Проектная работа что такое липиды. Липиды. Почему жир необходим нашему организму

Липиды (от греч. липос – жир) включают жиры и жироподобные вещества. Содержатся почти во всех клетках - от 3 до 15%, а в клетках подкожной жировой клетчатки их до 50 %.

Особенно много липидов в печени, почках, нервной ткани (до 25 %), крови, семенах и плодах некоторых растений (29-57%). Липиды имеют разную структуру, но общие некоторые свойства. Эти органические вещества не растворяются в воде, но хорошо растворяются в органических растворителях: эфире, бензоле, бензине, хлороформе и др. Это свойство обусловлено тем, что в молекулах липидов преобладают неполярные и гидрофобные структуры. Все липиды можно условно разделить на жиры и липоиды.

Жиры

Наиболее распространенными являются жиры (нейтральные жиры, триглицериды ), представляющие собой сложные соединения трехатомного спирта глицерина и высокомолекулярных жирных кислот. Остаток глицерина - это вещество, хорошо растворимое в воде. Остатки жирных кислот - это углеводородные цепочки, почти нерастворимые в воде. При попадании капли жира в воду к ней обращается глицериновая часть молекул, а цепочки жирных кислот выступают из воды. В состав жирных кислот входит карбоксильная группа (-СООН). Она легко ионизируется. С ее помощью молекулы жирных кислот соединяются с другими молекулами.

Все жирные кислоты делятся на две группы - насыщенные и ненасыщенные . Ненасыщенные жирные кислоты не имеют двойных (ненасыщенных) связей, насыщенные - имеют. К насыщенным жирным кислотам относятся пальмитиновая, масляная, лауриновая, стеариновая и т. п. К ненасыщенным - олеиновая, эруковая, линолевая, линоленовая и т. п. Свойства жиров определяются качественным составом жирных кислот и их количественным соотношением.

Жиры, которые содержат насыщенные жирные кислоты, имеют высокую температуру плавления. По консистенции они, как правило, твердые. Это жиры многих животных, кокосовое масло. Жиры, которые имеют в своем составе ненасыщенные жирные кислоты, имеют низкую температуру плавления. Такие жиры преимущественно жидкие. Растительные жиры жидкой консистенции нарываются маслами . К этим жирам относят рыбий жир, подсолнечное, хлопчатниковое, льняное, конопляное масла и др.

Липоиды

Липоиды могут образовывать сложные комплексы с белками, углеводами и другими веществами. Можно выделить такие соединения:

  1. Фосфолипиды . Они являются сложными соединениями глицерина и жирных кислот и содержат остаток фосфорной кислоты. Молекулы всех фосфолипидов имеют полярную головку и неполярный хвост, образованный двумя молекулами жирных кислот. Основные компоненты клеточных мембран.
  2. Воски . Это сложные липиды, состоящие из более сложных спиртов, чем глицерин, и жирных кислот. Выполняют защитную функцию. Животные и растения используют их как водоотталкивающие и защищающие от высыхания вещества. Воски покрывают поверхность листьев растений, поверхность тела членистоногих, живущих на суше. Воски выделяют сальные железы млекопитающих, копчиковая железа птиц. Из воска пчелы строят соты.
  3. Стероиды (от греч. стереос – твердый). Для этих липидов характерно наличие не углеводных, а более сложных структур. К стероидам относятся важные вещества организма: витамин D, гормоны коры надпочечных желез, половых желез, желчные кислоты, холестерин.
  4. Липoпротеиды и гликолипиды . Липопротеиды состоят из белков и липидов, глюкопротеиды – из липидов и углеводов. Гликолипидов много в составе тканей мозга и нервных волокон. Липопротеиды входят в состав многих клеточных структур, обеспечивают их прочность и стабильность.

Функции липидов

Жиры являются главным типом запасающих веществ. Они запасаются в семени, подкожной жировой клетчатке, жировой ткани, жировом теле насекомых. Запасы жиров значительно превышают запасы углеводов.

Структурная . Липиды входят в состав клеточных мембран всех клеток. Упорядоченное размещение гидрофильных и гидрофобных концов молекул имеет большое значение для избирательной проницаемости мембран.

Энергетическая . Обеспечивают 25-30% всей энергии, необходимой организму. При распаде 1 г жира выделяется 38,9 кДж энергии. Это почти вдвое больше в сравнении с углеводами и белками. У перелетных птиц и животных, впадающих в спячку, липиды – единственный источник энергии.

Защитная . Слой жира защищает нежные внутренние органы от ударов, сотрясений, повреждений.

Теплоизоляционная . Жиры плохо проводят тепло. Под кожей некоторых животных (особенно морских) они откладываются и образуют слои. Например, кит имеет слой подкожного жира около 1 м, что позволяет ему жить в холодной воде.

У многих млекопитающих есть специальная жировая ткань, которая называется бурым жиром. Она имеет такую окраску, потому что богата митохондриями красно-бурой окраски, так как в них содержатся железосодержащие белки. В этой ткани вырабатывается тепловая энергия, необходимая животным в условиях низких

температур. Бурый жир окружает жизненно важные органы (сердце, головной мозг и т. п.) или лежит на пути крови, которая к ним приливает, и, таким образом, направляет тепло к ним.

Поставщики эндогенной воды

При окислении 100 г жиров выделяется 107 мл воды. Благодаря этой воде существует много животных пустынь: верблюды, тушканчики и т. п. Животные во время спячки также вырабатывают эндогенную воду из жиров.

Жирообразное вещество покрывает поверхность листьев, не дает им намокать во время дождей.

Некоторые липиды имеют высокую биологическую активность: ряд витаминов (A, D и т. п.), некоторые гормоны (эстрадиол, тестостерон), простагландины.

Липиды - весьма разнородные по своему химическому строению вещества, характеризующиеся различной растворимостью в органических растворителях и, как правило, нерастворимые в воде. Они играют важную роль в процессах жизнедеятельности. Будучи одним из основных компонентов биологических мембран, липиды влияют на их проницаемость, участвуют в передаче нервного импульса, создании межклеточных контактов.

Другие функции липидов - образование энергетического резерва, создание защитных водоотталкивающих и термоизоляционных покровов у животных и растений, защита органов и тканей от механических воздействий.

КЛАССИФИКАЦИЯ ЛИПИДОВ

В зависимости от химического состава липиды подразделяют на несколько классов.

  1. Простые липиды включают вещества, молекулы которых состоят только из остатков жирных кислот (или альдегидов) и спиртов. К ним относят
    • жиры (триглицериды и другие нейтральные глицериды)
    • воски
  2. Сложные липиды
    • производные ортофосфорной кислоты (фосфолипиды)
    • липиды, содержащие остатки сахаров (гликолипиды)
    • стерины
    • стериды

В данном разделе химия липидов будет рассмотрена лишь в том объеме, который необходим для понимания обмена липидов.

Если животную или растительную ткань обрабатывать одним или несколькими (чаще последовательно) органическими растворителями, например хлороформом, бензолом или петролейным эфиром, то некоторая часть материала переходит в раствор. Компоненты такой растворимой фракции (вытяжки) называются липидами. Липидная фракция содержит вещества различных типов, большинство из которых представлено на схеме. Заметим, что из-за етерогенности входящих в липидную фракцию компонентов термин "липидная фракция" нельзя рассматривать как структурную характеристику; он является лишь рабочим лабораторным названием фракции, получаемой при экстракции биологического материала малополярными растворителями. Тем не менее большинство липидов имеет некоторые общие структурные особенности, обусловливающие их важные биологические свойства и сходную растворимость.

Жирные кислоты

Жирные кислоты-алифатические карбоновые кислоты - в организме могут находиться в свободном состоянии (следовые количества в клетках и тканях) либо выполнять роль строительных блоков для большинства классов липидов. Из клеток и тканей живых организмов выделено свыше 70 различных жирных кислот.

Жирные кислоты, встречающиеся в природных липидах, содержат четное число углеродных атомов и имеют по преимуществу неразветвленную углеродную цепь. Ниже приводятся формулы наиболее часто встречающихся природных жирных кислот.

Природные жирные кислоты, правда несколько условно, можно разделить на три группы:

  • насыщенные жирные кислоты [показать]
  • мононенасыщенные жирные кислоты [показать]

    Мононенасыщенные (с одной двойной связью) жирные кислоты:

  • полиненасыщенные жирные кислоты [показать]

    Полиненасыщенные (с двумя или более двойными связями) жирные кислоты:

Помимо этих основных трех групп, существует еще группа так называемых необычных природных жирных кислот [показать] .

Жирные кислоты, входящие в состав липидов животных и высших растений, имеют много общих свойств. Как уже отмечалось, почти все природные жирные кислоты содержат четное число углеродных атомов, чаще всего 16 или 18. Ненасыщенные жирные кислоты животных и человека, участвующие в построении липидов, обычно содержат двойную связь между 9-м и 10-м углеродамидополнительные двойные связи, как правило, бывают на участке между 10-м углеродом и метильным концом цепи. Счет идет от карбоксильной группы: ближайший к СООН-группе С-атом обозначают как α, соседний с ним - β и концевой атом углерода в углеводородном радикале - ω.

Своеобразие двойных связей природных ненасышенных жирных кислот заключается в том, что они всегда отделены двумя простыми связями, т. е. между ними всегда имеется хотя бы одна метиленовая группа (-СН=СН-СН 2 -СН=СН-). Подобные двойные связи обозначают как "изолированные". Природные ненасыщенные жирные кислоты имеют цис-конфигурацию и крайне редко встречаются транс-конфигурации. Считают, что в ненасыщенных жирных кислотах с несколькими двойными связями цис-конфигурация придает углеводородной цепи изогнутый и укороченный вид, что имеет биологический смысл (особенно если учесть, что многие липиды входят в состав мембран). В микробных клетках ненасыщенные жирные кислоты обычно содержат одну двойную связь.

Жирные кислоты с длинной углеводородной цепью практически нерастворимы в воде. Их натриевые и калиевые соли (мыла) образуют в воде мицеллы. В последних отрицательно заряженные карбоксильные группы жирных кислот обращены к водной фазе, а неполярные углеводородные цепи спрятаны внутри мицеллярной структуры. Такие мицеллы имеют суммарный отрицательный заряд и в растворе остаются суспендированными благодаря взаимному отталкиванию (рис. 95).

Нейтральные жиры (или глицериды)

Нейтральные жиры - это эфиры глицерина и жирных кислот. Если жирными кислотами эстерифицированы все три гидроксильные группы глицерина, то такое соединение называют триглицеридом (триацилглицерииом), если две - диглицеридом (диацилглицерином) и, наконец, если этерифицирована одна группа - моноглицеридом (моноацилглицерином).

Нейтральные жиры находятся в организме либо в форме протоплазматического жира, являющегося структурным компонентом клеток, либо в форме запасного, резервного жира. Роль этих двух форм жира в организме неодинакова. Протоплазматический жир имеет постоянный химический состав и содержится в тканях в определенном количестве, не изменяющемся даже при патологическом ожирении, в то время как количество резервного жира подвергается большим колебаниям.

Основную массу природных нейтральных жиров составляют триглицериды. Жирные кислоты в триглицеридах могут быть насыщенными и ненасыщенными. Чаще среди жирных кислот встречаются пальмитиновая, стеариновая и олеиновая кислоты. Если все три кислотные радикалы принадлежат одной и той же жирной кислоте, то такие триглицериды называют простыми (например, трипальмитин, тристеарин, триолеин и т. д.), если же разным жирным кислотам, - то смешанными. Названия смешанных триглицеридов образуются от входящих в их состав жирных кислот; при этом цифры 1, 2 и 3 указывают на связь остатка жирной кислоты с соответствующей спиртовой группой в молекуле глицерина (например, 1-олео-2-пальмитостеарин).

Жирные кислоты, входящие в состав триглицеридов, практически определяют их физико-химические свойства. Так, температура плавления триглицеридов повышается с увеличением числа и длины остатков насыщенных жирных кислот. Напротив, чем выше содержание ненасыщенных жирных кислот или кислот с короткой цепью, тем ниже точка плавления. Животные жиры (сало) обычно содержат значительное количество насыщенных жирных кислот (пальмитиновой, стеариновой и др.), благодаря чему они при комнатной температуре тверды. Жиры, в состав которых входит много моно- и полиненасыщенных кислот, являются при обычной температуре жидкими и называются маслами. Так, в конопляном масле 95% всех жирных кислот приходится на долю олеиновой, линолевой и линоленовой кислот и только 5% - на долю стеариновой и пальмитиновой кислот. Заметим, что в жире человека, плавящемся при 15°С (при температуре тела он жидкий), содержится 70% олеиновой кислоты.

Глицериды способны вступать во все химические реакции, свойственные сложным эфирам. Наибольшее значение имеет реакция омыления, в результате которой из триглицеридов образуются глицерин и жирные кислоты. Омыление жира может происходить как при ферментативном гидролизе, так и при действии кислот или щелочей.

Щелочное расщепление жира при действии едкого натра или едкого кали проводится при промышленном получении мыла. Напомним, что мыло представляет собой натриевые или калиевые соли высших жирных кислот.

Для характеристики природных жиров нередко используют следующие показатели:

  1. йодное число - количество граммов йода, которое в определенных условиях связывается 100 г жира; данное число характеризует степень ненасыщенности жирных кислот, присутствующих в жирах, йодное число говяжьего жира 32-47, бараньего 35-46, свиного 46-66;
  2. кислотное число - количество миллиграммов едкого кали, необходимое для нейтрализации 1 г жира. Это число указывает на количество имеющихся в жире свободных жирных кислот;
  3. число омыления - количество миллиграммов едкого кали, израсходованное на нейтрализацию всех жирных кислот (как входящих в состав триглицеридов, так и свободных), содержащихся в 1 г жира. Это число зависит от относительной молекулярной массы жирных кислот, входящих в состав жира. Величина числа омыления у основных животных жиров (говяжий, бараний, свиной) практически одинакова.

Воски - сложные эфиры высших жирных кислот и высших одноатомных или двухатомных спиртов с числом углеродных атомов от 20 до 70. Общие их формулы представлены на схеме, где R, R" и R" - возможные радикалы.

Воски могут входить в состав жира, покрывающего кожу, шерсть, перья. У растений 80% от всех липидов, образующих пленку на поверхности листьев и стволов, составляют воски. Известно также, что воски являются нормальными метаболитами некоторых микроорганизмов.

Природные воски (например, пчелиный воск, спермацет, ланолин) обычно содержат, кроме упомянутых сложных эфиров, некоторое количество свободных высших жирных кислот, спиртов и углеводородов с числом углеродных атомов 21-35.

Фосфолипиды

К этому классу сложных липидов относятся глицерофосфолипиды и сфинголипиды.

Глицерофосфолипиды являются производными фосфатидной кислоты: в их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения. Общая формула глицерофосфолипидов мпредставлена на схеме, где R 1 и R 2 - радикалы высших жирных кислот, a R 3 - радикал азотистого соединения.

Характерным для всех глицерофосфолипидов является то, что одна часть их молекулы (радикалы R 1 и R 2) обнаруживает резко выраженную гидрофобность, тогда как другая часть гидрофильна благодаря отрицательному заряду остатка фосфорной кислоты и положительному заряду радикала R 3 .

Из всех липидов глицерофосфолипиды обладают наиболее выраженными полярными свойствами. При помещении глицерофосфолипидов в воду в истинный раствор переходит лишь небольшая их часть, основная же масса "растворенного" липида находится в водных системах в форме мицелл. Существует несколько групп (подклассов) глицерофосфолипидов.

    [показать] .

    В отличие от триглицеридов в молекуле фосфатидилхолина одна из трех гидроксильных групп глицерина связана не с жирной, а с фосфорной кислотой. Кроме того, фосфорная кислота в свою очередь соединена эфирной связью с азотистым основанием [НО-СН 2 -СН 2 -N+=(СН 3) 3 ] - холином. Таким образом, в молекуле фосфатидилхолина соединены глицерин, высшие жирные кислоты, фосфорная кислота и холин

    [показать] .

    Основное различие между фосфатидилхолинами и фосфатидилэтаноламинами заключается в том, что в состав последних вместо холина входит азотистое основание этаноламин (НО-СН 2 -СН 2 -NH 3 +).

    Из глицерофосфолипидов в организме животных и высших растений в наибольшем количестве встречаются фосфатидилхолины и фосфатидилэтаноламины. Эти две группы глицерофосфолипидов метаболически связаны друг с другом и являются главными липидными компонентами мембран клеток.

  • Фосфатидилсерины [показать] .

    В молекуле фосфатидилсерина азотистым соединением служит остаток аминокислоты серина.

    Фосфатидилсерины распространены гораздо менее широко, чем фосфатидилхолины и фосфатидилэтаноламины, и их значение определяется в основном тем, что они участвуют в синтезе фосфатидилэтаноламинов.

  • Плазмалогены (ацетальфосфатиды) [показать] .

    Отличаются от рассмотренных выше глицерофосфолипидов тем, что вместо одного остатка высшей жирной кислоты они содержат остаток альдегида жирной кислоты, который связан с гидроксильной группой глицерина ненасыщенной эфирной связью:

    Таким образом, плазмалоген при гидролизе распадается на глицерин, альдегид высшей жирной кислоты, жирную кислоту, фосфорную кислоту, холин или этаноламин.

  • [показать] .

    R 3 -радикалом в этой группе глицерофосфолипидов является шестиуглеродный сахароспирт - инозит:

    Фосфатидилинозиты довольно широко распространены в природе. Они обнаружены у животных, растений и микробов. В животном организме они найдены в мозге, печени и легких.

    [показать] .

    Необходимо отметить, что в природе встречается свободная фосфатидная кислота, хотя по сравнению с другими глицерофосфолипидами в относительно небольших количествах.

К глицерофосфолипидам, точнее к полиглицеринфосфатам, относится кардиолилин. Остов молекулы кардиолйпина включает три остатка глицерина, соединенных друг с другом двумя фосфодиэфирными мостиками через положения 1 и 3; гидроксильные группы двух внешних остатков глицерина этерифицированы жирными кислотами. Кардиолипин входит в состав мембран митохондрий. В табл. 29 суммированы данные о строении основных глицерофосфолипидов.

Среди жирных кислот, входящих в состав глицерофосфолипидов, обнаружены как насыщенные, так и ненасыщенные жирные кислоты (чаще стеариновая, пальмитиновая, олеиновая и линолевая).

Установлено также, что большинство фосфатидилхолинов и фосфатидилэтаноламинов содержит одну насыщенную высшую жирную кислоту, этерифицированную в положении 1 (у 1-го углеродного атома глицерина), и одну ненасыщенную высшую жирную кислоту, этерифицированную в положении 2. Гидролиз фосфатидилхолинов и фосфатидилэтаноламинов при участии особых ферментов содержащихся, например, в яде кобры, которые относятся к фосфолипазам А 2 , приводит к отщеплению ненасыщенной жирной кислоты и образованию лизофосфатидилхолинов или лизофосфатидилэтаноламинов, обладающих сильным гемолитическим действием.

Сфинголипиды

Гликолипиды

Сложные липиды, содержащие в составе молекулы углеводные группы (чаще остаток D-галактозы). Гликолипиды играют существенную роль в функционировании биологических мембран. Они содержатся преимущественно в ткани мозга, но имеются также и в кровяных клетках и других тканях. Известны три основные группы гликолипидов:

  • цереброзиды
  • сульфатиды
  • ганглиозиды

Цереброзиды не содержат ни фосфорной кислоты, ни холина. В их состав входит гексоза (обычно это D-галактоза), которая связана эфирной связью с гидроксильной группой аминоспирта сфингозина. Кроме того, в состав цереброзида входит жирная кислота. Среди этих жирных кислот чаще всего встречается лигноцериновая, нервоновая и цереброновая кислоты, т. е. жирные кислоты, имеющие 24 углеродных атома. Структура цереброзидов может быть представлена схемой. Цереброзиды можно относить также к сфинголипидам, поскольку они содержат спирт сфингозин.

Наиболее изученными представителями цереброзидов являются нервон, содержащий нервоновую кислоту, цереброн, в состав которого входит цереброновая кислота, и керазин, содержащий лигноцириновую кислоту. Особенно велико содержание цереброзидов в мембранах нервных клеток (в миелиновой оболочке).

Сульфатиды отличаются от цереброзидов тем, что содержат в молекуле остаток серной кислоты. Иными словами, сульфатид представляет собой цереброзидсульфат, в котором сульфат этерифицирован по третьему углеродному атому гексозы. В мозге млекопитающих сульфатиды, как н цереброзиды, находятся в белом веществе. Однако содержание их в мозге намного ниже, чем цереброзидов.

При гидролизе ганглиозидов можно обнаружить высшую жирную кислоту, спирт сфингозин, D-глюкозу и D-галактозу, а также производные аминосахаров: N-ацетилглюкозамин и N-ацетилнейраминовую кислоту. Последняя синтезируется в организме из глюкозамина.

В структурном отношении ганглиозиды в значительной мере сходны с цереброзидами, с той только разницей, что вместо одного остатка галактозы они содержат сложный олигосахарид. Одним из простейших ганглиозидов является гематозид, выделенный из стромы эритроцитов (схема)

В отличие от цереброзидов и сульфатидов ганглиозиды находятся преимущественно в сером веществе мозга и сосредоточены в плазматических мембранах нервных и глиальных клеток.

Все рассмотренные выше липиды принято называть омыляемыми, поскольку при их гидролизе образуются мыла. Однако имеются липиды, которые не гидролизуются с освобождением жирных кислот. К таким липидам относятся стероиды.

Стероиды - широко распространенные в природе соединения. Они являются производными циклопентанпергидрофенантренового ядра, содержащего три конденсированных циклогексановых и одно циклопентановое кольцо. К стероидам относятся многочисленные вещества гормональной природы, а также холестерин, желчные кислоты и другие соединения.

В организме человека первое место среди стероидов занимают стерины. Наиболее важным представителем стеринов является холестерин:

Он содержит спиртовую гидроксильную группу при С 3 и разветвленную алифатическую цепь из восьми атомов углерода при С 17 . Гидроксильная группа при С 3 может быть этерифицирована высшей жирной кислотой; при этом образуются эфиры холестерина (холестериды):

Холестерин играет роль ключевого промежуточного продукта в синтезе многих других соединений. Холестерином богаты плазматические мембраны многих животных клеток; в значительно меныцем количестве он содержится в мембранах митохондрий и в эндоплазматической сети. Заметим, что в растениях холестерин отсутствует. У растений имеются другие стерины, известные под общим названием фитостеринов.

Липиды составляют большую и достаточно разнородную по химическому составу группу входящих в состав живых клеток органических веществ, растворимых в малополярных органических растворителях (эфире, бензоле, хлороформе и др.) и нерастворимых в воде. В общем виде они рассматриваются как производные жирных кислот.

Особенность строения липидов - присутствие в их молекулах одновременно полярных (гидрофильных) и неполярных (гидрофобных) структурных фрагментов, что придает липидам сродство как к воде, так и к неводной фазе. Липиды относятся к бифильным веществам, что позволяет им осуществлять свои функции на границе раздела фаз.

10.1. Классификация

Липиды делят на простые (двухкомпонентные), если продуктами их гидролиза являются спирты и карбоновые кислоты, и сложные (многокомпонентные), когда в результате их гидролиза кроме этого образуются и другие вещества, например фосфорная кислота и углеводы. К простым липидам относятся воски, жиры и масла, а также церамиды, к сложным - фосфолипиды, сфинголипиды и гликолипиды (схема 10.1).

Схема 10.1. Общая классификация липидов

10.2. Структурные компоненты липидов

Все группы липидов имеют два обязательных структурных компонента - высшие карбоновые кислоты и спирты.

Высшие жирные кислоты (ВЖК). Многие высшие карбоновые кислоты были впервые выделены из жиров, поэтому они получили название жирных. Биологически важные жирные кислоты могут быть насыщенными (табл. 10.1) и ненасыщенными (табл. 10.2). Их общие структурные признаки:

Являются монокарбоновыми;

Включают четное число атомов углерода в цепи;

Имеют цис-конфигурацию двойных связей (если они присутствуют).

Таблица 10.1. Основные насыщенные жирные кислоты липидов

В природных кислотах число атомов углерода колеблется от 4 до 22, но чаще встречаются кислоты с 16 или 18 атомами углеро- да. Ненасыщенные кислоты содержат одну или несколько двойных связей, имеющих цис-конфигурацию. Ближайшая к карбоксильной группе двойная связь обычно расположена между атомами С-9 и С-10. Если двойных связей несколько, то они отделены друг от друга метиленовой группой СН 2 .

Правилами ИЮПАК для ВЖК допускается использование их тривиальных названий (см. табл. 10.1 и 10.2).

В настоящее время также применяется собственная номенклатура ненасыщенных ВЖК. В ней концевой атом углерода, независимо от длины цепи, обозначается последней буквой греческого алфавита ω (омега). Отсчет положения двойных связей производится не как обычно от карбоксильной группы, а от метильной группы. Так, линоленовая кислота обозначается как 18:3 ω-3 (омега-3).

Сама линолевая кислота и ненасыщенные кислоты с иным числом атомов углерода, но с расположением двойных связей также у третьего атома углерода, считая от метильной группы, составляют семейство омега-3 ВЖК. Другие типы кислот образуют аналогичные семейства линолевой (омега-6) и олеиновой (омега-9) кислот. Для нормальной жизнедеятельности человека большое значение имеет правильный баланс липидов трех типов кислот: омега-3 (льняное масло, рыбий жир), омега-6 (подсолнечное, кукурузное масла) и омега-9 (оливковое масло) в рационе питания.

Из насыщенных кислот в липидах человеческого организма наиболее важны пальмитиновая С 16 и стеариновая С 18 (см. табл. 10.1), а из ненасыщенных - олеиновая С18:1 , линолевая С18:2 , линоленовая и арахидоновая С 20:4 (см. табл. 10.2).

Следует подчеркнуть роль полиненасыщенных линолевой и линоленовой кислот как соединений, незаменимых для человека («витамин F»). В организме они не синтезируются и должны поступать с пищей в количестве около 5 г в день. В природе эти кислоты содержатся в основном в растительных маслах. Они способствуют

Таблица 10.2. Основные ненасыщенные жирные кислоты липидов

* Включена для сравнения. ** Для цис-изомеров.

нормализации липидного профиля плазмы крови. Линетол, представляющий собой смесь этиловых эфиров высших жирных ненасыщенных кислот, используется в качестве гиполипидемического лекарственного средства растительного происхождения. Спирты. В состав липидов могут входить:

Высшие одноатомные спирты;

Многоатомные спирты;

Аминоспирты.

В природных липидах наиболее часто встречаются насыщенные и реже ненасыщенные длинноцепочечные спирты (С 16 и более) главным образом с четным числом атомов углерода. В качестве примера высших спиртов приведены цетиловый СH 3 (СН 2 ) 15 ОН и мелиссиловый СН 3 (СН 2) 29 ОН спирты, входящие в состав восков.

Многоатомные спирты в большинстве природных липидов представлены трехатомным спиртом глицерином. Встречаются другие многоатомные спирты, например двухатомные спирты этиленгликоль и пропандиол-1,2, а также миоинозит (см. 7.2.2).

Наиболее важными аминоспиртами, входящими в состав природных липидов, являются 2-аминоэтанол (коламин), холин, относя- щийся также к α-аминокислотам серин и сфингозин.

Сфингозин - ненасыщенный длинноцепочечный двухатомный аминоспирт. Двойная связь в сфингозине имеет транс -конфигура- цию, а асимметрические атомы С-2 и С-3 - D-конфигурацию.

Спирты в липидах ацилированы высшими карбоновыми кислотами по соответствующим гидроксильным группам или аминогруппам. У глицерина и сфингозина один из спиртовых гидроксилов может быть этерифицирован замещенной фосфорной кислотой.

10.3. Простые липиды

10.3.1. Воски

Воски - сложные эфиры высших жирных кислот и высших одноатомных спиртов.

Воски образуют защитную смазку на коже человека и животных и предохраняют растения от высыхания. Они применяются в фармацевтической и парфюмерной промышленности при изготовлении кремов и мазей. Примером служит цетиловый эфир пальмитиновой кислоты (цетин) - главный компонент спермацета. Спермацет выделяется из жира, содержащегося в полостях черепной коробки кашалотов. Другим примером является мелиссиловый эфир пальмитиновой кислоты - компонент пчелиного воска.

10.3.2. Жиры и масла

Жиры и масла - самая распространенная группа липидов. Большинство из них принадлежит к триацилглицеринам - полным эфирам глицерина и ВЖК, хотя также встречаются и принимают участие в обмене веществ моно- и диацилглицерины.

Жиры и масла (триацилглицерины) - сложные эфиры глицерина и высших жирных кислот.

В организме человека триацилглицерины играют роль структурного компонента клеток или запасного вещества («жировое депо»). Их энергетическая ценность примерно вдвое больше, чем белков

или углеводов. Однако повышенный уровень триацилглицеринов в крови является одним из дополнительных факторов риска развития ишемической болезни сердца.

Твердые триацилглицерины называют жирами, жидкие - маслами. Простые триацилглицерины содержат остатки одинаковых кислот, смешанные - различных.

В составе триацилглицеринов животного происхождения обычно преобладают остатки насыщенных кислот. Такие триацилглицерины, как правило, твердые вещества. Напротив, растительные масла содержат в основном остатки ненасыщенных кислот и имеют жидкую консистенцию.

Ниже приведены примеры нейтральных триацилглицеринов и указаны их систематические и (в скобках) обычно употребляемые тривиальные названия, основанные на названиях входящих в их состав жирных кислот.

10.3.3. Церамиды

Церамиды - это N-ацилированные производные спирта сфингозина.

Церамиды в незначительных количествах присутствуют в тканях растений и животных. Гораздо чаще они входят в состав сложных липидов - сфингомиелинов, цереброзидов, ганглиозидов и др.

(см. 10.4).

10.4. Сложные липиды

Некоторые сложные липиды трудно классифицировать однозначно, так как они содержат группировки, позволяющие отнести их одновременно к различным группам. Согласно общей классификации липидов (см. схему 10.1) сложные липиды обычно делят на три большие группы: фосфолипиды, сфинголипиды и гликолипиды.

10.4.1. Фосфолипиды

В группу фосфолипидов входят вещества, отщепляющие при гидролизе фосфорную кислоту, например глицерофосфолипиды и некоторые сфинголипиды (схема 10.2). В целом фосфолипидам свойственно достаточно высокое содержание ненасыщенных кислот.

Схема 10.2. Классификация фосфолипидов

Глицерофосфолипиды. Эти соединения являются главными липидными компонентами клеточных мембран.

По химическому строению глицерофосфолипиды представляют собой производные l -глицеро-З-фосфата.

l-Глицеро-З-фосфат содержит асимметрический атом углерода и, следовательно, может существовать в виде двух стереоизомеров.

Природные глицерофосфолипиды имеют одинаковую конфигурацию, являясь производными l-глицеро-З-фосфата, образующегося в процессе метаболизма из фосфата дигидроксиацетона.

Фосфатиды. Среди глицерофосфолипидов наиболее распространены фосфатиды - сложноэфирные производные l-фосфатидовых кислот.

Фосфатидовые кислоты - это производные l -глицеро-З-фосфата, этерифицированные жирными кислотами по спиртовым гидроксильным группам.

Как правило, в природных фосфатидах в положении 1 глицериновой цепи находится остаток насыщенной, в положении 2 - ненасыщенной кислоты, а один из гидроксилов фосфорной кислоты этерифицирован многоатомным спиртом или аминоспиртом (X - остаток этого спирта). В организме (рН ~7,4) оставшийся свободным гидроксил фосфорной кислоты и другие ионогенные группировки в фосфатидах ионизированы.

Примерами фосфатидов могут служить соединения, в составе которых фосфатидовые кислоты этерифицированы по фосфатному гидроксилу соответствующими спиртами:

Фосфатидилсерины, этерифицирующий агент - серин;

Фосфатидилэтаноламины, этерифицирующий агент - 2-ами- ноэтанол (в биохимической литературе часто, но не вполне правильно называемый этаноламином);

Фосфатидилхолины, этерифицирующий агент - холин.

Эти этерифицирующие агенты взаимосвязаны между собой, поскольку фрагменты этаноламина и холина могут образовываться в ходе метаболизма из фрагмента серина путем декарбоксилирования и последующего метилирования при помощи S-аденозилметионина (SAM) (см. 9.2.1).

Ряд фосфатидов вместо аминосодержащего этерифицирующего агента содержит остатки многоатомных спиртов - глицерина, миоинозита и др. Приведенные ниже в качестве примера фосфатидилглицерины и фосфатидилинозиты относятся к кислым глицерофосфолипидам, поскольку в их структурах отсутствуют фрагменты аминоспиртов, придающие фосфатидилэтаноламинам и родственным соединениям нейтральный характер.

Плазмалогены. Менее распространены по сравнению со сложноэфирными глицерофосфолипидами липиды с простой эфирной связью, в частности плазмалогены. Они содержат остаток ненасыщенного

* Для удобства способ написания конфигурационной формулы остатка миоинозита в фосфатидилинозитах изменен по сравнению с приведенным выше (см. 7.2.2).

спирта, связанный простой эфирной связью с атомом С-1 глицеро- 3-фосфата, как, например, плазмалогены с фрагментом этаноламина - L-фосфатидальэтаноламины. Плазмалогены составляют до 10% всех липидов ЦНС.

10.4.2. Сфинголипиды

Сфинголипиды представляют собой структурные аналоги глицерофосфолипидов, в которых вместо глицерина используется сфинго- зин. Другим примером сфинголипидов служат рассмотренные выше церамиды (см. 10.3.3).

Важную группу сфинголипидов составляют сфингомиелины, впервые обнаруженные в нервной ткани. В сфингомиелинах гидроксильная группа у С-1 церамида этерифицирована, как правило, фосфатом холина (реже фосфатом коламина), поэтому их можно отнести и к фосфолипидам.

10.4.3. Гликолипиды

Как можно судить по названию, соединения этой группы включают углеводные остатки (чаще D-галактозы, реже D-глюкозы) и не содержат остатка фосфорной кислоты. Типичные представители гликолипидов - цереброзиды и ганглиозиды - представляют собой сфингозинсодержащие липиды (поэтому их можно считать и сфинголипидами).

В цереброзидах остаток церамида связан с D-галактозой или D-глю- козой β-гликозидной связью. Цереброзиды (галактоцереброзиды, глюкоцереброзиды) входят в состав оболочек нервных клеток.

Ганглиозиды - богатые углеводами сложные липиды - впервые были выделены из серого вещества головного мозга. В структурном отношении ганглиозиды сходны с цереброзидами, отличаясь тем, что вместо моносахарида они содержат сложный олигосахарид, включающий по крайней мере один остаток V -ацетилнейраминовой кислоты (см. Приложение 11-2).

10.5. Свойства липидов

и их структурных компонентов

Особенностью сложных липидов является их бифильность, обусловленная неполярными гидрофобными и высокополярными ионизированными гидрофильными группировками. В фосфатидилхолинах, например, углеводородные радикалы жирных кислот образуют два неполярных «хвоста», а карбоксильная, фосфатная и холиновая группы - полярную часть.

На границе раздела фаз такие соединения действуют, как превосходные эмульгаторы. В составе клеточных мембран липид- ные компоненты обеспечивают высокое электрическое сопротивление мембраны, ее непроницаемость для ионов и полярных молекул и проницаемость для неполярных веществ. В частности, большинство анестезирующих препаратов хорошо растворяются в липидах, что позволяет им проникать через мембраны нервных клеток.

Жирные кислоты - слабые электролиты ( p K a ~4,8). Они в малой степени диссоциированы в водных растворах. При pH < p K a преобладает неионизированная форма, при pH > p K a , т. е. в физиологических условиях, преобладает ионизированная форма RCOO - . Растворимые соли высших жирных кислот называются мылами. Натриевые соли высших жирных кислот твердые, калиевые - жидкие. Как соли слабых кислот и сильных оснований мыла частично гидролизуются в воде, их растворы имеют щелочную реакцию.

Природные ненасыщенные жирные кислоты, имеющие цис -конфигурацию двойной связи, обладают большим запасом внутренней энергии и, следовательно, по сравнению с транс -изомерами термодинамически менее стабильны. Их цис-транс -изомеризация легко проходит при нагревании, особенно в присутствии инициаторов радикальных реакций. В лабораторных условиях это превращение можно осуществить действием оксидов азота, образующихся при разложении азотной кислоты при нагревании.

Высшие жирные кислоты проявляют общие химические свойства карбоновых кислот. В частности, они легко образуют соответствующие функциональные производные. Жирные кислоты с двойными связями проявляют свойства ненасыщенных соединений - присоединяют по двойной связи водород, галогеноводороды и другие реагенты.

10.5.1. Гидролиз

С помощью реакции гидролиза устанавливают строение липидов, а также получают ценные продукты (мыла). Гидролиз - первая стадия утилизации и метаболизма пищевых жиров в организме.

Гидролиз триацилглицеринов осуществляют либо воздействием перегретого пара (в промышленности), либо нагреванием с водой в присутствии минеральных кислот или щелочей (омыление). В организме гидролиз липидов проходит под действием ферментов липаз. Некоторые примеры реакций гидролиза приведены ниже.

В плазмалогенах, как и в обычных виниловых эфирах, простая эфирная связь расщепляется в кислой, но не в щелочной среде.

10.5.2. Реакции присоединения

Липиды, содержащие в структуре остатки ненасыщенных кислот, присоединяют по двойным связям водород, галогены, галогеноводороды, воду в кислой среде. Иодное число - это мера ненасыщенности триацилглицеринов. Оно соответствует числу граммов иода, которое может присоединиться к 100 г вещества. Состав природных жиров и масел и их иодные числа варьируют в достаточно широких пределах. В качестве примера приводим взаимодействие 1-олеоил- дистеароилглицерина с иодом (иодное число этого триацилглицерина равно 30).

Каталитическое гидрирование (гидрогенизация) ненасыщенных растительных масел - важный промышленный процесс. В этом случае водород насыщает двойные связи и жидкие масла превращаются в твердые жиры.

10.5.3. Реакции окисления

Окислительные процессы с участием липидов и их структурных компонентов достаточно разнообразны. В частности, окисление кис- лородом воздуха ненасыщенных триацилглицеринов при хранении (автоокисление, см. 3.2.1), сопровождаемое гидролизом, является частью процесса, известного как прогоркание масла.

Первичными продуктами взаимодействия липидов с молекулярным кислородом являются гидропероксиды, образующиеся в резуль- тате цепного свободнорадикального процесса (см. 3.2.1).

Пероксидное окисление липидов - один из наиболее важных окислительных процессов в организме. Он является основной причиной повреждения клеточных мембран (например, при лучевой болезни).

Структурные фрагменты ненасыщенных высших жирных кислот в фосфолипидах служат мишенью для атаки активными формами кис- лорода (АФК, см. Приложение 03-1).

При атаке, в частности, гидроксильным радикалом HO", наиболее активным из АФК, молекулы липида LH происходит гомолитический разрыв связи С-Н в аллильном положении, как показано на примере модели пероксидного окисления липидов (схема 10.3). Образующийся радикал аллильного типа L" мгновенно реагирует с находящимся в среде окисления молекулярным кислородом с образованием липидпероксильного радикала LOO". С этого момента начинается цепной каскад реакций пероксидации липидов, поскольку происходит постоянное образование аллильных липидных радикалов L", возобнов- ляющих этот процесс.

Липидные пероксиды LOOH - неустойчивые соединения и могут спонтанно или при участии ионов металлов переменной валентности (см. 3.2.1) разлагаться с образованием липидоксильных радикалов LO", способных инициировать дальнейшее окисление липидного субстрата. Такой лавинообразный процесс пероксидного окисления липидов представляет собой опасность разрушения мембранных структур клеток.

Промежуточно образующийся радикал аллильного типа имеет мезомерное строение и может далее подвергаться превращениям по двум направлениям (см. схему 10.3, пути а и б), приводящим к промежуточным гидропероксидам. Гидропероксиды нестабильны и уже при обычной температуре распадаются с образованием альдегидов, которые далее окисляются в кислоты - конечные продукты реакции. В результате получаются в общем случае две монокарбоновые и две дикарбоновые кислоты с более короткими углеродными цепями.

Ненасыщенные кислоты и липиды с остатками ненасыщенных кислот в мягких условиях окисляются водным раствором перманга- ната калия, образуя гликоли, а в более жестких (с разрывом углеродуглеродных связей) - соответствующие кислоты.

Липиды (Жиры).

Липидами - называют сложную смесь органических соединений (соединения с углеродом С), с близкими физико-химическими свойствами:

- не растворимость в воде.
- хорошая растворимость в органических растворителях (бензин, хлороформ)

Липиды широко распространены в природе. Вместе с белками и углеводами они составляют основную массу органических веществ всех живых организмов, являясь обязательным компонентом каждой клетки. Липиды - важнейший компонент пищи, во многом определяет ее пищевую ценность и вкусовое достоинство.
В растениях они накапливаются главным образом в семенах и плодах. У животных и рыб липиды концентрируются в подкожных жировых тканях, в брюшной полости и тканях, окружающих многие важные органы (сердце, почки), а также в мозговой и нервной тканях. Особенно много липидов в подкожной жировой ткани китов (25-30 % от их массы), тюлений и других морских животных. У человека содержание липидов колеблется от 10-20% в среднем.

Виды липидов.

Классификаций жиров существует много видов, мы разберем наиболее простую, она разделяет их на три большие группы:

- Простые липиды
- Сложные липиды
- Производные липидов.

Разберем каждую группу липидов в отдельности, что в них входит, и для чего они нужны.

Простые Липиды.

1) Нейтральные жиры (или просто жиры).

Нейтральные жиры состоят из триглицеридов.

Триглицерид - липид или нейтральный жир, в состав которого входит глицерин, соединенный с тремя молекулами жирных кислот.

Глицерин - химическое соединение с формулой C3H5(OH)3, (бесцветная, вязкая, сладковатая жидкость без запаха.)

Жирные кислоты природные или созданные соединения с одной или несколькими группами – COOH (карбоксильные) не создающие циклических связей (ароматических), с числом атома углерода (С) в цепи не менее 6.

Триглицериды производятся из продуктов расщепления пищевых жиров и являются формой сохранения жиров в организме человека. Основная часть пищевых жиров (98%) являются триглицеридами. Жир так же сохраняется в организме в виде триглицеридов.

Виды жирных кислот:

- Насыщенные жирные кислоты - содержат только одинарные связи между атомами углерода со всеми остальными связями, прикрепленными к атомам водорода. Молекула соединяется с максимально возможным количеством атомов водорода, поэтому данная кислота называется насыщенной., они отличаются от ненасыщенных тем, что остаются твердыми при комнатной температуре.

Продукты в которых содержится больше всего насыщенных жиров, это свиное сало и жир, куриный, говяжий и бараний жир, сливочное масло и маргарин. Из продуктов, богатых такими жирами, можно назвать колбасу, сардельки и другие колбасные изделия, бекон, обычную нежирную говядину; сорта мяса, называемые «мраморными»; куриную кожу, бекон; мороженое, кремы, сыры; большую часть мучных и других кондитерских изделий.

- ненасыщенные жирные кислоты - содержат одну или больше двойных связей вдоль главной углеродной цепи. Каждая двойная связь уменьшает число атомов водорода, которые могут связываться с жирной кислотой. Двойные связи также приводят к «изгибу» в жирных кислотах, что предотвращает связь между ними.

Ненасыщенные жирные кислоты содержатся в растительных источниках.

Их можно разделить на два вида:
1) мононенасыщенные – ненасыщенные жирные кислоты с одной двойной связью. (например -оливковое масло)
2) полиненасыщенные – ненасыщенные жирные кислоты с двумя или более двойными связями. (например - льняное масло)

О пищевых жирах будет отдельная большая тема, разбирающая подробно все их свойства.

2) Воски.

Воски – жироподобные вещества, животного или растительного происхождения, состоящие из сложных эфиров одноатомных спиртов и жирных кислот.

Сложные эфиры соединения – СООН (карбоксильные) , у которых атом водорода в НО-группе замещен органической группой.

Спирты соединения –ОН, связанные с атомом углерода.

Простыми словами, воски это – бесформенные, пластичные, легко размягчающиеся при нагревании вещества, плавящиеся в интервале температур от 40 до 90 градусов цельсия.

Пчелиный воск выделяется специальными железами медоносных пчёл, из него пчёлы строят соты.

Сложные липиды.

Сложный липид - это соединение триглицерида с другими химическими веществами.
Всего их выделяют три вида.

Фосфолипиды – глицерин соединенный с одной или двумя жирными кислотами а так же фосфорная кислота.

Из фосфолипидов состоит клеточная мембрана. В продуктах питания наиболее популярен – лецитин.

Гликолипиды – соединения жировых и углеводоводных компонентов. (Содержатся во всех тканях, главным образом в наружном липидном слое плазматических мембран.)

Липопротеиды – комплексы жиров и белков. (Плазма крови)

Производные липидов.

Холестерин - жироподобное вещество, похожее на воск, присутствующее в каждой клетке тела и во многих продуктах питания. Некоторое количество холестерина в крови необходимо, но высокий его уровень может привести к болезни сердца.

Много холестерина содержится в яйцах, жирных сортах мяса, колбасы, жирных молочных продуктах.

С общей классификацией разобрались, какие же функции выполняют липиды?

Функции.

- Структурная функция.

Фосфолипиды принимают участие в построении мембран клеток всех органов и тканей. Они участвуют в образовании многих биологически важных соединений.

- Энергетическая функция.

При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию. Семена многих растений (кокосовой пальмы, клещевины, подсолнечника, сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.. При полном распаде 1 г жира выделяется 38,9 кДж энергии, что примерно в 2 раза больше по сравнению с углеводами и белками.

- Защитная и теплоизоляционная

Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата.
Смазывающая и водоотталкивающая.
Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений.

- Регуляторная.

Многие гормоны являются производными холестерина, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды. Производные холестерина, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения. В миелиновых (непроводимых заряд) оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.

- Источник метаболической воды.

Окисление 100 г жира дает примерно 105-107г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10-12 суток: жир, запасенный в горбе, используется именно в этих целях. Необходимую для жизнедеятельности воду медведи, сурки и другие животные, впадающие в спячку, получают в результате окисления жира.

Loading...Loading...