α+β+γ)(2)$, atunci $α+β+γ=2ρ$, deci

$h^2=\frac(2ρ(2ρ-2γ)(2ρ-2β)(2ρ-2α))(4β^2)$

$h^2=\frac(4ρ(ρ-α)(ρ-β)(ρ-γ))(β^2 )$

$h=\sqrt(\frac(4ρ(ρ-α)(ρ-β)(ρ-γ))(β^2))$

$h=\frac(2)(β)\sqrt(ρ(ρ-α)(ρ-β)(ρ-γ))$

Prin teorema 1, obținem

$S=\frac(1)(2) βh=\frac(β)(2)\cdot \frac(2)(β) \sqrt(ρ(ρ-α)(ρ-β)(ρ-γ) )=\sqrt(ρ(ρ-α)(ρ-β)(ρ-γ))$

Formula zonei este necesar să se determine aria unei figuri, care este o funcție cu valoare reală definită pe o anumită clasă de figuri în planul euclidian și care îndeplinește 4 condiții:

  1. Pozitiv - Zona nu poate fi mai mică de zero;
  2. Normalizare - un pătrat cu o latură a unității are o zonă de 1;
  3. Congruență - figurile congruente au aria egală;
  4. Aditivitate - aria unirii a 2 figuri fără puncte interne comune este egală cu suma ariilor acestor cifre.
Formule pentru zona formelor geometrice.
Figura geometrică Formulă Desen

Rezultatul adunării distanțelor dintre punctele medii ale laturilor opuse ale unui patrulater convex va fi egal cu semiperimetrul acestuia.

Sectorul cercului.

Aria unui sector de cerc este egală cu produsul arcului său și jumătate din rază.

segment de cerc.

Pentru a obține aria segmentului ASB, este suficient să scădeți aria triunghiului AOB din aria sectorului AOB.

S = 1 / 2 R(s - AC)

Aria unei elipse este egală cu produsul lungimilor semiaxelor majore și minore ale elipsei cu pi.

Elipsă.

O altă opțiune pentru a calcula aria unei elipse este prin cele două raze ale sale.

Triunghi. Prin bază și înălțime.

Formula pentru aria unui cerc în termeni de rază și diametru.

Patrat . Prin partea lui.

Aria unui pătrat este egală cu pătratul lungimii laturii sale.

Pătrat. Prin diagonala sa.

Aria unui pătrat este jumătate din pătratul lungimii diagonalei sale.

poligon regulat.

Pentru a determina aria unui poligon regulat, este necesar să-l împărțiți în triunghiuri egale care ar avea un vârf comun în centrul cercului înscris.

S= r p = 1/2 r n a

Se încarcă...Se încarcă...