La base de l'identité logarithmique. Identité logarithmique de base

(du grec λόγος - « mot », « relation » et ἀριθμός - « nombre ») b basé sur un(log α b) s'appelle un tel nombre c, Et b= un c, c'est-à-dire enregistre le journal α b=c Et b = unc sont équivalents. Le logarithme a du sens si a > 0, a ≠ 1, b > 0.

Autrement dit logarithme Nombres b basé sur UN formulé comme un exposant auquel un nombre doit être élevé un pour obtenir le numéro b(le logarithme n'existe que pour les nombres positifs).

De cette formulation il résulte que le calcul x= log α b, équivaut à résoudre l’équation a x = b.

Par exemple:

log 2 8 = 3 car 8 = 2 3 .

Soulignons que la formulation indiquée du logarithme permet de déterminer immédiatement valeur du logarithme, lorsque le nombre sous le signe du logarithme agit comme une certaine puissance de la base. En effet, la formulation du logarithme permet de justifier que si b = un c, puis le logarithme du nombre b basé sur unéquivaut à Avec. Il est également clair que le thème des logarithmes est étroitement lié au thème puissances d'un nombre.

Le calcul du logarithme s'appelle logarithme. Le logarithme est l'opération mathématique consistant à prendre un logarithme. Lors de la prise de logarithmes, les produits de facteurs sont transformés en sommes de termes.

Potentialisation est l'opération mathématique inverse du logarithme. Lors de la potentialisation, une base donnée est élevée jusqu'au degré d'expression sur lequel la potentialisation est effectuée. Dans ce cas, les sommes de termes sont transformées en un produit de facteurs.

Assez souvent, les logarithmes réels sont utilisés avec les bases 2 (binaire), le nombre d'Euler e ≈ 2,718 (logarithme naturel) et 10 (décimal).

A ce stade, il convient de considérer échantillons de logarithme journal 7 2 , dans 5, lg0.0001.

Et les entrées lg(-3), log -3 3.2, log -1 -4.3 n'ont pas de sens, puisque dans la première d'entre elles un nombre négatif est placé sous le signe du logarithme, dans la seconde - un nombre négatif dans la base et dans le troisième - à la fois un nombre négatif sous le signe du logarithme et une unité dans la base.

Conditions de détermination du logarithme.

Il convient de considérer séparément les conditions a > 0, a ≠ 1, b > 0.sous lesquelles on obtient définition du logarithme. Voyons pourquoi ces restrictions ont été prises. Une égalité de la forme x = log α nous y aidera b, appelée identité logarithmique de base, qui découle directement de la définition du logarithme donnée ci-dessus.

Prenons la condition une≠1. Puisque un à n’importe quelle puissance est égal à un, alors l’égalité x=log α b ne peut exister que lorsque b=1, mais le journal 1 1 sera n'importe quel nombre réel. Pour lever cette ambiguïté, nous prenons une≠1.

Montrons la nécessité de la condition une>0. À une=0 selon la formulation du logarithme, ne peut exister que lorsque b=0. Et en conséquence alors journal 0 0 peut être n'importe quel nombre réel non nul, puisque zéro à toute puissance non nulle est zéro. Cette ambiguïté peut être éliminée par la condition une≠0. Et quand un<0 il faudrait rejeter l'analyse des valeurs rationnelles et irrationnelles du logarithme, puisqu'un degré avec un exposant rationnel et irrationnel n'est défini que pour des bases non négatives. C'est pour cette raison que la condition est stipulée une>0.

ET dernière condition b>0 découle de l’inégalité une>0, puisque x=log α b, et la valeur du diplôme avec une base positive un toujours positif.

Caractéristiques des logarithmes.

Logarithmes caractérisé par un caractère distinctif caractéristiques, ce qui a conduit à leur utilisation généralisée pour faciliter considérablement les calculs fastidieux. En passant « dans le monde des logarithmes », la multiplication se transforme en une addition beaucoup plus simple, la division se transforme en soustraction, et l'exponentiation et l'extraction de racine se transforment respectivement en multiplication et division par l'exposant.

Formulation de logarithmes et tableau de leurs valeurs (pour fonctions trigonométriques) a été publié pour la première fois en 1614 par le mathématicien écossais John Napier. Les tableaux logarithmiques, élargis et détaillés par d'autres scientifiques, ont été largement utilisés dans les calculs scientifiques et techniques et sont restés pertinents jusqu'à l'utilisation de calculatrices électroniques et d'ordinateurs.


Nous continuons à étudier les logarithmes. Dans cet article, nous parlerons de calculer des logarithmes, ce processus est appelé logarithme. Nous comprendrons d’abord le calcul des logarithmes par définition. Voyons ensuite comment les valeurs des logarithmes sont trouvées à l'aide de leurs propriétés. Après cela, nous nous concentrerons sur le calcul des logarithmes à travers les valeurs initialement spécifiées d'autres logarithmes. Enfin, apprenons à utiliser les tables de logarithmes. La théorie entière est fournie avec des exemples avec des solutions détaillées.

Navigation dans les pages.

Calculer des logarithmes par définition

Dans les cas les plus simples, il est possible d'effectuer assez rapidement et facilement trouver le logarithme par définition. Examinons de plus près comment ce processus se déroule.

Son essence est de représenter le nombre b sous la forme a c, à partir duquel, par définition d'un logarithme, le nombre c est la valeur du logarithme. Autrement dit, par définition, la chaîne d'égalités suivante correspond à la recherche du logarithme : log a b=log a a c =c.

Ainsi, calculer un logarithme revient par définition à trouver un nombre c tel que a c = b, et le nombre c lui-même est la valeur souhaitée du logarithme.

Compte tenu des informations contenues dans les paragraphes précédents, lorsque le nombre sous le signe du logarithme est donné par une certaine puissance de la base du logarithme, vous pouvez immédiatement indiquer à quoi est égal le logarithme - il est égal à l'exposant. Montrons les solutions à l'aide d'exemples.

Exemple.

Trouvez log 2 2 −3 et calculez également le logarithme népérien du nombre e 5,3.

Solution.

La définition du logarithme permet de dire immédiatement que log 2 2 −3 =−3. En effet, le nombre sous le signe du logarithme est égal à la base 2 à la puissance −3.

De même, on retrouve le deuxième logarithme : lne 5,3 =5,3.

Répondre:

log 2 2 −3 =−3 et lne 5,3 =5,3.

Si le nombre b sous le signe du logarithme n'est pas spécifié comme puissance de la base du logarithme, vous devez alors examiner attentivement s'il est possible de proposer une représentation du nombre b sous la forme a c . Souvent cette représentation est assez évidente, surtout lorsque le nombre sous le signe du logarithme est égal à la base à la puissance 1, ou 2, ou 3,...

Exemple.

Calculez les logarithmes log 5 25 , et .

Solution.

Il est facile de voir que 25=5 2, cela permet de calculer le premier logarithme : log 5 25=log 5 5 2 =2.

Passons au calcul du deuxième logarithme. Le nombre peut être représenté par une puissance de 7 : (à voir si nécessaire). Ainsi, .

Réécrivons le troisième logarithme en le formulaire suivant. Maintenant tu peux voir ça , d'où nous concluons que . Par conséquent, par la définition du logarithme .

Brièvement, la solution pourrait s'écrire comme suit : .

Répondre:

journal 5 25=2 , Et .

Lorsque sous le signe du logarithme se trouve un nombre suffisamment grand entier naturel, alors cela ne ferait pas de mal de le prendre en compte dans les facteurs premiers. Il est souvent utile de représenter un nombre tel qu'une certaine puissance de la base du logarithme, et donc de calculer ce logarithme par définition.

Exemple.

Trouvez la valeur du logarithme.

Solution.

Certaines propriétés des logarithmes permettent de spécifier immédiatement la valeur des logarithmes. Ces propriétés incluent la propriété du logarithme de un et la propriété du logarithme d'un nombre égal à la base : log 1 1=log a a 0 =0 et log a a=log a a 1 =1. Autrement dit, lorsque sous le signe du logarithme se trouve un nombre 1 ou un nombre a égal à la base du logarithme, alors dans ces cas les logarithmes sont respectivement égaux à 0 et 1.

Exemple.

À quoi sont égaux les logarithmes et log10 ?

Solution.

Puisque , alors de la définition du logarithme il résulte .

Dans le deuxième exemple, le nombre 10 sous le signe du logarithme coïncide avec sa base, donc le logarithme décimal de dix est égal à un, c'est-à-dire lg10=lg10 1 =1.

Répondre:

ET lg10=1 .

Notez que le calcul des logarithmes par définition (dont nous avons parlé dans le paragraphe précédent) implique l'utilisation de l'égalité log a a p =p, qui est l'une des propriétés des logarithmes.

En pratique, lorsqu'un nombre sous le signe du logarithme et la base du logarithme sont facilement représentés comme une puissance d'un certain nombre, il est très pratique d'utiliser la formule , qui correspond à l'une des propriétés des logarithmes. Regardons un exemple de recherche d'un logarithme qui illustre l'utilisation de cette formule.

Exemple.

Calculez le logarithme.

Solution.

Répondre:

.

Les propriétés des logarithmes non mentionnées ci-dessus sont également utilisées dans les calculs, mais nous en parlerons dans les paragraphes suivants.

Trouver des logarithmes à l'aide d'autres logarithmes connus

Les informations contenues dans ce paragraphe poursuivent le sujet de l'utilisation des propriétés des logarithmes lors de leur calcul. Mais ici, la principale différence est que les propriétés des logarithmes sont utilisées pour exprimer le logarithme original en fonction d'un autre logarithme dont la valeur est connue. Donnons un exemple pour clarifier. Disons que nous savons que log 2 3≈1,584963, alors nous pouvons trouver, par exemple, log 2 6 en effectuant une petite transformation en utilisant les propriétés du logarithme : log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

Dans l’exemple ci-dessus, il nous suffisait d’utiliser la propriété du logarithme d’un produit. Cependant, il est beaucoup plus souvent nécessaire d'utiliser un arsenal plus large de propriétés de logarithmes afin de calculer le logarithme d'origine à travers ceux donnés.

Exemple.

Calculez le logarithme de 27 en base 60 si vous savez que log 60 2=a et log 60 5=b.

Solution.

Nous devons donc trouver le journal 60 27 . Il est facile de voir que 27 = 3 3 , et le logarithme original, en raison de la propriété du logarithme de la puissance, peut être réécrit sous la forme 3·log 60 3 .

Voyons maintenant comment exprimer log 60 3 en termes de logarithmes connus. La propriété du logarithme d'un nombre égal à la base permet d'écrire le log d'égalité 60 60=1. Par contre, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Ainsi, 2 log 60 2+log 60 3+log 60 5=1. Ainsi, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Enfin, nous calculons le logarithme original : log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Répondre:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Séparément, il convient de mentionner la signification de la formule de transition vers une nouvelle base du logarithme de la forme . Il permet de passer de logarithmes à base quelconque à des logarithmes à base spécifique dont les valeurs sont connues ou il est possible de les retrouver. Habituellement, à partir du logarithme original, en utilisant la formule de transition, ils passent aux logarithmes dans l'une des bases 2, e ou 10, car pour ces bases il existe des tableaux de logarithmes qui permettent de calculer leurs valeurs avec un certain degré de précision. Dans le paragraphe suivant, nous montrerons comment cela se fait.

Tables de logarithme et leurs utilisations

Pour le calcul approximatif des valeurs du logarithme, vous pouvez utiliser tables de logarithme. La table de logarithme base 2 la plus couramment utilisée est la table logarithmes naturels et un tableau de logarithmes décimaux. Lorsque vous travaillez dans le système de nombres décimaux, il est pratique d'utiliser un tableau de logarithmes basé sur la base dix. Avec son aide, nous apprendrons à trouver les valeurs des logarithmes.










Le tableau présenté permet de retrouver les valeurs des logarithmes décimaux des nombres de 1 000 à 9 999 (avec trois décimales) avec une précision d'un dix millième. Nous analyserons le principe de recherche de la valeur d'un logarithme à l'aide d'un tableau de logarithmes décimaux en exemple spécifique– c’est plus clair comme ça. Trouvons log1.256.

Dans la colonne de gauche du tableau des logarithmes décimaux on retrouve les deux premiers chiffres du nombre 1,256, c'est-à-dire qu'on trouve 1,2 (ce nombre est entouré en bleu pour plus de clarté). Le troisième chiffre du nombre 1.256 (chiffre 5) se trouve dans la première ou la dernière ligne à gauche de la double ligne (ce nombre est entouré de rouge). Le quatrième chiffre du nombre initial 1.256 (chiffre 6) se trouve dans la première ou la dernière ligne à droite de la double ligne (ce nombre est entouré d'un trait vert). On retrouve maintenant les nombres dans les cellules du tableau des logarithmes à l'intersection de la ligne marquée et des colonnes marquées (ces nombres sont mis en évidence orange). La somme des nombres marqués donne la valeur souhaitée du logarithme décimal précis à la quatrième décimale, c'est-à-dire log1,236≈0,0969+0,0021=0,0990.

Est-il possible, à l'aide du tableau ci-dessus, de trouver les valeurs des logarithmes décimaux des nombres qui ont plus de trois chiffres après la virgule décimale, ainsi que ceux qui dépassent la plage de 1 à 9,999 ? Oui, vous pouvez. Montrons comment cela se fait avec un exemple.

Calculons lg102.76332. Vous devez d'abord écrire numéro sous forme standard: 102,76332=1,0276332·10 2. Après cela, la mantisse doit être arrondie à la troisième décimale, nous avons 1,0276332 10 2 ≈1,028 10 2, tandis que le logarithme décimal d'origine est approximativement égal au logarithme du nombre résultant, c'est-à-dire que nous prenons log102,76332≈lg1,028·10 2. Nous appliquons maintenant les propriétés du logarithme : lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2. Enfin, on retrouve la valeur du logarithme lg1.028 à partir du tableau des logarithmes décimaux lg1.028≈0.0086+0.0034=0.012. En conséquence, l'ensemble du processus de calcul du logarithme ressemble à ceci : log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1,028+lg10 2 =log1,028+2≈0,012+2=2,012.

En conclusion, il convient de noter qu'en utilisant un tableau de logarithmes décimaux, vous pouvez calculer la valeur approximative de n'importe quel logarithme. Pour ce faire, il suffit d'utiliser la formule de transition pour accéder aux logarithmes décimaux, retrouver leurs valeurs dans le tableau et effectuer les calculs restants.

Par exemple, calculons log 2 3 . D'après la formule de transition vers une nouvelle base du logarithme, nous avons . À partir du tableau des logarithmes décimaux, nous trouvons log3≈0,4771 et log2≈0,3010. Ainsi, .

Bibliographie.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. et autres Algèbre et débuts de l'analyse : Manuel pour les classes 10 - 11 des établissements d'enseignement général.
  • Gusev V.A., Mordkovitch A.G. Mathématiques (un manuel pour ceux qui entrent dans les écoles techniques).

Logarithme du nombre b (b > 0) en base a (a > 0, a ≠ 1)– exposant auquel il faut élever le nombre a pour obtenir b.

Le logarithme en base 10 de b peut s’écrire journal(b), et le logarithme en base e (logarithme népérien) est ln(b).

Souvent utilisé pour résoudre des problèmes avec des logarithmes :

Propriétés des logarithmes

Il y a quatre principaux propriétés des logarithmes.

Soit a > 0, a ≠ 1, x > 0 et y > 0.

Propriété 1. Logarithme du produit

Logarithme du produitégal à la somme des logarithmes :

log a (x ⋅ y) = log a x + log a y

Propriété 2. Logarithme du quotient

Logarithme du quotientégal à la différence des logarithmes :

log a (x / y) = log a x – log a y

Propriété 3. Logarithme de puissance

Logarithme de degréégal au produit de la puissance et du logarithme :

Si la base du logarithme est en degré, alors une autre formule s'applique :

Propriété 4. Logarithme de la racine

Cette propriété peut être obtenue à partir de la propriété du logarithme d'une puissance, puisque la racine nième de la puissance est égale à la puissance de 1/n :

Formule pour convertir un logarithme dans une base en un logarithme dans une autre base

Cette formule est également souvent utilisée lors de la résolution de diverses tâches sur les logarithmes :

Cas particulier:

Comparaison de logarithmes (inégalités)

Ayons 2 fonctions f(x) et g(x) sous logarithmes de mêmes bases et entre elles il y a un signe d'inégalité :

Pour les comparer, il faut d'abord regarder la base des logarithmes a :

  • Si a > 0, alors f(x) > g(x) > 0
  • Si 0< a < 1, то 0 < f(x) < g(x)

Comment résoudre des problèmes avec les logarithmes : exemples

Problèmes avec les logarithmes inclus dans l'examen d'État unifié en mathématiques pour la 11e année dans les tâches 5 et 7, vous pouvez trouver des tâches avec des solutions sur notre site Web dans les sections appropriées. De plus, des tâches comportant des logarithmes se trouvent dans la banque de tâches mathématiques. Vous pouvez trouver tous les exemples en effectuant une recherche sur le site.

Qu'est-ce qu'un logarithme

Les logarithmes ont toujours été considérés sujet complexe dans un cours de mathématiques à l'école. Il y a beaucoup de différentes définitions logarithme, mais pour une raison quelconque, la plupart des manuels utilisent les plus complexes et les plus infructueux d'entre eux.

Nous définirons le logarithme simplement et clairement. Pour ce faire, créons un tableau :

Nous avons donc des puissances de deux.

Logarithmes - propriétés, formules, comment résoudre

Si vous prenez le nombre de la ligne du bas, vous pouvez facilement trouver la puissance à laquelle vous devrez relancer deux pour obtenir ce nombre. Par exemple, pour obtenir 16, vous devez élever deux à la puissance quatrième. Et pour obtenir 64, il faut élever deux à la puissance sixième. Cela peut être vu sur le tableau.

Et maintenant - en fait, la définition du logarithme :

la base a de l'argument x est la puissance à laquelle le nombre a doit être élevé pour obtenir le nombre x.

Désignation : log a x = b, où a est la base, x est l'argument, b est ce à quoi le logarithme est réellement égal.

Par exemple, 2 3 = 8 ⇒log 2 8 = 3 (le logarithme en base 2 de 8 est trois car 2 3 = 8). Avec le même succès, log 2 64 = 6, puisque 2 6 = 64.

L'opération consistant à trouver le logarithme d'un nombre selon une base donnée est appelée. Alors, ajoutons une nouvelle ligne à notre tableau :

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
journal 2 2 = 1 journal 2 4 = 2 journal 2 8 = 3 journal 2 16 = 4 journal 2 32 = 5 journal 2 64 = 6

Malheureusement, tous les logarithmes ne se calculent pas aussi facilement. Par exemple, essayez de trouver le log 2 5. Le nombre 5 n'est pas dans le tableau, mais la logique veut que le logarithme se situe quelque part sur l'intervalle. Parce que 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

De tels nombres sont appelés irrationnels : les nombres après la virgule peuvent être écrits à l'infini et ils ne sont jamais répétés. Si le logarithme s'avère irrationnel, il vaut mieux le laisser ainsi : log 2 5, log 3 8, log 5 100.

Il est important de comprendre qu’un logarithme est une expression à deux variables (la base et l’argument). Au début, beaucoup de gens confondent où se trouve la base et où se trouve l’argument. Pour éviter des malentendus gênants, il suffit de regarder l'image :

Nous n’avons devant nous rien d’autre que la définition d’un logarithme. Souviens-toi: le logarithme est une puissance, dans lequel la base doit être construite pour obtenir un argument. C'est la base qui est élevée à une puissance - elle est surlignée en rouge sur la photo. Il s'avère que la base est toujours en bas ! J'enseigne cette merveilleuse règle à mes élèves dès la première leçon - et aucune confusion ne surgit.

Comment compter les logarithmes

Nous avons trouvé la définition - il ne reste plus qu'à apprendre à compter les logarithmes, c'est-à-dire débarrassez-vous du panneau « journal ». Pour commencer, notons que deux faits importants découlent de la définition :

  1. L'argument et la base doivent toujours être supérieurs à zéro. Cela découle de la définition d'un degré par un exposant rationnel, à laquelle se réduit la définition d'un logarithme.
  2. La base doit être différente de l'unité, puisque l'unité reste une à quelque degré que ce soit. De ce fait, la question « à quel pouvoir faut-il être élevé pour en obtenir deux » n’a pas de sens. Un tel diplôme n'existe pas !

De telles restrictions sont appelées région valeurs acceptables (ODZ). Il s'avère que l'ODZ du logarithme ressemble à ceci : log a x = b ⇒x > 0, a > 0, a ≠ 1.

Notez qu'il n'y a aucune restriction sur le nombre b (la valeur du logarithme). Par exemple, le logarithme peut très bien être négatif : log 2 0,5 = −1, car 0,5 = 2 −1.

Cependant, nous ne considérons maintenant que des expressions numériques, pour lesquelles il n'est pas nécessaire de connaître la VA du logarithme. Toutes les restrictions ont déjà été prises en compte par les auteurs des tâches. Mais lorsque les équations logarithmiques et les inégalités entreront en jeu, les exigences DL deviendront obligatoires. Après tout, la base et l’argumentation peuvent contenir des constructions très fortes qui ne correspondent pas nécessairement aux restrictions ci-dessus.

Considérons maintenant régime général calculer des logarithmes. Il se compose de trois étapes :

  1. Exprimez la base a et l'argument x sous la forme d'une puissance avec la base minimale possible supérieure à un. En chemin, il vaut mieux se débarrasser des décimales ;
  2. Résolvez l'équation de la variable b : x = a b ;
  3. Le nombre résultant b sera la réponse.

C'est tout! Si le logarithme s’avère irrationnel, cela sera visible dès la première étape. L'exigence que la base soit supérieure à un est très importante : cela réduit le risque d'erreur et simplifie grandement les calculs. Même avec décimales: si vous les convertissez immédiatement en standards, il y aura beaucoup moins d'erreurs.

Voyons comment ce schéma fonctionne à l'aide d'exemples spécifiques :

Tâche. Calculez le logarithme : log 5 25

  1. Imaginons la base et l'argument comme une puissance de cinq : 5 = 5 1 ; 25 = 5 2 ;
  2. Créons et résolvons l'équation :
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2 ;

  3. Nous avons reçu la réponse : 2.

Tâche. Calculez le logarithme :

Tâche. Calculez le logarithme : log 4 64

  1. Imaginons la base et l'argument comme une puissance de deux : 4 = 2 2 ; 64 = 2 6 ;
  2. Créons et résolvons l'équation :
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3 ;
  3. Nous avons reçu la réponse : 3.

Tâche. Calculez le logarithme : log 16 1

  1. Imaginons la base et l'argument comme une puissance de deux : 16 = 2 4 ; 1 = 2 0 ;
  2. Créons et résolvons l'équation :
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0 ;
  3. Nous avons reçu la réponse : 0.

Tâche. Calculez le logarithme : log 7 14

  1. Imaginons la base et l'argument comme une puissance de sept : 7 = 7 1 ; 14 ne peut pas être représenté comme une puissance de sept, puisque 7 1< 14 < 7 2 ;
  2. Il résulte du paragraphe précédent que le logarithme ne compte pas ;
  3. La réponse est aucun changement : log 7 14.

Une petite note sur le dernier exemple. Comment être sûr qu’un nombre n’est pas la puissance exacte d’un autre nombre ? C'est très simple : il suffit de le prendre en compte en facteurs premiers. Si l’expansion comporte au moins deux facteurs différents, le nombre n’est pas une puissance exacte.

Tâche. Découvrez si les nombres sont des puissances exactes : 8 ; 48 ; 81 ; 35 ; 14.

8 = 2 · 2 · 2 = 2 3 - degré exact, car il n'y a qu'un seul multiplicateur ;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - n'est pas une puissance exacte, puisqu'il y a deux facteurs : 3 et 2 ;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - degré exact ;
35 = 7 · 5 - encore une fois, ce n'est pas une puissance exacte ;
14 = 7 · 2 - encore une fois, ce n'est pas un degré exact ;

Notez également que les nombres premiers eux-mêmes sont toujours des puissances exactes d'eux-mêmes.

Logarithme décimal

Certains logarithmes sont si courants qu’ils portent un nom et un symbole spéciaux.

de l'argument x est le logarithme en base 10, c'est-à-dire La puissance à laquelle il faut élever le nombre 10 pour obtenir le nombre x. Désignation : LG X.

Par exemple, log 10 = 1 ; LG 100 = 2 ; lg 1000 = 3 - etc.

Désormais, lorsqu'une phrase telle que « Find lg 0.01 » apparaît dans un manuel, sachez qu'il ne s'agit pas d'une faute de frappe. Il s'agit d'un logarithme décimal. Cependant, si vous n’êtes pas familier avec cette notation, vous pouvez toujours la réécrire :
journal x = journal 10 x

Tout ce qui est vrai pour les logarithmes ordinaires l’est également pour les logarithmes décimaux.

Un algorithme naturel

Il existe un autre logarithme qui a sa propre désignation. À certains égards, c'est encore plus important que le nombre décimal. Nous parlons du logarithme népérien.

de l'argument x est le logarithme en base e, c'est-à-dire la puissance à laquelle le nombre e doit être élevé pour obtenir le nombre x. Désignation : lnx.

Beaucoup de gens se demanderont : quel est le nombre e ? Ce nombre irrationnel, son valeur exacte impossible à trouver et à enregistrer. Je ne donnerai que les premiers chiffres :
e = 2,718281828459…

Nous n’entrerons pas dans les détails de ce qu’est ce numéro et pourquoi il est nécessaire. N'oubliez pas que e est la base du logarithme népérien :
ln x = log e x

Ainsi ln e = 1 ; ln e 2 = 2 ; ln e 16 = 16 - etc. En revanche, ln 2 est un nombre irrationnel. En général, le logarithme népérien de tout nombre rationnel est irrationnel. Sauf bien sûr un : ln 1 = 0.

Pour les logarithmes naturels, toutes les règles valables pour les logarithmes ordinaires sont valables.

Voir également:

Logarithme. Propriétés du logarithme (puissance du logarithme).

Comment représenter un nombre sous forme de logarithme ?

Nous utilisons la définition du logarithme.

Un logarithme est un exposant auquel il faut élever la base pour obtenir le nombre sous le signe du logarithme.

Ainsi, pour représenter un certain nombre c sous forme de logarithme en base a, il faut mettre une puissance de même base que la base du logarithme sous le signe du logarithme, et écrire ce nombre c comme exposant :

Absolument n'importe quel nombre peut être représenté sous forme de logarithme - positif, négatif, entier, fractionnaire, rationnel, irrationnel :

Afin de ne pas confondre a et c dans les conditions stressantes d'un test ou d'un examen, vous pouvez utiliser la règle de mémorisation suivante :

ce qui est en bas descend, ce qui est en haut monte.

Par exemple, vous devez représenter le nombre 2 sous forme de logarithme en base 3.

Nous avons deux nombres - 2 et 3. Ces nombres sont la base et l'exposant, que nous écrirons sous le signe du logarithme. Reste à déterminer lequel de ces nombres doit être écrit, à la base du degré, et lequel – à l'exposant.

La base 3 dans la notation d'un logarithme est en bas, ce qui signifie que lorsque nous représentons deux sous forme de logarithme en base 3, nous écrirons également 3 en base.

2 est supérieur à trois. Et en notation du degré deux, nous écrivons au-dessus des trois, c'est-à-dire en exposant :

Logarithmes. Premier niveau.

Logarithmes

Logarithme nombre positif b basé sur un, Où une > 0, une ≠ 1, est appelé l'exposant auquel le nombre doit être élevé un, Obtenir b.

Définition du logarithme peut s'écrire brièvement ainsi :

Cette égalité est valable pour b > 0, une > 0, une ≠ 1. On l'appelle généralement identité logarithmique.
L’action de trouver le logarithme d’un nombre s’appelle par logarithme.

Propriétés des logarithmes :

Logarithme du produit :

Logarithme du quotient :

Remplacement de la base du logarithme :

Logarithme du degré :

Logarithme de la racine :

Logarithme avec base de puissance :





Logarithmes décimaux et naturels.

Logarithme décimal les nombres appellent le logarithme de ce nombre en base 10 et écrivent   lg b
Un algorithme naturel les nombres sont appelés le logarithme de ce nombre à la base e, Où e- un nombre irrationnel approximativement égal à 2,7. En même temps, ils écrivent dans b.

Autres notes sur l'algèbre et la géométrie

Propriétés de base des logarithmes

Propriétés de base des logarithmes

Les logarithmes, comme tous les nombres, peuvent être ajoutés, soustraits et transformés de toutes les manières possibles. Mais comme les logarithmes ne sont pas exactement des nombres ordinaires, il existe ici des règles appelées propriétés principales.

Vous devez absolument connaître ces règles - sans elles, aucun problème logarithmique sérieux ne peut être résolu. De plus, il y en a très peu - on peut tout apprendre en une journée. Alors, commençons.

Additionner et soustraire des logarithmes

Considérons deux logarithmes avec les mêmes bases : log a x et log a y. Ensuite, ils peuvent être ajoutés et soustraits, et :

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x : y).

Ainsi, la somme des logarithmes est égale au logarithme du produit et la différence est égale au logarithme du quotient. Attention : le point clé ici est motifs identiques. Si les raisons sont différentes, ces règles ne fonctionnent pas !

Ces formules vous aideront à calculer une expression logarithmique même lorsque ses parties individuelles ne sont pas prises en compte (voir la leçon « Qu'est-ce qu'un logarithme »). Jetez un œil aux exemples et voyez :

Journal 6 4 + journal 6 9.

Puisque les logarithmes ont les mêmes bases, nous utilisons la formule de somme :
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Tâche. Trouvez la valeur de l'expression : log 2 48 − log 2 3.

Les bases sont les mêmes, on utilise la formule de différence :
log 2 48 − log 2 3 = log 2 (48 : 3) = log 2 16 = 4.

Tâche. Trouvez la valeur de l'expression : log 3 135 − log 3 5.

Là encore les bases sont les mêmes, on a donc :
log 3 135 − log 3 5 = log 3 (135 : 5) = log 3 27 = 3.

Comme vous pouvez le constater, les expressions originales sont constituées de « mauvais » logarithmes, qui ne sont pas calculés séparément. Mais après les transformations, ils s'avèrent plutôt nombres normaux. Beaucoup sont construits sur ce fait papiers de test. Oui, des expressions de type test sont proposées très sérieusement (parfois avec pratiquement aucun changement) lors de l'examen d'État unifié.

Extraire l'exposant du logarithme

Maintenant, compliquons un peu la tâche. Et si la base ou l’argument d’un logarithme était une puissance ? Ensuite, l'exposant de ce degré peut être soustrait du signe du logarithme selon les règles suivantes :

Il est facile de voir que la dernière règle suit les deux premières. Mais il vaut quand même mieux s'en souvenir - dans certains cas, cela réduira considérablement le nombre de calculs.

Bien sûr, toutes ces règles ont du sens si l'ODZ du logarithme est observé : a > 0, a ≠ 1, x > 0. Et encore une chose : apprenez à appliquer toutes les formules non seulement de gauche à droite, mais aussi vice versa , c'est à dire. Vous pouvez saisir les nombres avant le signe du logarithme dans le logarithme lui-même.

Comment résoudre des logarithmes

C'est ce qui est le plus souvent demandé.

Tâche. Trouvez la valeur de l'expression : log 7 49 6 .

Débarrassons-nous du degré dans l'argument en utilisant la première formule :
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Tâche. Trouvez le sens de l'expression :

Notez que le dénominateur contient un logarithme dont la base et l'argument sont des puissances exactes : 16 = 2 4 ; 49 = 7 2. Nous avons:

Je pense que le dernier exemple nécessite quelques éclaircissements. Où sont passés les logarithmes ? Jusqu'au tout dernier moment, nous travaillons uniquement avec le dénominateur. Nous avons présenté la base et l'argument du logarithme sous forme de puissances et avons retiré les exposants - nous avons obtenu une fraction « à trois étages ».

Examinons maintenant la fraction principale. Le numérateur et le dénominateur contiennent le même nombre : log 2 7. Puisque log 2 7 ≠ 0, on peut réduire la fraction - 2/4 resteront au dénominateur. Selon les règles de l'arithmétique, le quatre peut être transféré au numérateur, ce qui a été fait. Le résultat fut la réponse : 2.

Transition vers une nouvelle fondation

En parlant des règles d'addition et de soustraction de logarithmes, j'ai spécifiquement souligné qu'elles ne fonctionnent qu'avec les mêmes bases. Et si les raisons étaient différentes ? Et s’il ne s’agissait pas de puissances exactes du même nombre ?

Les formules de transition vers une nouvelle fondation viennent à la rescousse. Formulons-les sous la forme d'un théorème :

Soit le logarithme log a x. Alors pour tout nombre c tel que c > 0 et c ≠ 1, l'égalité est vraie :

En particulier, si on pose c = x, on obtient :

De la deuxième formule, il s'ensuit que la base et l'argument du logarithme peuvent être intervertis, mais dans ce cas, l'expression entière est « retournée », c'est-à-dire le logarithme apparaît au dénominateur.

Ces formules se retrouvent rarement dans les expressions numériques ordinaires. Il est possible d'évaluer leur commodité uniquement lors de la résolution d'équations logarithmiques et d'inégalités.

Cependant, il existe des problèmes qui ne peuvent être résolus qu’en passant à une nouvelle fondation. Examinons-en quelques-uns :

Tâche. Trouvez la valeur de l'expression : log 5 16 log 2 25.

Notez que les arguments des deux logarithmes contiennent des puissances exactes. Sortons les indicateurs : log 5 16 = log 5 2 4 = 4log 5 2 ; journal 2 25 = journal 2 5 2 = 2 journal 2 5 ;

Maintenant, « inversons » le deuxième logarithme :

Étant donné que le produit ne change pas lors de la réorganisation des facteurs, nous avons calmement multiplié quatre par deux, puis nous sommes occupés des logarithmes.

Tâche. Trouvez la valeur de l'expression : log 9 100 lg 3.

La base et l'argument du premier logarithme sont des puissances exactes. Écrivons cela et débarrassons-nous des indicateurs :

Débarrassons-nous maintenant du logarithme décimal en passant à une nouvelle base :

Identité logarithmique de base

Souvent, dans le processus de résolution, il est nécessaire de représenter un nombre sous forme de logarithme sur une base donnée.

Dans ce cas, les formules suivantes nous aideront :

Dans le premier cas, le nombre n devient l’exposant de l’argument. Le nombre n peut être absolument n'importe quoi, car il s'agit simplement d'une valeur logarithmique.

La deuxième formule est en fait une définition paraphrasée. C'est comme ça que ça s'appelle : .

En fait, que se passe-t-il si le nombre b est élevé à une puissance telle que le nombre b à cette puissance donne le nombre a ? C'est vrai : le résultat est le même nombre a. Relisez attentivement ce paragraphe – de nombreuses personnes restent bloquées dessus.

Comme les formules pour passer à une nouvelle base, l’identité logarithmique de base est parfois la seule solution possible.

Tâche. Trouvez le sens de l'expression :

Notez que log 25 64 = log 5 8 - prend simplement le carré de la base et de l'argument du logarithme. En tenant compte des règles de multiplication des puissances de même base, on obtient :

Si quelqu'un ne le sait pas, c'était une véritable tâche de l'examen d'État unifié :)

Unité logarithmique et zéro logarithmique

En conclusion, je donnerai deux identités qui peuvent difficilement être qualifiées de propriétés - elles sont plutôt des conséquences de la définition du logarithme. Ils apparaissent constamment dans les problèmes et, étonnamment, créent des problèmes même pour les étudiants « avancés ».

  1. log a a = 1 est. Rappelez-vous une fois pour toutes : le logarithme de n’importe quelle base a de cette base elle-même est égal à un.
  2. log a 1 = 0 est. La base a peut être n'importe quoi, mais si l'argument en contient un, le logarithme est égal à zéro ! Parce que 0 = 1 est une conséquence directe de la définition.

C'est toutes les propriétés. Assurez-vous de vous entraîner à les mettre en pratique ! Téléchargez l'aide-mémoire au début de la leçon, imprimez-la et résolvez les problèmes.

    Commençons avec propriétés du logarithme de un. Sa formulation est la suivante : le logarithme de l'unité est égal à zéro, c'est-à-dire enregistrer un 1=0 pour tout a>0, a≠1. La preuve n'est pas difficile : puisque a 0 =1 pour tout a satisfaisant les conditions ci-dessus a>0 et a≠1, alors l'égalité log a 1=0 à prouver découle immédiatement de la définition du logarithme.

    Donnons des exemples d'application de la propriété considérée : log 3 1=0, log1=0 et .

    Passons à à la propriété suivante: le logarithme d'un nombre égal à la base est égal à un, c'est, log a a = 1 pour une>0, une≠1. En effet, puisque a 1 =a pour tout a, alors par définition du logarithme log a a=1.

    Des exemples d'utilisation de cette propriété des logarithmes sont les égalités log 5 5=1, log 5,6 5,6 et lne=1.

    Par exemple, log 2 2 7 =7, log10 -4 =-4 et .

    Logarithme du produit de deux nombres positifs x et y sont égaux au produit des logarithmes de ces nombres : log a (x y)=log a x+log a y, une>0 , une≠1 . Démontrons la propriété du logarithme d'un produit. En raison des propriétés du diplôme un journal a x+log a y =un journal a x ·un journal a y, et puisque par l'identité logarithmique principale un log a x =x et un log a y =y, alors un log a x ·a log a y =x·y. Ainsi, un log a x+log a y =x·y, d'où, par la définition d'un logarithme, découle l'égalité prouvée.

    Montrons des exemples d'utilisation de la propriété du logarithme d'un produit : log 5 (2 3)=log 5 2+log 5 3 et .

    La propriété du logarithme d'un produit peut être généralisée au produit d'un nombre fini n de nombres positifs x 1 , x 2 , …, x n comme log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n . Cette égalité peut être prouvée sans problème.

    Par exemple, le logarithme naturel du produit peut être remplacé par la somme de trois logarithmes naturels des nombres 4, e et.

    Logarithme du quotient de deux nombres positifs x et y sont égaux à la différence entre les logarithmes de ces nombres. La propriété du logarithme d'un quotient correspond à une formule de la forme , où a>0, a≠1, x et y sont des nombres positifs. La validité de cette formule est prouvée ainsi que celle du logarithme d'un produit : puisque , puis par définition d'un logarithme.

    Voici un exemple d'utilisation de cette propriété du logarithme : .

    Passons à propriété du logarithme de la puissance. Le logarithme d'un degré est égal au produit de l'exposant et du logarithme du module de la base de ce degré. Écrivons cette propriété du logarithme d'une puissance sous forme de formule : log a b p =p·log a |b|, où a>0, a≠1, b et p sont des nombres tels que le degré b p a du sens et b p >0.

    Nous prouvons d’abord cette propriété pour b positif. L'identité logarithmique de base nous permet de représenter le nombre b comme un log a b , alors b p =(a log a b) p , et l'expression résultante, en raison de la propriété de puissance, est égale à a p·log a b . On arrive donc à l'égalité b p =a p·log a b, d'où, par la définition d'un logarithme, on conclut que log a b p =p·log a b.

    Il reste à prouver cette propriété pour b négatif. Notons ici que l'expression log a b p pour b négatif n'a de sens que pour les exposants pairs p (puisque la valeur du degré b p doit être supérieure à zéro, sinon le logarithme n'aura pas de sens), et dans ce cas b p =|b| p. Alors bp =|b| p =(a log a |b|) p =a p·log a |b|, d'où log a b p =p·log a |b| .

    Par exemple, et ln(-3) 4 =4·ln|-3|=4·ln3 .

    Il découle de la propriété précédente propriété du logarithme à partir de la racine: le logarithme de la nième racine est égal au produit de la fraction 1/n par le logarithme de l'expression radicale, soit , où a>0, a≠1, n est un nombre naturel supérieur à un, b>0.

    La preuve est basée sur l'égalité (voir), qui est valable pour tout b positif, et la propriété du logarithme de la puissance : .

    Voici un exemple d'utilisation de cette propriété : .

    Maintenant, prouvons formule pour passer à une nouvelle base de logarithme gentil . Pour ce faire, il suffit de prouver la validité de l'égalité log c b=log a b·log c a. L'identité logarithmique de base nous permet de représenter le nombre b comme un log a b , alors log c b=log c a log a b . Il reste à utiliser la propriété du logarithme du degré : journal c a journal a b = journal a b journal c a. Cela prouve l'égalité log c b=log a b·log c a, ce qui signifie que la formule de transition vers une nouvelle base du logarithme a également été prouvée.

    Montrons quelques exemples d'utilisation de cette propriété des logarithmes : et .

    La formule de passage à une nouvelle base vous permet de passer au travail avec des logarithmes ayant une base « pratique ». Par exemple, il peut être utilisé pour accéder à des logarithmes naturels ou décimaux afin de pouvoir calculer la valeur d'un logarithme à partir d'un tableau de logarithmes. La formule de passage à une nouvelle base de logarithme permet également, dans certains cas, de retrouver la valeur d'un logarithme donné lorsque les valeurs de certains logarithmes avec d'autres bases sont connues.

    Utilisé fréquemment cas particulier formules de transition vers une nouvelle base du logarithme avec c=b de la forme . Cela montre que log a b et log b a – . Par exemple, .

    La formule est également souvent utilisée , ce qui est pratique pour trouver des valeurs de logarithme. Pour confirmer nos propos, nous montrerons comment il peut être utilisé pour calculer la valeur d'un logarithme de la forme . Nous avons . Pour prouver la formule il suffit d'utiliser la formule de passage à une nouvelle base du logarithme a : .

    Reste à prouver les propriétés de comparaison des logarithmes.

    Montrons que pour tout nombre positif b 1 et b 2, b 1 log a b 2 , et pour a>1 – l'inégalité log a b 1

    Enfin, il reste à prouver la dernière des propriétés répertoriées des logarithmes. Limitons-nous à la preuve de sa première partie, c'est-à-dire que nous prouverons que si a 1 >1, a 2 >1 et a 1 1 est vrai log a 1 b>log a 2 b . Les autres affirmations de cette propriété des logarithmes sont prouvées selon un principe similaire.

    Utilisons la méthode inverse. Supposons que pour un 1 >1, un 2 >1 et un 1 1 est vrai log a 1 b≤log a 2 b . Sur la base des propriétés des logarithmes, ces inégalités peuvent être réécrites comme Et respectivement, et il en résulte que log b a 1 ≤log b a 2 et log b a 1 ≥log b a 2, respectivement. Alors, selon les propriétés des puissances de mêmes bases, les égalités b log b a 1 ≥b log b a 2 et b log b a 1 ≥b log b a 2 doivent être vraies, c'est-à-dire a 1 ≥a 2 . Nous sommes donc arrivés à une contradiction avec la condition a 1

Bibliographie.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. et autres Algèbre et débuts de l'analyse : Manuel pour les classes 10 - 11 des établissements d'enseignement général.
  • Gusev V.A., Mordkovitch A.G. Mathématiques (un manuel pour ceux qui entrent dans les écoles techniques).

Instructions

Écrivez l'expression logarithmique donnée. Si l'expression utilise le logarithme de 10, alors sa notation est raccourcie et ressemble à ceci : lg b est le logarithme décimal. Si le logarithme a le nombre e comme base, alors écrivez l'expression : ln b – logarithme népérien. Il est entendu que le résultat de any est la puissance à laquelle le nombre de base doit être élevé pour obtenir le nombre b.

Pour trouver la somme de deux fonctions, il suffit de les différencier une à une et d'additionner les résultats : (u+v)" = u"+v";

Pour trouver la dérivée du produit de deux fonctions, il faut multiplier la dérivée de la première fonction par la seconde et ajouter la dérivée de la deuxième fonction multipliée par la première fonction : (u*v)" = u"*v +v"*u;

Pour trouver la dérivée du quotient de deux fonctions, il faut soustraire du produit de la dérivée du dividende multiplié par la fonction diviseur le produit de la dérivée du diviseur multiplié par la fonction du dividende, et diviser tout cela par la fonction diviseur au carré. (u/v)" = (u"*v-v"*u)/v^2 ;

Si une fonction complexe est donnée, il est alors nécessaire de multiplier la dérivée de la fonction interne et la dérivée de la fonction externe. Soit y=u(v(x)), alors y"(x)=y"(u)*v"(x).

En utilisant les résultats obtenus ci-dessus, vous pouvez différencier presque toutes les fonctions. Alors regardons quelques exemples :

y=x^4, y"=4*x^(4-1)=4*x^3 ;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *X));
Il existe également des problèmes liés au calcul de la dérivée en un point. Soit la fonction y=e^(x^2+6x+5), vous devez trouver la valeur de la fonction au point x=1.
1) Trouvez la dérivée de la fonction : y"=e^(x^2-6x+5)*(2*x +6).

2) Calculer la valeur de la fonction en un point donné y"(1)=8*e^0=8

Vidéo sur le sujet

Conseil utile

Apprenez le tableau des dérivées élémentaires. Cela permettra de gagner beaucoup de temps.

Sources:

  • dérivée d'une constante

Alors, quelle est la différence entre une équation irrationnelle et une équation rationnelle ? Si la variable inconnue est sous le signe de la racine carrée, alors l'équation est considérée comme irrationnelle.

Instructions

La principale méthode pour résoudre de telles équations est la méthode de construction des deux côtés équations dans un carré. Cependant. c'est naturel, la première chose à faire est de vous débarrasser du panneau. Cette méthode n’est pas techniquement difficile, mais elle peut parfois entraîner des problèmes. Par exemple, l'équation est v(2x-5)=v(4x-7). En mettant les deux côtés au carré, vous obtenez 2x-5=4x-7. Résoudre une telle équation n’est pas difficile ; x=1. Mais le numéro 1 ne sera pas donné équations. Pourquoi? Remplacez la valeur de X par un dans l'équation. Et les côtés droit et gauche contiendront des expressions qui n'ont aucun sens, bien sûr. Cette valeur n'est pas valide pour une racine carrée. Par conséquent, 1 est une racine étrangère et cette équation n’a donc pas de racine.

Ainsi, une équation irrationnelle est résolue en utilisant la méthode de la quadrature de ses deux côtés. Et après avoir résolu l'équation, il est nécessaire de couper les racines superflues. Pour ce faire, remplacez les racines trouvées dans l'équation d'origine.

Considérez-en un autre.
2х+vх-3=0
Bien entendu, cette équation peut être résolue en utilisant la même équation que la précédente. Déplacer les composés équations, qui n’ont pas de racine carrée, vers la droite, puis utilisez la méthode de la mise au carré. résoudre l’équation rationnelle et les racines résultantes. Mais aussi un autre, plus élégant. Entrez une nouvelle variable ; vх=y. En conséquence, vous recevrez une équation de la forme 2y2+y-3=0. C'est-à-dire une équation quadratique ordinaire. Retrouver ses racines ; y1=1 et y2=-3/2. Ensuite, résolvez deux équations vx=1 ; vх=-3/2. La deuxième équation n’a pas de racines ; à partir de la première on trouve que x=1. N'oubliez pas de vérifier les racines.

Résoudre les identités est assez simple. Pour ce faire, il faut réaliser des transformations identiques jusqu'à ce que l'objectif fixé soit atteint. Ainsi, à l'aide d'opérations arithmétiques simples, le problème posé sera résolu.

Tu auras besoin de

  • - papier;
  • - stylo.

Instructions

Les plus simples de ces transformations sont les multiplications algébriques abrégées (telles que le carré de la somme (différence), la différence des carrés, la somme (différence), le cube de la somme (différence)). De plus, il existe de nombreuses formules trigonométriques, qui correspondent essentiellement aux mêmes identités.

En effet, le carré de la somme de deux termes est égal au carré du premier plus deux fois le produit du premier par le second et plus le carré du second, soit (a+b)^2= (a+ b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Simplifiez les deux

Principes généraux de la solution

Répétez à partir d'un manuel d'analyse mathématique ou de mathématiques supérieures ce qu'est une intégrale définie. Comme on le sait, la solution d’une intégrale définie est une fonction dont la dérivée donnera un intégral. Cette fonction est appelée primitive. Sur la base de ce principe, les principales intégrales sont construites.
Déterminez par le type de l'intégrande laquelle des intégrales de table convient dans ce cas. Il n'est pas toujours possible de le déterminer immédiatement. Souvent, la forme tabulaire ne devient perceptible qu'après plusieurs transformations visant à simplifier l'intégrande.

Méthode de remplacement variable

Si l'intégrande est une fonction trigonométrique dont l'argument est un polynôme, essayez d'utiliser la méthode de changement de variables. Pour ce faire, remplacez le polynôme dans l'argument de l'intégrande par une nouvelle variable. Sur la base de la relation entre les nouvelles et anciennes variables, déterminer les nouvelles limites de l'intégration. En différenciant cette expression, trouvez la nouvelle différentielle dans . Ainsi, vous obtiendrez une nouvelle forme de l'intégrale précédente, proche voire correspondant à une forme tabulaire.

Résolution d'intégrales du deuxième type

Si l'intégrale est une intégrale du deuxième type, une forme vectorielle de l'intégrande, vous devrez alors utiliser les règles pour le passage de ces intégrales aux intégrales scalaires. L’une de ces règles est la relation Ostrogradsky-Gauss. Cette loi permet de passer du flux rotorique d'une certaine fonction vectorielle à l'intégrale triple sur la divergence d'un champ vectoriel donné.

Substitution des limites d'intégration

Après avoir trouvé la primitive, il faut substituer les limites d'intégration. Tout d’abord, remplacez la valeur de la limite supérieure dans l’expression de la primitive. Vous obtiendrez un numéro. Ensuite, soustrayez du nombre obtenu un autre nombre obtenu à partir de la limite inférieure dans la primitive. Si l'une des limites de l'intégration est l'infini, alors en la substituant dans la fonction primitive, il faut aller à la limite et trouver vers quoi tend l'expression.
Si l'intégrale est bidimensionnelle ou tridimensionnelle, vous devrez alors représenter géométriquement les limites de l'intégration pour comprendre comment évaluer l'intégrale. En effet, dans le cas, par exemple, d'une intégrale tridimensionnelle, les limites de l'intégration peuvent être des plans entiers qui limitent le volume à intégrer.
Chargement...Chargement...