Baza identităţii logaritmice. Identitatea logaritmică de bază

(din greacă λόγος - „cuvânt”, „relație” și ἀριθμός - „număr”) numere b bazat pe A(log α b) se numește un astfel de număr c, Și b= a c, adică înregistrează log α b=cȘi b=ac sunt echivalente. Logaritmul are sens dacă a > 0, a ≠ 1, b > 0.

Cu alte cuvinte logaritm numere b bazat pe A formulat ca un exponent la care trebuie ridicat un număr A pentru a obține numărul b(logaritmul există doar pentru numerele pozitive).

Din această formulare rezultă că calculul x= log α b, este echivalent cu rezolvarea ecuației a x =b.

De exemplu:

log 2 8 = 3 deoarece 8 = 2 3 .

Să subliniem că formularea indicată a logaritmului face posibilă determinarea imediată valoarea logaritmului, când numărul de sub semnul logaritmului acționează ca o anumită putere a bazei. Într-adevăr, formularea logaritmului face posibilă justificarea că dacă b=a c, apoi logaritmul numărului b bazat pe A egală Cu. De asemenea, este clar că tema logaritmilor este strâns legată de subiect puterile unui număr.

Calcularea logaritmului se numește logaritm. Logaritmul este operația matematică de luare a unui logaritm. Atunci când se iau logaritmi, produsele factorilor sunt transformate în sume de termeni.

Potentarea este operația matematică inversă a logaritmului. În timpul potențarii, o bază dată este ridicată la gradul de expresie peste care se realizează potențarea. În acest caz, sumele de termeni sunt transformate într-un produs de factori.

Destul de des, logaritmii reali sunt folosiți cu bazele 2 (binare), numărul lui Euler e ≈ 2,718 (logaritmul natural) și 10 (zecimal).

În această etapă este indicat să luați în considerare probe de logaritm jurnal 7 2 , ln 5, lg0.0001.

Iar intrările lg(-3), log -3 3.2, log -1 -4.3 nu au sens, deoarece în primul dintre ele un număr negativ este plasat sub semnul logaritmului, în al doilea - un număr negativîn bază, iar în a treia - atât un număr negativ sub semnul logaritmului, cât și o unitate în bază.

Condiții pentru determinarea logaritmului.

Merită să luăm în considerare separat condițiile a > 0, a ≠ 1, b > 0. în care obținem definiția logaritmului. Să ne gândim de ce au fost luate aceste restricții. O egalitate de forma x = log α ne va ajuta în acest sens b, numită identitate logaritmică de bază, care decurge direct din definiția logaritmului dată mai sus.

Să luăm condiția a≠1. Deoarece unu la orice putere este egal cu unu, atunci egalitatea x=log α b poate exista doar atunci când b=1, dar log 1 1 va fi orice număr real. Pentru a elimina această ambiguitate, luăm a≠1.

Să demonstrăm necesitatea condiției a>0. La a=0 conform formulării logaritmului poate exista numai atunci când b=0. Și în consecință atunci log 0 0 poate fi orice număr real diferit de zero, deoarece de la zero la orice putere diferită de zero este zero. Această ambiguitate poate fi eliminată prin condiție a≠0. Și atunci când A<0 ar trebui să respingem analiza valorilor raționale și iraționale ale logaritmului, deoarece un grad cu un exponent rațional și irațional este definit doar pentru baze nenegative. Din acest motiv este stipulată condiția a>0.

ȘI ultima conditie b>0 rezultă din inegalitate a>0, deoarece x=log α b, și valoarea gradului cu bază pozitivă A intotdeauna pozitiv.

Caracteristicile logaritmilor.

Logaritmi caracterizat prin distinctiv Caracteristici, ceea ce a dus la utilizarea lor pe scară largă pentru a facilita în mod semnificativ calculele minuțioase. Când treceți „în lumea logaritmilor”, înmulțirea este transformată într-o adunare mult mai ușoară, împărțirea este transformată în scădere, iar exponențiația și extragerea rădăcinii sunt transformate, respectiv, în înmulțire și împărțire cu exponent.

Formularea logaritmilor și tabelul valorilor acestora (pentru funcții trigonometrice) a fost publicat pentru prima dată în 1614 de către matematicianul scoțian John Napier. Tabelele logaritmice, mărite și detaliate de alți oameni de știință, au fost utilizate pe scară largă în calculele științifice și de inginerie și au rămas relevante până la utilizarea calculatoarelor electronice și a calculatoarelor.


Continuăm să studiem logaritmii. În acest articol vom vorbi despre calcularea logaritmilor, acest proces se numește logaritm. Mai întâi vom înțelege calculul logaritmilor prin definiție. În continuare, să vedem cum sunt găsite valorile logaritmilor folosind proprietățile lor. După aceasta, ne vom concentra pe calcularea logaritmilor prin valorile specificate inițial ale altor logaritmi. În cele din urmă, să învățăm cum să folosim tabelele logaritmice. Întreaga teorie este furnizată cu exemple cu soluții detaliate.

Navigare în pagină.

Calcularea logaritmilor prin definiție

În cele mai simple cazuri, este posibil să efectuați destul de repede și ușor găsirea logaritmului prin definiție. Să aruncăm o privire mai atentă asupra modului în care se întâmplă acest proces.

Esența sa este de a reprezenta numărul b sub forma a c, din care, prin definiția unui logaritm, numărul c este valoarea logaritmului. Adică, prin definiție, următorul lanț de egalități corespunde găsirii logaritmului: log a b=log a a c =c.

Deci, calcularea unui logaritm prin definiție se reduce la găsirea unui număr c astfel încât a c = b, iar numărul c însuși este valoarea dorită a logaritmului.

Ținând cont de informațiile din paragrafele anterioare, atunci când numărul de sub semnul logaritmului este dat de o anumită putere a bazei logaritmului, puteți indica imediat cu ce este egal logaritmul - este egal cu exponentul. Să arătăm soluții la exemple.

Exemplu.

Găsiți log 2 2 −3 și, de asemenea, calculați logaritmul natural al numărului e 5,3.

Soluţie.

Definiția logaritmului ne permite să spunem imediat că log 2 2 −3 =−3. Într-adevăr, numărul de sub semnul logaritmului este egal cu baza 2 cu puterea -3.

În mod similar, găsim al doilea logaritm: lne 5.3 =5.3.

Răspuns:

log 2 2 −3 =−3 și lne 5,3 =5,3.

Dacă numărul b sub semnul logaritmului nu este specificat ca putere a bazei logaritmului, atunci trebuie să vă uitați cu atenție pentru a vedea dacă este posibil să veniți cu o reprezentare a numărului b sub forma a c . Adesea, această reprezentare este destul de evidentă, mai ales când numărul de sub semnul logaritmului este egal cu baza cu puterea lui 1, sau 2, sau 3, ...

Exemplu.

Calculați logaritmii log 5 25 și .

Soluţie.

Este ușor de observat că 25=5 2, aceasta vă permite să calculați primul logaritm: log 5 25=log 5 5 2 =2.

Să trecem la calculul celui de-al doilea logaritm. Numărul poate fi reprezentat ca o putere a lui 7: (vezi dacă este necesar). Prin urmare, .

Să rescriem al treilea logaritm urmatoarea forma. Acum poți vedea asta , din care tragem concluzia că . Prin urmare, prin definiția logaritmului .

Pe scurt, soluția ar putea fi scrisă astfel: .

Răspuns:

log 5 25=2 , Și .

Când sub semnul logaritmului există un suficient de mare numar natural, atunci n-ar strica să-l factorizezi în factori primi. Adesea ajută să reprezentați un astfel de număr ca o putere a bazei logaritmului și, prin urmare, să calculați acest logaritm prin definiție.

Exemplu.

Aflați valoarea logaritmului.

Soluţie.

Unele proprietăți ale logaritmilor vă permit să specificați imediat valoarea logaritmilor. Aceste proprietăți includ proprietatea logaritmului lui unu și proprietatea logaritmului unui număr egal cu baza: log 1 1=log a a 0 =0 și log a a=log a a 1 =1. Adică, atunci când sub semnul logaritmului există un număr 1 sau un număr a egal cu baza logaritmului, atunci în aceste cazuri logaritmii sunt egali cu 0 și, respectiv, 1.

Exemplu.

Cu ce ​​sunt egali logaritmii și log10?

Soluţie.

Deoarece , atunci din definiția logaritmului rezultă .

În al doilea exemplu, numărul 10 de sub semnul logaritmului coincide cu baza sa, deci logaritmul zecimal de zece este egal cu unu, adică lg10=lg10 1 =1.

Răspuns:

ȘI lg10=1.

Rețineți că calculul logaritmilor prin definiție (pe care am discutat în paragraful anterior) implică utilizarea logaritmului de egalitate a a p =p, care este una dintre proprietățile logaritmilor.

În practică, când un număr sub semnul logaritmului și baza logaritmului sunt ușor de reprezentat ca o putere a unui anumit număr, este foarte convenabil să folosiți formula , care corespunde uneia dintre proprietățile logaritmilor. Să ne uităm la un exemplu de găsire a unui logaritm care ilustrează utilizarea acestei formule.

Exemplu.

Calculați logaritmul.

Soluţie.

Răspuns:

.

Proprietățile logaritmilor nemenționați mai sus sunt, de asemenea, folosite în calcule, dar despre asta vom vorbi în paragrafele următoare.

Găsirea logaritmilor prin alți logaritmi cunoscuți

Informațiile din acest paragraf continuă subiectul utilizării proprietăților logaritmilor la calcularea acestora. Dar aici principala diferență este că proprietățile logaritmilor sunt folosite pentru a exprima logaritmul original în termenii unui alt logaritm, a cărui valoare este cunoscută. Să dăm un exemplu pentru clarificare. Să presupunem că știm că log 2 3≈1.584963, atunci putem găsi, de exemplu, log 2 6 făcând o mică transformare folosind proprietățile logaritmului: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

În exemplul de mai sus, a fost suficient să folosim proprietatea logaritmului unui produs. Cu toate acestea, mult mai des este necesar să se folosească un arsenal mai larg de proprietăți ale logaritmilor pentru a calcula logaritmul original prin cei date.

Exemplu.

Calculați logaritmul de la 27 la baza 60 dacă știți că log 60 2=a și log 60 5=b.

Soluţie.

Deci trebuie să găsim log 60 27 . Este ușor de observat că 27 = 3 3 , iar logaritmul inițial, datorită proprietății logaritmului puterii, poate fi rescris ca 3·log 60 3 .

Acum să vedem cum să exprimăm log 60 3 în termeni de logaritmi cunoscuți. Proprietatea logaritmului unui număr egal cu baza ne permite să scriem logaritmul de egalitate 60 60=1. Pe de altă parte, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Prin urmare, 2 log 60 2+log 60 3+log 60 5=1. Prin urmare, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

În cele din urmă, calculăm logaritmul original: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Răspuns:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Separat, merită menționat sensul formulei de tranziție la o nouă bază a logaritmului formei . Vă permite să treceți de la logaritmi cu orice bază la logaritmi cu o anumită bază, ale căror valori sunt cunoscute sau este posibil să le găsiți. De obicei, din logaritmul original, folosind formula de tranziție, se trec la logaritmi într-una dintre bazele 2, e sau 10, deoarece pentru aceste baze există tabele de logaritmi care permit ca valorile lor să fie calculate cu un anumit grad de precizie. În paragraful următor vom arăta cum se face acest lucru.

Tabelele logaritmice și utilizările lor

Pentru calcularea aproximativă a valorilor logaritmului pot fi utilizate tabele logaritmice. Cel mai des folosit tabel logaritm de bază 2 este tabelul logaritmi naturaliși un tabel de logaritmi zecimali. Când lucrați în sistemul numeric zecimal, este convenabil să utilizați un tabel de logaritmi bazat pe baza zece. Cu ajutorul lui vom învăța să găsim valorile logaritmilor.










Tabelul prezentat vă permite să găsiți valorile logaritmilor zecimali ale numerelor de la 1.000 la 9.999 (cu trei zecimale) cu o precizie de o zecemiime. Vom analiza principiul găsirii valorii unui logaritm folosind un tabel de logaritmi zecimal în exemplu concret– e mai clar așa. Să găsim log1.256.

În coloana din stânga a tabelului de logaritmi zecimal găsim primele două cifre ale numărului 1,256, adică găsim 1,2 (acest număr este încercuit cu albastru pentru claritate). A treia cifră a numărului 1.256 (cifra 5) se găsește în prima sau ultima linie din stânga liniei duble (acest număr este încercuit cu roșu). A patra cifră a numărului original 1.256 (cifra 6) se găsește în prima sau ultima linie din dreapta liniei duble (acest număr este încercuit cu o linie verde). Acum găsim numerele în celulele tabelului de logaritmi la intersecția rândului marcat și coloanelor marcate (aceste numere sunt evidențiate portocale). Suma numerelor marcate dă valoarea dorită a logaritmului zecimal cu precizie la a patra zecimală, adică log1,236≈0,0969+0,0021=0,0990.

Este posibil, folosind tabelul de mai sus, să găsiți valorile logaritmilor zecimali ale numerelor care au mai mult de trei cifre după virgulă zecimală, precum și ale celor care depășesc intervalul de la 1 la 9,999? Da, poti. Să arătăm cum se face acest lucru cu un exemplu.

Să calculăm lg102.76332. Mai întâi trebuie să scrieți număr în formă standard: 102,76332=1,0276332·10 2. După aceasta, mantisa ar trebui să fie rotunjită la a treia zecimală, avem 1,0276332 10 2 ≈1,028 10 2, în timp ce logaritmul zecimal inițial este aproximativ egal cu logaritmul numărului rezultat, adică luăm log102.76332≈lg1.028·10 2. Acum aplicăm proprietățile logaritmului: lg1.028·10 2 =lg1.028+lg10 2 =lg1.028+2. În final, găsim valoarea logaritmului lg1.028 din tabelul logaritmilor zecimali lg1.028≈0.0086+0.0034=0.012. Ca rezultat, întregul proces de calcul al logaritmului arată astfel: log102,76332=log1,0276332 10 2 ≈lg1,028 10 2 = log1,028+lg10 2 =log1,028+2≈0,012+2=2,012.

În concluzie, este de remarcat faptul că folosind un tabel de logaritmi zecimali puteți calcula valoarea aproximativă a oricărui logaritm. Pentru a face acest lucru, este suficient să utilizați formula de tranziție pentru a merge la logaritmi zecimal, pentru a găsi valorile acestora în tabel și pentru a efectua calculele rămase.

De exemplu, să calculăm log 2 3 . Conform formulei de tranziție la o nouă bază a logaritmului, avem . Din tabelul logaritmilor zecimali găsim log3≈0,4771 și log2≈0,3010. Prin urmare, .

Bibliografie.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. şi altele.Algebra şi începuturile analizei: Manual pentru clasele 10 - 11 ale instituţiilor de învăţământ general.
  • Gusev V.A., Mordkovich A.G. Matematică (un manual pentru cei care intră în școlile tehnice).

Logaritmul numărului b (b > 0) la baza a (a > 0, a ≠ 1)– exponent la care trebuie ridicat numărul a pentru a obține b.

Logaritmul de bază 10 al lui b poate fi scris ca jurnal(b), iar logaritmul la baza e (logaritmul natural) este ln(b).

Adesea folosit la rezolvarea problemelor cu logaritmi:

Proprietățile logaritmilor

Sunt patru principale proprietățile logaritmilor.

Fie a > 0, a ≠ 1, x > 0 și y > 0.

Proprietatea 1. Logaritmul produsului

Logaritmul produsului egal cu suma logaritmilor:

log a (x ⋅ y) = log a x + log a y

Proprietatea 2. Logaritmul coeficientului

Logaritmul coeficientului egal cu diferența de logaritmi:

log a (x / y) = log a x – log a y

Proprietatea 3. Logaritmul puterii

Logaritmul gradului egal cu produsul dintre putere și logaritm:

Dacă baza logaritmului este în grad, atunci se aplică o altă formulă:

Proprietatea 4. Logaritmul rădăcinii

Această proprietate poate fi obținută din proprietatea logaritmului unei puteri, deoarece rădăcina a n-a a puterii este egală cu puterea lui 1/n:

Formula pentru conversia dintr-un logaritm dintr-o bază într-un logaritm dintr-o altă bază

Această formulă este adesea folosită și la rezolvarea diferitelor sarcini pe logaritmi:

Caz special:

Compararea logaritmilor (inegalităților)

Să avem 2 funcții f(x) și g(x) sub logaritmi cu aceleași baze și între ele există un semn de inegalitate:

Pentru a le compara, trebuie să vă uitați mai întâi la baza logaritmilor a:

  • Dacă a > 0, atunci f(x) > g(x) > 0
  • Daca 0< a < 1, то 0 < f(x) < g(x)

Cum se rezolvă probleme cu logaritmi: exemple

Probleme cu logaritmii incluse în Examenul Unificat de Stat la matematică pentru clasa a 11-a în sarcina 5 și sarcina 7, puteți găsi sarcini cu soluții pe site-ul nostru în secțiunile corespunzătoare. De asemenea, sarcinile cu logaritmi se găsesc în banca de sarcini matematică. Puteți găsi toate exemplele căutând pe site.

Ce este un logaritm

Logaritmii au fost întotdeauna luați în considerare subiect complexîntr-un curs școlar de matematică. Există multe definiții diferite logaritm, dar din anumite motive majoritatea manualelor folosesc pe cele mai complexe și mai nereușite dintre ele.

Vom defini logaritmul simplu și clar. Pentru a face acest lucru, să creăm un tabel:

Deci, avem puteri de doi.

Logaritmi - proprietăți, formule, cum se rezolvă

Dacă luați numărul din linia de jos, puteți găsi cu ușurință puterea la care va trebui să ridicați doi pentru a obține acest număr. De exemplu, pentru a obține 16, trebuie să ridicați doi la a patra putere. Și pentru a obține 64, trebuie să ridici doi la a șasea putere. Acest lucru se vede din tabel.

Și acum - de fapt, definiția logaritmului:

baza a a argumentului x este puterea la care trebuie ridicat numărul a pentru a obține numărul x.

Denumire: log a x = b, unde a este baza, x este argumentul, b este ceea ce este de fapt egal cu logaritmul.

De exemplu, 2 3 = 8 ⇒log 2 8 = 3 (logaritmul de bază 2 al lui 8 este trei deoarece 2 3 = 8). Cu același succes, log 2 64 = 6, deoarece 2 6 = 64.

Operația de găsire a logaritmului unui număr la o bază dată este numită. Deci, să adăugăm o nouă linie la tabelul nostru:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

Din păcate, nu toți logaritmii se calculează atât de ușor. De exemplu, încercați să găsiți log 2 5. Numărul 5 nu este în tabel, dar logica dictează că logaritmul va fi undeva pe interval. Pentru că 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Astfel de numere se numesc iraționale: numerele de după virgulă pot fi scrise la infinit și nu se repetă niciodată. Dacă logaritmul se dovedește a fi irațional, este mai bine să îl lăsați așa: log 2 5, log 3 8, log 5 100.

Este important să înțelegeți că un logaritm este o expresie cu două variabile (baza și argumentul). La început, mulți oameni confundă unde este baza și unde este argumentul. Pentru a evita neînțelegerile enervante, priviți imaginea:

În fața noastră nu este nimic altceva decât definiția unui logaritm. Tine minte: logaritmul este o putere, în care trebuie construită baza pentru a obține un argument. Este baza care este ridicată la o putere - este evidențiată cu roșu în imagine. Se dovedește că baza este întotdeauna în jos! Le spun studenților mei această regulă minunată chiar de la prima lecție - și nu apare nicio confuzie.

Cum se numără logaritmii

Ne-am dat seama de definiție - tot ce rămâne este să învățăm cum să numărăm logaritmii, de exemplu. scapă de semnul „bușten”. Pentru început, observăm că din definiție rezultă două fapte importante:

  1. Argumentul și baza trebuie să fie întotdeauna mai mari decât zero. Aceasta rezultă din definirea unui grad de către un exponent rațional, la care se reduce definiția unui logaritm.
  2. Baza trebuie să fie diferită de unul, deoarece unul în orice grad rămâne unul. Din această cauză, întrebarea „la ce putere trebuie ridicat cineva pentru a obține doi” este lipsită de sens. Nu există o astfel de diplomă!

Se numesc astfel de restricții regiune valori acceptabile (ODZ). Se pare că ODZ a logaritmului arată astfel: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Rețineți că nu există restricții privind numărul b (valoarea logaritmului). De exemplu, logaritmul poate fi foarte negativ: log 2 0.5 = −1, deoarece 0,5 = 2 −1.

Totuși, acum luăm în considerare doar expresii numerice, unde nu este necesar să cunoaștem VA logaritmului. Toate restricțiile au fost deja luate în considerare de către autorii problemelor. Dar atunci când ecuațiile și inegalitățile logaritmice intră în joc, cerințele DL vor deveni obligatorii. La urma urmei, baza și argumentul pot conține construcții foarte puternice care nu corespund neapărat restricțiilor de mai sus.

Acum să luăm în considerare schema generala calcularea logaritmilor. Acesta constă din trei etape:

  1. Exprimați baza a și argumentul x ca o putere cu baza minimă posibilă mai mare decât unu. Pe parcurs, este mai bine să scapi de zecimale;
  2. Rezolvați ecuația pentru variabila b: x = a b ;
  3. Numărul rezultat b va fi răspunsul.

Asta e tot! Dacă logaritmul se dovedește a fi irațional, acesta va fi vizibil deja în primul pas. Cerința ca baza să fie mai mare decât unu este foarte importantă: aceasta reduce probabilitatea de eroare și simplifică foarte mult calculele. Acelasi cu zecimale: dacă le convertiți imediat în cele obișnuite, vor fi mult mai puține erori.

Să vedem cum funcționează această schemă folosind exemple specifice:

Sarcină. Calculați logaritmul: log 5 25

  1. Să ne imaginăm baza și argumentul ca o putere a lui cinci: 5 = 5 1 ; 25 = 5 2 ;
  2. Să creăm și să rezolvăm ecuația:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Am primit răspunsul: 2.

Sarcină. Calculați logaritmul:

Sarcină. Calculați logaritmul: log 4 64

  1. Să ne imaginăm baza și argumentul ca o putere a doi: 4 = 2 2 ; 64 = 2 6 ;
  2. Să creăm și să rezolvăm ecuația:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Am primit răspunsul: 3.

Sarcină. Calculați logaritmul: log 16 1

  1. Să ne imaginăm baza și argumentul ca o putere a doi: 16 = 2 4 ; 1 = 2 0 ;
  2. Să creăm și să rezolvăm ecuația:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Am primit raspunsul: 0.

Sarcină. Calculați logaritmul: log 7 14

  1. Să ne imaginăm baza și argumentul ca o putere a lui șapte: 7 = 7 1 ; 14 nu poate fi reprezentat ca o putere a șapte, deoarece 7 1< 14 < 7 2 ;
  2. Din paragraful anterior rezultă că logaritmul nu contează;
  3. Răspunsul este fără schimbare: log 7 14.

O mică notă despre ultimul exemplu. Cum poți fi sigur că un număr nu este o putere exactă a altui număr? Este foarte simplu - doar includeți-l în factori primi. Dacă expansiunea are cel puțin doi factori diferiți, numărul nu este o putere exactă.

Sarcină. Aflați dacă numerele sunt puteri exacte: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - grad exact, deoarece există un singur multiplicator;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - nu este o putere exactă, întrucât există doi factori: 3 și 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - grad exact;
35 = 7 · 5 - din nou nu este o putere exactă;
14 = 7 · 2 - din nou nu este un grad exact;

Rețineți, de asemenea, că numerele prime în sine sunt întotdeauna puteri exacte ale lor.

Logaritm zecimal

Unii logaritmi sunt atât de comune încât au un nume și un simbol special.

al argumentului x este logaritmul la baza 10, i.e. Puterea la care trebuie ridicat numărul 10 pentru a obține numărul x. Denumire: lg x.

De exemplu, log 10 = 1; lg 100 = 2; lg 1000 = 3 - etc.

De acum înainte, când o expresie precum „Găsiți lg 0.01” apare într-un manual, să știți că aceasta nu este o greșeală de tipar. Acesta este un logaritm zecimal. Cu toate acestea, dacă nu sunteți familiarizat cu această notație, o puteți rescrie oricând:
log x = log 10 x

Tot ceea ce este adevărat pentru logaritmii obișnuiți este valabil și pentru logaritmii zecimali.

Logaritmul natural

Există un alt logaritm care are propria sa denumire. În unele privințe, este chiar mai important decât zecimală. Vorbim despre logaritmul natural.

al argumentului x este logaritmul la baza e, i.e. puterea la care trebuie ridicat numărul e pentru a obține numărul x. Denumire: ln x.

Mulți oameni se vor întreba: care este numărul e? Acest număr irațional, a lui valoare exacta imposibil de găsit și înregistrat. Voi da doar primele cifre:
e = 2,718281828459...

Nu vom intra în detaliu despre ce este acest număr și de ce este necesar. Nu uitați doar că e este baza logaritmului natural:
ln x = log e x

Astfel ln e = 1; ln e 2 = 2; ln e 16 = 16 - etc. Pe de altă parte, ln 2 este un număr irațional. În general, logaritmul natural al oricărui număr rațional este irațional. Cu excepția, desigur, a unuia: ln 1 = 0.

Pentru logaritmii naturali, toate regulile care sunt adevărate pentru logaritmii obișnuiți sunt valabile.

Vezi si:

Logaritm. Proprietățile logaritmului (puterea logaritmului).

Cum se reprezintă un număr ca logaritm?

Folosim definiția logaritmului.

Un logaritm este un exponent la care trebuie ridicată baza pentru a obține numărul de sub semnul logaritmului.

Astfel, pentru a reprezenta un anumit număr c ca logaritm la baza a, trebuie să puneți o putere cu aceeași bază ca baza logaritmului sub semnul logaritmului și să scrieți acest număr c ca exponent:

Absolut orice număr poate fi reprezentat ca logaritm - pozitiv, negativ, întreg, fracțional, rațional, irațional:

Pentru a nu confunda a și c în condiții stresante ale unui test sau examen, puteți folosi următoarea regulă de memorare:

ce este dedesubt coboară, ce este sus urcă.

De exemplu, trebuie să reprezentați numărul 2 ca logaritm la baza 3.

Avem două numere - 2 și 3. Aceste numere sunt baza și exponentul, pe care le vom scrie sub semnul logaritmului. Rămâne să se determine care dintre aceste numere ar trebui să fie notate, la baza gradului, și care – în sus, până la exponent.

Baza 3 în notația unui logaritm este în partea de jos, ceea ce înseamnă că atunci când reprezentăm doi ca logaritm la baza 3, vom scrie și 3 la bază.

2 este mai mare decât trei. Și în notarea gradului doi scriem deasupra celor trei, adică ca exponent:

Logaritmi. Primul nivel.

Logaritmi

Logaritm număr pozitiv b bazat pe A, Unde a > 0, a ≠ 1, se numește exponentul la care trebuie ridicat numărul A, A obtine b.

Definiţia logarithm poate fi scris pe scurt astfel:

Această egalitate este valabilă pentru b > 0, a > 0, a ≠ 1. De obicei se numește identitate logaritmică.
Se numește acțiunea de a găsi logaritmul unui număr prin logaritm.

Proprietățile logaritmilor:

Logaritmul produsului:

Logaritmul coeficientului:

Înlocuirea bazei logaritmului:

Logaritmul gradului:

Logaritmul rădăcinii:

Logaritm cu baza de putere:





Logaritmi zecimali și naturali.

Logaritm zecimal numerele apelează logaritmul acestui număr la baza 10 și scrie   lg b
Logaritmul natural numerele sunt numite logaritmul acelui număr la bază e, Unde e- un număr irațional aproximativ egal cu 2,7. În același timp ei scriu ln b.

Alte note despre algebră și geometrie

Proprietățile de bază ale logaritmilor

Proprietățile de bază ale logaritmilor

Logaritmii, ca orice numere, pot fi adunați, scăzuți și transformați în orice fel. Dar, deoarece logaritmii nu sunt chiar numere obișnuite, există reguli aici, care sunt numite proprietăți principale.

Cu siguranță trebuie să cunoașteți aceste reguli - fără ele, nici o problemă logaritmică serioasă nu poate fi rezolvată. În plus, sunt foarte puține dintre ele - puteți învăța totul într-o singură zi. Asadar, haideti sa începem.

Adunarea și scăderea logaritmilor

Luați în considerare doi logaritmi cu aceleași baze: log a x și log a y. Apoi pot fi adăugate și scăzute și:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Deci, suma logaritmilor este egală cu logaritmul produsului, iar diferența este egală cu logaritmul coeficientului. Vă rugăm să rețineți: punctul cheie aici este temeiuri identice. Dacă motivele sunt diferite, aceste reguli nu funcționează!

Aceste formule vă vor ajuta să calculați o expresie logaritmică chiar și atunci când părțile sale individuale nu sunt luate în considerare (vezi lecția „Ce este un logaritm”). Aruncă o privire la exemple și vezi:

Jurnalul 6 4 + jurnalul 6 9.

Deoarece logaritmii au aceleași baze, folosim formula sumei:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Sarcină. Aflați valoarea expresiei: log 2 48 − log 2 3.

Bazele sunt aceleași, folosim formula diferenței:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Sarcină. Aflați valoarea expresiei: log 3 135 − log 3 5.

Din nou bazele sunt aceleași, deci avem:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

După cum puteți vedea, expresiile originale sunt formate din logaritmi „răi”, care nu sunt calculate separat. Dar după transformări se dovedesc destul de bine numere normale. Multe sunt construite pe acest fapt hârtii de test. Da, expresii asemănătoare testelor sunt oferite cu toată seriozitatea (uneori practic fără modificări) la examenul de stat unificat.

Extragerea exponentului din logaritm

Acum să complicăm puțin sarcina. Ce se întâmplă dacă baza sau argumentul unui logaritm este o putere? Apoi, exponentul acestui grad poate fi scos din semnul logaritmului conform următoarelor reguli:

Este ușor de observat că ultima regulă le urmează pe primele două. Dar este mai bine să-l amintiți oricum - în unele cazuri va reduce semnificativ cantitatea de calcule.

Desigur, toate aceste reguli au sens dacă se respectă ODZ al logaritmului: a > 0, a ≠ 1, x > 0. Și încă ceva: învață să aplici toate formulele nu numai de la stânga la dreapta, ci și invers. , adică Puteți introduce numerele înainte de semnul logaritmului în logaritmul însuși.

Cum se rezolvă logaritmii

Acesta este ceea ce se cere cel mai adesea.

Sarcină. Aflați valoarea expresiei: log 7 49 6 .

Să scăpăm de gradul din argument folosind prima formulă:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Sarcină. Găsiți sensul expresiei:

Rețineți că numitorul conține un logaritm, a cărui bază și argument sunt puteri exacte: 16 = 2 4 ; 49 = 7 2. Avem:

Cred că ultimul exemplu necesită unele clarificări. Unde s-au dus logaritmii? Până în ultimul moment lucrăm doar cu numitorul. Am prezentat baza și argumentul logaritmului aflat acolo sub formă de puteri și am scos exponenții - am obținut o fracțiune „cu trei etaje”.

Acum să ne uităm la fracția principală. Numătorul și numitorul conțin același număr: log 2 7. Deoarece log 2 7 ≠ 0, putem reduce fracția - 2/4 va rămâne la numitor. Conform regulilor aritmeticii, cele patru pot fi transferate la numărător, ceea ce s-a făcut. Rezultatul a fost răspunsul: 2.

Trecerea la o nouă fundație

Vorbind despre regulile de adunare și scădere a logaritmilor, am subliniat în mod special că funcționează doar cu aceleași baze. Ce se întâmplă dacă motivele sunt diferite? Ce se întâmplă dacă nu sunt puteri exacte de același număr?

Formulele pentru tranziția către o nouă fundație vin în ajutor. Să le formulăm sub forma unei teoreme:

Fie dat logaritmul log a x. Atunci pentru orice număr c astfel încât c > 0 și c ≠ 1, egalitatea este adevărată:

În special, dacă setăm c = x, obținem:

Din a doua formulă rezultă că baza și argumentul logaritmului pot fi schimbate, dar în acest caz întreaga expresie este „întoarsă”, adică. logaritmul apare la numitor.

Aceste formule se găsesc rar în expresiile numerice obișnuite. Este posibil să se evalueze cât de convenabile sunt acestea numai atunci când se rezolvă ecuații și inegalități logaritmice.

Cu toate acestea, există probleme care nu pot fi rezolvate deloc decât prin trecerea la o nouă fundație. Să ne uităm la câteva dintre acestea:

Sarcină. Aflați valoarea expresiei: log 5 16 log 2 25.

Rețineți că argumentele ambilor logaritmi conțin puteri exacte. Să scoatem indicatorii: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Acum să „inversăm” al doilea logaritm:

Deoarece produsul nu se schimbă la rearanjarea factorilor, am înmulțit cu calm patru și doi, apoi ne-am ocupat de logaritmi.

Sarcină. Aflați valoarea expresiei: log 9 100 lg 3.

Baza și argumentul primului logaritm sunt puteri exacte. Să notăm asta și să scăpăm de indicatorii:

Acum să scăpăm de logaritmul zecimal trecând la o nouă bază:

Identitatea logaritmică de bază

Adesea, în procesul de rezolvare, este necesar să se reprezinte un număr ca logaritm la o bază dată.

În acest caz, următoarele formule ne vor ajuta:

În primul caz, numărul n devine exponent în argument. Numărul n poate fi absolut orice, deoarece este doar o valoare logaritmică.

A doua formulă este de fapt o definiție parafrazată. Așa se numește: .

De fapt, ce se întâmplă dacă numărul b este ridicat la o astfel de putere încât numărul b la această putere dă numărul a? Așa este: rezultatul este același număr a. Citiți din nou acest paragraf cu atenție - mulți oameni rămân blocați în el.

Asemenea formulelor pentru trecerea la o nouă bază, identitatea logaritmică de bază este uneori singura soluție posibilă.

Sarcină. Găsiți sensul expresiei:

Rețineți că log 25 64 = log 5 8 - pur și simplu a luat pătratul de la baza și argumentul logaritmului. Luând în considerare regulile de înmulțire a puterilor cu aceeași bază, obținem:

Dacă cineva nu știe, aceasta a fost o sarcină reală de la examenul de stat unificat :)

Unitate logaritmică și zero logaritmic

În concluzie, voi da două identități care cu greu pot fi numite proprietăți - mai degrabă, sunt consecințe ale definiției logaritmului. Apar constant în probleme și, în mod surprinzător, creează probleme chiar și pentru elevii „avansați”.

  1. log a a = 1 este. Amintiți-vă odată pentru totdeauna: logaritmul oricărei baze a a acelei baze în sine este egal cu unu.
  2. log a 1 = 0 este. Baza a poate fi orice, dar dacă argumentul conține unul, logaritmul este egal cu zero! Deoarece a 0 = 1 este o consecință directă a definiției.

Sunt toate proprietățile. Asigurați-vă că exersați punerea lor în practică! Descărcați fișa cheat la începutul lecției, imprimați-o și rezolvați problemele.

    Sa incepem cu proprietățile logaritmului unu. Formularea sa este următoarea: logaritmul unității este egal cu zero, adică log a 1=0 pentru orice a>0, a≠1. Demonstrarea nu este dificilă: întrucât a 0 = 1 pentru orice a care îndeplinește condițiile de mai sus a>0 și a≠1, atunci egalitatea log a 1=0 de demonstrat rezultă imediat din definiția logaritmului.

    Să dăm exemple de aplicare a proprietății considerate: log 3 1=0, log1=0 și .

    Să trecem la la următoarea proprietate: logaritmul unui număr egal cu baza este egal cu unu, acesta este, log a a=1 pentru a>0, a≠1. Într-adevăr, deoarece a 1 =a pentru orice a, atunci prin definiția logaritmului log a a=1.

    Exemple de utilizare a acestei proprietăți a logaritmilor sunt egalitățile log 5 5=1, log 5.6 5.6 și lne=1.

    De exemplu, log 2 2 7 =7, log10 -4 =-4 și .

    Logaritmul produsului a două numere pozitive x și y este egal cu produsul logaritmilor acestor numere: log a (x y)=log a x+log a y, a>0, a≠1. Să demonstrăm proprietatea logaritmului unui produs. Datorită proprietăților gradului a log a x+log a y =a log a x ·a log a y, și deoarece prin identitatea logaritmică principală un log a x =x și un log a y =y, atunci un log a x ·a log a y =x·y. Astfel, un log a x+log a y =x·y, din care, prin definirea unui logaritm, rezultă egalitatea care se dovedește.

    Să arătăm exemple de utilizare a proprietății logaritmului unui produs: log 5 (2 3)=log 5 2+log 5 3 și .

    Proprietatea logaritmului unui produs poate fi generalizată la produsul unui număr finit n de numere pozitive x 1 , x 2 , …, x n ca log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +…+log a x n . Această egalitate poate fi dovedită fără probleme.

    De exemplu, logaritmul natural al produsului poate fi înlocuit cu suma a trei logaritmi naturali ai numerelor 4, e și.

    Logaritmul câtului a două numere pozitive x și y este egal cu diferența dintre logaritmii acestor numere. Proprietatea logaritmului unui coeficient corespunde unei formule de forma , unde a>0, a≠1, x și y sunt niște numere pozitive. Valabilitatea acestei formule este dovedită la fel ca și formula pentru logaritmul unui produs: întrucât , apoi prin definiția unui logaritm.

    Iată un exemplu de utilizare a acestei proprietăți a logaritmului: .

    Să trecem la proprietatea logaritmului puterii. Logaritmul unui grad este egal cu produsul exponentului și logaritmul modulului bazei acestui grad. Să scriem această proprietate a logaritmului unei puteri ca formulă: log a b p =p·log a |b|, unde a>0, a≠1, b și p sunt numere astfel încât gradul b p are sens și b p >0.

    Mai întâi demonstrăm această proprietate pentru pozitivul b. Identitatea logaritmică de bază ne permite să reprezentăm numărul b ca un log a b , apoi b p =(a log a b) p , iar expresia rezultată, datorită proprietății puterii, este egală cu a p·log a b . Ajungem deci la egalitatea b p =a p·log a b, din care, prin definiția unui logaritm, concluzionăm că log a b p =p·log a b.

    Rămâne de demonstrat această proprietate pentru negativul b. Aici observăm că expresia log a b p pentru negativ b are sens doar pentru exponenții pari p (deoarece valoarea gradului b p trebuie să fie mai mare decât zero, altfel logaritmul nu va avea sens), iar în acest caz b p =|b| p. Apoi b p =|b| p =(a log a |b|) p =a p·log a |b|, de unde log a b p =p·log a |b| .

    De exemplu, și ln(-3) 4 =4·ln|-3|=4·ln3 .

    Rezultă din proprietatea anterioară proprietatea logaritmului de la rădăcină: logaritmul rădăcinii a n-a este egal cu produsul fracției 1/n cu logaritmul expresiei radicalului, adică , unde a>0, a≠1, n este un număr natural mai mare decât unu, b>0.

    Dovada se bazează pe egalitatea (vezi), care este valabilă pentru orice b pozitiv și pe proprietatea logaritmului puterii: .

    Iată un exemplu de utilizare a acestei proprietăți: .

    Acum să demonstrăm formula pentru trecerea la o nouă bază logaritmică drăguț . Pentru a face acest lucru, este suficient să demonstrăm validitatea egalității log c b=log a b·log c a. Identitatea logaritmică de bază ne permite să reprezentăm numărul b ca log a b , apoi log c b=log c a log a b . Rămâne să folosim proprietatea logaritmului gradului: log c a log a b =log a b log c a. Aceasta dovedește egalitatea log c b=log a b·log c a, ceea ce înseamnă că a fost demonstrată și formula pentru tranziția la o nouă bază a logaritmului.

    Să arătăm câteva exemple de utilizare a acestei proprietăți a logaritmilor: și .

    Formula pentru trecerea la o nouă bază vă permite să treceți la lucrul cu logaritmi care au o bază „convenabilă”. De exemplu, poate fi folosit pentru a merge la logaritmi naturali sau zecimali, astfel încât să puteți calcula valoarea unui logaritm dintr-un tabel de logaritmi. Formula de trecere la o nouă bază logaritmică permite, în unele cazuri, să se găsească valoarea unui logaritm dat atunci când sunt cunoscute valorile unor logaritmi cu alte baze.

    Folosit frecvent caz special formule de trecere la o nouă bază a logaritmului cu c=b de formă . Aceasta arată că log a b și log b a – . De exemplu, .

    Formula este de asemenea folosită des , care este convenabil pentru găsirea valorilor logaritmice. Pentru a confirma cuvintele noastre, vom arăta cum poate fi folosit pentru a calcula valoarea unui logaritm de forma . Avem . Pentru a demonstra formula este suficient să folosiți formula pentru tranziția la o nouă bază a logaritmului a: .

    Rămâne de demonstrat proprietățile comparației logaritmilor.

    Să demonstrăm că pentru orice numere pozitive b 1 și b 2, b 1 log a b 2 , iar pentru a>1 – inegalitatea log a b 1

    În cele din urmă, rămâne de demonstrat ultima dintre proprietățile enumerate ale logaritmilor. Să ne limităm la demonstrarea primei sale părți, adică vom demonstra că dacă a 1 >1, a 2 >1 și a 1 1 este adevărat log a 1 b>log a 2 b . Enunțurile rămase ale acestei proprietăți a logaritmilor sunt dovedite după un principiu similar.

    Să folosim metoda opusă. Să presupunem că pentru a 1 >1, a 2 >1 și a 1 1 este adevărat log a 1 b≤log a 2 b . Pe baza proprietăților logaritmilor, aceste inegalități pot fi rescrise ca Și respectiv, iar din ele rezultă că log b a 1 ≤log b a 2 și, respectiv, log b a 1 ≥log b a 2. Atunci, după proprietățile puterilor cu aceleași baze, trebuie să fie valabile egalitățile b log b a 1 ≥b log b a 2 și b log b a 1 ≥b log b a 2, adică a 1 ≥a 2 . Așa că am ajuns la o contradicție cu condiția a 1

Bibliografie.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. şi altele.Algebra şi începuturile analizei: Manual pentru clasele 10 - 11 ale instituţiilor de învăţământ general.
  • Gusev V.A., Mordkovich A.G. Matematică (un manual pentru cei care intră în școlile tehnice).

Instrucțiuni

Scrieți expresia logaritmică dată. Dacă expresia folosește logaritmul lui 10, atunci notația sa este scurtată și arată astfel: lg b este logaritmul zecimal. Dacă logaritmul are ca bază numărul e, atunci scrieți expresia: ln b – logaritm natural. Se înțelege că rezultatul oricărei este puterea la care trebuie ridicat numărul de bază pentru a obține numărul b.

Când găsiți suma a două funcții, trebuie pur și simplu să le diferențiați una câte una și să adăugați rezultatele: (u+v)" = u"+v";

Atunci când găsiți derivata produsului a două funcții, este necesar să înmulțiți derivata primei funcții cu a doua și să adăugați derivata celei de-a doua funcții înmulțită cu prima funcție: (u*v)" = u"*v +v"*u;

Pentru a afla derivata coeficientului a doua functii, este necesar sa scadem din produsul derivatei dividendului inmultit cu functia divizor produsul derivatei divizorului inmultit cu functia dividendului si impartiti toate acestea prin funcția divizor la pătrat. (u/v)" = (u"*v-v"*u)/v^2;

Dacă este dată o funcție complexă, atunci este necesar să se înmulțească derivata funcției interne și derivata celei externe. Fie y=u(v(x)), apoi y"(x)=y"(u)*v"(x).

Folosind rezultatele obținute mai sus, puteți diferenția aproape orice funcție. Deci, să ne uităm la câteva exemple:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *X));
Există, de asemenea, probleme care implică calcularea derivatei la un punct. Fie dată funcția y=e^(x^2+6x+5), trebuie să găsiți valoarea funcției în punctul x=1.
1) Aflați derivata funcției: y"=e^(x^2-6x+5)*(2*x +6).

2) Calculați valoarea funcției la un punct dat y"(1)=8*e^0=8

Video pe tema

Sfaturi utile

Învață tabelul derivatelor elementare. Acest lucru va economisi timp semnificativ.

Surse:

  • derivată a unei constante

Deci, care este diferența dintre o ecuație irațională și una rațională? Dacă variabila necunoscută se află sub semnul rădăcinii pătrate, atunci ecuația este considerată irațională.

Instrucțiuni

Principala metodă de rezolvare a unor astfel de ecuații este metoda de construire a ambelor părți ecuațiiîntr-un pătrat. In orice caz. acest lucru este firesc, primul lucru pe care trebuie să-l faci este să scapi de semn. Această metodă nu este dificilă din punct de vedere tehnic, dar uneori poate duce la probleme. De exemplu, ecuația este v(2x-5)=v(4x-7). Prin pătrarea ambelor părți se obține 2x-5=4x-7. Rezolvarea unei astfel de ecuații nu este dificilă; x=1. Dar numărul 1 nu va fi dat ecuații. De ce? Înlocuiți unul în ecuație în loc de valoarea lui x. Și părțile din dreapta și din stânga vor conține expresii care nu au sens, adică. Această valoare nu este valabilă pentru o rădăcină pătrată. Prin urmare, 1 este o rădăcină străină și, prin urmare, această ecuație nu are rădăcini.

Deci, o ecuație irațională se rezolvă folosind metoda punerii la pătrat a ambelor laturi. Și după ce am rezolvat ecuația, este necesar să tăiați rădăcinile străine. Pentru a face acest lucru, înlocuiți rădăcinile găsite în ecuația originală.

Luați în considerare altul.
2х+vх-3=0
Desigur, această ecuație poate fi rezolvată folosind aceeași ecuație ca cea anterioară. Mutați compuși ecuații, care nu au rădăcină pătrată, în partea dreaptă și apoi folosiți metoda pătratului. rezolvați ecuația rațională și rădăcinile rezultate. Dar și altul, mai elegant. Introduceți o nouă variabilă; vх=y. În consecință, veți primi o ecuație de forma 2y2+y-3=0. Adică o ecuație pătratică obișnuită. Găsește-i rădăcinile; y1=1 și y2=-3/2. Apoi, rezolvă două ecuații vх=1; vх=-3/2. A doua ecuație nu are rădăcini; din prima aflăm că x=1. Nu uitați să verificați rădăcinile.

Rezolvarea identităților este destul de simplă. Pentru a face acest lucru, este necesar să efectuați transformări identice până la atingerea scopului stabilit. Astfel, cu ajutorul unor operații aritmetice simple se va rezolva problema pusă.

Vei avea nevoie

  • - hartie;
  • - pix.

Instrucțiuni

Cele mai simple dintre astfel de transformări sunt înmulțirile algebrice abreviate (cum ar fi pătratul sumei (diferența), diferența de pătrate, suma (diferența), cubul sumei (diferența)). În plus, există multe formule trigonometrice, care sunt în esență aceleași identități.

Într-adevăr, pătratul sumei a doi termeni este egal cu pătratul primului plus de două ori produsul primului cu al doilea și plus pătratul celui de-al doilea, adică (a+b)^2= (a+ b)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Simplificați pe ambele

Principii generale ale soluției

Repetați dintr-un manual de analiză matematică sau matematică superioară ceea ce este o integrală definită. După cum se știe, soluția unei integrale definite este o funcție a cărei derivată va da un integrand. Această funcție se numește antiderivată. Pe baza acestui principiu se construiesc integralele principale.
Determinați după tipul de integrand care dintre integralele de tabel este potrivită în acest caz. Nu este întotdeauna posibil să determinați acest lucru imediat. Adesea, forma tabulară devine vizibilă numai după mai multe transformări pentru a simplifica integrandul.

Metoda de înlocuire a variabilei

Dacă integrandul este o funcție trigonometrică al cărei argument este un polinom, atunci încercați să utilizați metoda schimbării variabilelor. Pentru a face acest lucru, înlocuiți polinomul din argumentul integrandului cu o nouă variabilă. Pe baza relației dintre variabilele noi și vechi, determinați noile limite de integrare. Prin diferențierea acestei expresii, găsiți noua diferență în . Astfel, veți obține o nouă formă a integralei anterioare, apropiată sau chiar corespunzătoare uneia tabelare.

Rezolvarea integralelor de al doilea fel

Dacă integrala este o integrală de al doilea fel, o formă vectorială a integrandului, atunci va trebui să utilizați regulile pentru trecerea de la aceste integrale la cele scalare. O astfel de regulă este relația Ostrogradsky-Gauss. Această lege ne permite să trecem de la fluxul rotoric al unei anumite funcții vectoriale la integrala triplă peste divergența unui câmp vectorial dat.

Înlocuirea limitelor de integrare

După găsirea antiderivatei, este necesar să se substituie limitele integrării. În primul rând, înlocuiți valoarea limitei superioare în expresia pentru antiderivată. Vei primi un număr. Apoi, scădeți din numărul rezultat un alt număr obținut din limita inferioară în antiderivată. Dacă una dintre limitele integrării este infinitul, atunci când o înlocuiți în funcția antiderivată, este necesar să mergeți la limită și să găsiți spre ce tinde expresia.
Dacă integrala este bidimensională sau tridimensională, atunci va trebui să reprezentați geometric limitele integrării pentru a înțelege cum să evaluați integrala. Într-adevăr, în cazul, de exemplu, a unei integrale tridimensionale, limitele integrării pot fi planuri întregi care limitează volumul care este integrat.
Se încarcă...Se încarcă...