Зачем нужны липиды в организме. Функции липидов. Значение для мембранных клеток

Определение показателей липидного профиля крови необходимо для диагностики, лечения и профилактики сердечно-сосудистых заболеваний. Важнейшим механизмом развития подобной патологии считается образование на внутренней стенке сосудов атеросклеротических бляшек. Бляшки представляют собой скопление жиросодержащих соединений (холестерина и триглицеридов) и фибрина. Чем больше концентрация липидов в крови, тем вероятное появление атеросклероза. Поэтому и необходимо систематически сдавать анализ крови на липиды (липидограмму), это поможет своевременно выявить отклонения жирового обмена от нормы.

Липидограмма – исследование, определяющее уровень липидов различных фракций

Атеросклероз опасен высокой вероятностью развития осложнений - инсульт, инфаркт миокарда, гангрена нижних конечностей. Эти заболевания зачастую заканчиваются инвалидизацией больного, а в некоторых случаях и летальным исходом.

Роль липидов

Функции липидов:

  • Структурная. Гликолипиды, фосфолипиды, холестерин являются важнейшими составляющими клеточных мембран.
  • Теплоизоляционная и защитная. Излишки жиров откладываются в подкожно-жировой клетчатке, уменьшая потери тепла и защищая внутренние органы. При необходимости запас липидов используется организмом для получения энергии и простых соединений.
  • Регуляторная. Холестерин необходим для синтеза стероидных гормонов надпочечников, половых гормонов, витамина Д, желчных кислот, входит в состав миелиновых оболочек головного мозга, нужен для нормального функционирования серотониновых рецепторов.

Липидограмма

Липидограмма может назначаться врачом как при подозрении на имеющуюся патологию, так и в профилактических целях, например, при проведении диспансеризации. Она включает в себя несколько показателей, позволяющих в полной мере оценить состояние обмена жиров в организме.

Показатели липидограммы:

  • Общий холестерин (ОХ). Это важнейший показатель липидного спектра крови, включает в себя свободный холестерин, а также холестерин, содержащийся в липопротеидах и находящийся в связи с жирными кислотами. Значительная часть холестерина синтезируется печенью, кишечником, половыми железами, лишь 1/5 часть ОХ поступает с пищей. При нормально функционирующих механизмах липидного обмена небольшой недостаток или избыток холестерина, поступающего с пищей, компенсируется усилением или же ослаблением его синтеза в организме. Поэтому гиперхолестеринемия чаще всего обусловлена не избыточным поступлением холестерина с продуктами, а сбоем процесса жирового обмена.
  • Липопротеиды высокой плотности (ЛПВП). Этот показатель имеет обратную взаимосвязь с вероятностью развития атеросклероза - повышенный уровень ЛПВП считается антиатерогенным фактором. ЛПВП транспортируют холестерин в печень, где он утилизируется. У женщин уровень ЛПВП выше, чем у мужчин.
  • Липопротеиды низкой плотности (ЛПНП). ЛПНП переносят холестерин из печени в ткани, иначе его называют «плохим» холестерином. Связано это с тем, что ЛПНП способны образовывать атеросклеротические бляшки, сужающие просвет сосудов.

Так выглядит ЛПНП-частица

  • Липопротеиды очень низкой плотности (ЛПОНП). Основной функцией этой разнородной по размерам и составу группы частиц является транспорт триглицеридов из печени в ткани. Высокая концентрация ЛПОНП в крови приводит к помутнению сыворотки (хилез), также повышается возможность появления атеросклеротических бляшек, особенно у пациентов с сахарным диабетом и патологиями почек.
  • Триглицериды (ТГ). Как и холестерин, триглицериды переносятся по кровеносному руслу в составе липопротеидов. Поэтому повышение концентрации ТГ в крови всегда сопровождается ростом уровня холестерина. Триглицериды считаются главным источником энергии для клеток.
  • Коэффициент атерогенности. Он позволяет оценить риск развития патологии сосудов и является своеобразным итогом липидограммы. Для определения показателя необходимо знать значение ОХ и ЛПВП.

Коэффициент атерогенности = (ОХ — ЛПВП)/ЛПВП

Оптимальные значения липидного профиля крови

Пол Показатель, ммоль/л
ОХ ЛПВП ЛПНП ЛПОНП ТГ КА
Мужской 3,21 — 6,32 0,78 — 1,63 1,71 — 4,27 0,26 — 1,4 0,5 — 2,81 2,2 — 3,5
Женский 3,16 — 5,75 0,85 — 2,15 1,48 — 4,25 0,41 — 1,63

Следует учитывать то, что значение измеряемых показателей может меняться в зависимости от единиц измерения, методики проведения анализа. Нормальные значения также варьируют в зависимости от возраста пациента, вышеприведенные показатели являются усредненными для лиц 20 — 30 лет. Норма холестерина и ЛПНП у мужчин после 30 лет имеет тенденцию к увеличению. У женщин показатели резко возрастают при наступлении менопаузы, это связано с прекращением антиатерогенной деятельности яичников. Расшифровку липидограммы должен обязательно проводить специалист с учетом индивидуальных особенностей человека.

Исследование уровня липидов в крови может назначаться врачом для диагностики дислипидемий, оценки вероятности развития атеросклероза, при некоторых хронических заболеваниях (сахарный диабет, болезни почек и печени, щитовидной железы), а также в качестве скринингового исследования для раннего выявления лиц с отклонениями липидного профиля от нормы.

Врач дает пациентке направление на липидограмму

Подготовка к исследованию

Значения липидограммы могут колебаться не только в зависимости от пола и возраста испытуемого, но и от воздействия на организм разнообразных внешних и внутренних факторов. Чтобы минимизировать вероятность недостоверного результата, необходимо придерживаться нескольких правил:

  1. Сдавать кровь следует строго утром натощак, вечером предыдущего дня рекомендуется легкий диетический ужин.
  2. Не курить и не употреблять спиртное накануне исследования.
  3. За 2-3 дня до сдачи крови избегать стрессовых ситуаций и интенсивных физических нагрузок.
  4. Отказаться от употребления всех лекарственных препаратов и биодобавок, кроме жизненно необходимых.

Методика проведения

Существует несколько методов лабораторной оценки липидного профиля. В медицинских лабораториях анализ может проводиться вручную или же с использованием автоматических анализаторов. Преимуществом автоматизированной системы измерения является минимальный риск ошибочных результатов, быстрота получение анализа, высокая точность исследования.

Для анализа необходима сыворотка венозной крови пациента. Кровь забирается в вакуумную пробирку при помощи шприца или вакутейнера. Во избежание формирования сгустка пробирку с кровью следует несколько раз перевернуть, затем отцентрифугировать для получения сыворотки. Пробу можно хранить в холодильнике в течение 5 суток.

Взятие крови на липидный профиль

В настоящее время липиды крови можно измерить, не выходя из дома. Для этого необходимо приобрести портативный биохимический анализатор, позволяющий оценить уровень общего холестерина в крови или сразу несколько показателей за считанные минуты. Для исследования нужна капелька капиллярной крови, ее наносят на тест-полоску. Тест-полоска пропитана специальным составом, для каждого показателя он свой. Считывание результатов происходит автоматически после установки полоски в прибор. Благодаря небольшим размерам анализатора, возможности работы от батареек его удобно использовать в домашних условиях и брать с собой в поездку. Поэтому лицам с предрасположенностью к сердечно-сосудистым заболеваниям рекомендуется иметь его дома.

Интерпретация результатов

Самым идеальным для пациента результатом анализа будет лабораторное заключение об отсутствии отклонений показателей от нормы. В таком случае человеку можно не опасаться за состояние своей кровеносной системы - риск атеросклероза практически отсутствует.

К сожалению, так бывает далеко не всегда. Иногда врач после ознакомления с лабораторными данными, выносит заключение о наличии гиперхолестеринемии. Что это такое? Гиперхолестеринемия - повышение концентрации общего холестерина в крови выше значений нормы, при этом отмечается высокий риск развития атеросклероза и сопутствующих ему заболеваний. Обусловлено такое состояние может быть рядом причин:

  • Наследственность. Науке известны случаи семейной гиперхолестеринемии (СГХС), в такой ситуации дефектный ген, отвечающий за метаболизм липидов передается по наследству. У больных наблюдается постоянно повышенный уровень ОХ и ЛПНП, особенно тяжело болезнь протекает у гомозиготной формы СГХС. У таких пациентов отмечается раннее появление ИБС (в возрасте 5-10 лет), при отсутствии должного лечения прогноз неблагоприятный и в большинстве случаев заканчивается летальным исходом до достижения 30 лет.
  • Хронические заболевания. Повышенный уровень холестерина отмечается при сахарном диабете, гипотиреозе, патологии почек и печени, обусловлен нарушениями липидного обмена вследствие данных болезней.

Для пациентов, страдающих сахарным диабетом, важно постоянно контролировать уровень холестерина

  • Неправильное питание. Длительное злоупотребление фастфудом, жирной, соленой пищей приводит к ожирению, при этом, как правило, наблюдается отклонение уровня липидов от нормы.
  • Вредные привычки. Алкоголизм и курение приводят к сбоям в механизме жирового обмена, вследствие чего увеличиваются показатели липидограммы.

При гиперхолестеринемии необходимо придерживаться диеты с ограничением жира и соли, но ни в коем случае нельзя полностью отказываться от всех продуктов, богатых холестерином. Исключить из рациона питания следует лишь майонез, фастфуд и все продукты, содержащие в своем составе трансжиры. А вот яйца, сыр, мясо, сметана обязательно должны присутствовать на столе, просто необходимо выбирать продукты с меньшим процентом жирности. Также в рационе важно наличие зелени, овощей, круп, орехов, морепродуктов. Содержащиеся в них витамины и минералы отлично помогают стабилизировать показатели липидного обмена.

Важным условием нормализации холестерина также является отказ от вредных привычек. Полезны для организма и постоянные физические нагрузки.

В том случае, если здоровый образ жизни в сочетании с диетой не привел к снижению холестерина, необходимо назначение соответствующего медикаментозного лечения.

Медикаментозное лечение гиперхолестеринемии включает в себя назначение статинов

Иногда специалисты сталкиваются со снижением уровня холестерина - гипохолестеринемией. Чаще всего такое состояние обусловлено недостаточным поступлением холестерина с пищей. Особенно опасен дефицит жиров для детей, в такой ситуации будет отмечаться отставание в физическом и психическом развитии, растущему организму холестерин жизненно необходим. У взрослых людей гипохолестериемия приводит к нарушению эмоционального состояния из-за сбоев в работе нервной системы, проблемам с репродуктивной функцией, снижению иммунитета и пр.

Изменение липидного профиля крови неизбежно сказывается на работе всего организма в целом, поэтому важно систематически контролировать показатели жирового обмена для своевременного лечения и профилактики.

Липиды - это жироподобные органические соединения, нерастворимые в воде, но хорошо растворимые в неполярных растворителях (эфире, бензине, бензоле, хлороформе и др.). Липиды принадлежат к простейшим биологическим молекулам.

В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры. Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре, жиры называют триацилглщеролами.

Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Из предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят пальмитиновая, стеариновая, арахиновая; из непредельных (ненасыщенных) - олеиновая и линолевая.

Степень ненасыщенности и длина цепей высших карбоновых кислот (т. е. число атомов углерода) определяют физические свойства того или иного жира.

Жиры с короткими и непредельными кислотными цепями имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества (жиры). И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре становятся твердыми. Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, становится мазеобразным, а подсолнечное масло превращается в твердый маргарин. По сравнению с обитателями южных широт в организме животных, обитающих в холодном климате (например, у рыб арктических морей), обычно содержится больше ненасыщенных триацилглицеролов. По этой причине тело их остается гибким и при низких температурах.

В фосфолипидах одна из крайних цепей высших карбоновых кислот триацилглицерола замещена на группу, содержащую фосфат. Фосфолипиды имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны, а неполярные хвостовые группы гидрофобны. Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран.

Еще одну группу липидов составляют стероиды (стеролы). Эти вещества построены на основе спирта холестерола. Стеролы плохо растворимы в воде и не содержат высших карбоновых кислот. К ним относятся желчные кислоты, холестерол, половые гар-моны, витамин D и др.

К липидам также относятся терпены (ростовые вещества растений - гиббереллины; каротиноиды - фотосинтетичские пигменты; эфирные масла растений, а также воска).

Липиды могут образовывать комплексы с другими биологическими молекулами - белками и сахарами.

Функции липидов следующие:

Структурная. Фосфолипиды вместе с белками образуют биологические мембраны. В состав мембран входят также стеролы.
Энергетическая. При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию. Семена многих растений (кокосовой пальмы, клещевины, подсолнечника, сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.
Защитная и теплоизоляционная. Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль - способствует плавучести.
Смазывающая и водоотталкивающая. Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений.
Регуляторная. Многие гормоны являются производными хо-лестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон). Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

Липиды являются также источником образования метаболической воды. Окисление 100 г жира дает примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10-12 суток: жир, запасенный в горбе, используется именно в этих целях. Необходимую для жизнедеятельности воду медведи, сурки и другие животные, впадающие в спячку, получают в результате окисления жира.

В миелиновых оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.

Воск используется пчелами в строительстве сот.

Липиды - весьма разнородные по своему химическому строению вещества, характеризующиеся различной растворимостью в органических растворителях и, как правило, нерастворимые в воде. Они играют важную роль в процессах жизнедеятельности. Будучи одним из основных компонентов биологических мембран, липиды влияют на их проницаемость, участвуют в передаче нервного импульса, создании межклеточных контактов.

Другие функции липидов - образование энергетического резерва, создание защитных водоотталкивающих и термоизоляционных покровов у животных и растений, защита органов и тканей от механических воздействий.

КЛАССИФИКАЦИЯ ЛИПИДОВ

В зависимости от химического состава липиды подразделяют на несколько классов.

  1. Простые липиды включают вещества, молекулы которых состоят только из остатков жирных кислот (или альдегидов) и спиртов. К ним относят
    • жиры (триглицериды и другие нейтральные глицериды)
    • воски
  2. Сложные липиды
    • производные ортофосфорной кислоты (фосфолипиды)
    • липиды, содержащие остатки сахаров (гликолипиды)
    • стерины
    • стериды

В данном разделе химия липидов будет рассмотрена лишь в том объеме, который необходим для понимания обмена липидов.

Если животную или растительную ткань обрабатывать одним или несколькими (чаще последовательно) органическими растворителями, например хлороформом, бензолом или петролейным эфиром, то некоторая часть материала переходит в раствор. Компоненты такой растворимой фракции (вытяжки) называются липидами. Липидная фракция содержит вещества различных типов, большинство из которых представлено на схеме. Заметим, что из-за етерогенности входящих в липидную фракцию компонентов термин "липидная фракция" нельзя рассматривать как структурную характеристику; он является лишь рабочим лабораторным названием фракции, получаемой при экстракции биологического материала малополярными растворителями. Тем не менее большинство липидов имеет некоторые общие структурные особенности, обусловливающие их важные биологические свойства и сходную растворимость.

Жирные кислоты

Жирные кислоты-алифатические карбоновые кислоты - в организме могут находиться в свободном состоянии (следовые количества в клетках и тканях) либо выполнять роль строительных блоков для большинства классов липидов. Из клеток и тканей живых организмов выделено свыше 70 различных жирных кислот.

Жирные кислоты, встречающиеся в природных липидах, содержат четное число углеродных атомов и имеют по преимуществу неразветвленную углеродную цепь. Ниже приводятся формулы наиболее часто встречающихся природных жирных кислот.

Природные жирные кислоты, правда несколько условно, можно разделить на три группы:

  • насыщенные жирные кислоты [показать]
  • мононенасыщенные жирные кислоты [показать]

    Мононенасыщенные (с одной двойной связью) жирные кислоты:

  • полиненасыщенные жирные кислоты [показать]

    Полиненасыщенные (с двумя или более двойными связями) жирные кислоты:

Помимо этих основных трех групп, существует еще группа так называемых необычных природных жирных кислот [показать] .

Жирные кислоты, входящие в состав липидов животных и высших растений, имеют много общих свойств. Как уже отмечалось, почти все природные жирные кислоты содержат четное число углеродных атомов, чаще всего 16 или 18. Ненасыщенные жирные кислоты животных и человека, участвующие в построении липидов, обычно содержат двойную связь между 9-м и 10-м углеродамидополнительные двойные связи, как правило, бывают на участке между 10-м углеродом и метильным концом цепи. Счет идет от карбоксильной группы: ближайший к СООН-группе С-атом обозначают как α, соседний с ним - β и концевой атом углерода в углеводородном радикале - ω.

Своеобразие двойных связей природных ненасышенных жирных кислот заключается в том, что они всегда отделены двумя простыми связями, т. е. между ними всегда имеется хотя бы одна метиленовая группа (-СН=СН-СН 2 -СН=СН-). Подобные двойные связи обозначают как "изолированные". Природные ненасыщенные жирные кислоты имеют цис-конфигурацию и крайне редко встречаются транс-конфигурации. Считают, что в ненасыщенных жирных кислотах с несколькими двойными связями цис-конфигурация придает углеводородной цепи изогнутый и укороченный вид, что имеет биологический смысл (особенно если учесть, что многие липиды входят в состав мембран). В микробных клетках ненасыщенные жирные кислоты обычно содержат одну двойную связь.

Жирные кислоты с длинной углеводородной цепью практически нерастворимы в воде. Их натриевые и калиевые соли (мыла) образуют в воде мицеллы. В последних отрицательно заряженные карбоксильные группы жирных кислот обращены к водной фазе, а неполярные углеводородные цепи спрятаны внутри мицеллярной структуры. Такие мицеллы имеют суммарный отрицательный заряд и в растворе остаются суспендированными благодаря взаимному отталкиванию (рис. 95).

Нейтральные жиры (или глицериды)

Нейтральные жиры - это эфиры глицерина и жирных кислот. Если жирными кислотами эстерифицированы все три гидроксильные группы глицерина, то такое соединение называют триглицеридом (триацилглицерииом), если две - диглицеридом (диацилглицерином) и, наконец, если этерифицирована одна группа - моноглицеридом (моноацилглицерином).

Нейтральные жиры находятся в организме либо в форме протоплазматического жира, являющегося структурным компонентом клеток, либо в форме запасного, резервного жира. Роль этих двух форм жира в организме неодинакова. Протоплазматический жир имеет постоянный химический состав и содержится в тканях в определенном количестве, не изменяющемся даже при патологическом ожирении, в то время как количество резервного жира подвергается большим колебаниям.

Основную массу природных нейтральных жиров составляют триглицериды. Жирные кислоты в триглицеридах могут быть насыщенными и ненасыщенными. Чаще среди жирных кислот встречаются пальмитиновая, стеариновая и олеиновая кислоты. Если все три кислотные радикалы принадлежат одной и той же жирной кислоте, то такие триглицериды называют простыми (например, трипальмитин, тристеарин, триолеин и т. д.), если же разным жирным кислотам, - то смешанными. Названия смешанных триглицеридов образуются от входящих в их состав жирных кислот; при этом цифры 1, 2 и 3 указывают на связь остатка жирной кислоты с соответствующей спиртовой группой в молекуле глицерина (например, 1-олео-2-пальмитостеарин).

Жирные кислоты, входящие в состав триглицеридов, практически определяют их физико-химические свойства. Так, температура плавления триглицеридов повышается с увеличением числа и длины остатков насыщенных жирных кислот. Напротив, чем выше содержание ненасыщенных жирных кислот или кислот с короткой цепью, тем ниже точка плавления. Животные жиры (сало) обычно содержат значительное количество насыщенных жирных кислот (пальмитиновой, стеариновой и др.), благодаря чему они при комнатной температуре тверды. Жиры, в состав которых входит много моно- и полиненасыщенных кислот, являются при обычной температуре жидкими и называются маслами. Так, в конопляном масле 95% всех жирных кислот приходится на долю олеиновой, линолевой и линоленовой кислот и только 5% - на долю стеариновой и пальмитиновой кислот. Заметим, что в жире человека, плавящемся при 15°С (при температуре тела он жидкий), содержится 70% олеиновой кислоты.

Глицериды способны вступать во все химические реакции, свойственные сложным эфирам. Наибольшее значение имеет реакция омыления, в результате которой из триглицеридов образуются глицерин и жирные кислоты. Омыление жира может происходить как при ферментативном гидролизе, так и при действии кислот или щелочей.

Щелочное расщепление жира при действии едкого натра или едкого кали проводится при промышленном получении мыла. Напомним, что мыло представляет собой натриевые или калиевые соли высших жирных кислот.

Для характеристики природных жиров нередко используют следующие показатели:

  1. йодное число - количество граммов йода, которое в определенных условиях связывается 100 г жира; данное число характеризует степень ненасыщенности жирных кислот, присутствующих в жирах, йодное число говяжьего жира 32-47, бараньего 35-46, свиного 46-66;
  2. кислотное число - количество миллиграммов едкого кали, необходимое для нейтрализации 1 г жира. Это число указывает на количество имеющихся в жире свободных жирных кислот;
  3. число омыления - количество миллиграммов едкого кали, израсходованное на нейтрализацию всех жирных кислот (как входящих в состав триглицеридов, так и свободных), содержащихся в 1 г жира. Это число зависит от относительной молекулярной массы жирных кислот, входящих в состав жира. Величина числа омыления у основных животных жиров (говяжий, бараний, свиной) практически одинакова.

Воски - сложные эфиры высших жирных кислот и высших одноатомных или двухатомных спиртов с числом углеродных атомов от 20 до 70. Общие их формулы представлены на схеме, где R, R" и R" - возможные радикалы.

Воски могут входить в состав жира, покрывающего кожу, шерсть, перья. У растений 80% от всех липидов, образующих пленку на поверхности листьев и стволов, составляют воски. Известно также, что воски являются нормальными метаболитами некоторых микроорганизмов.

Природные воски (например, пчелиный воск, спермацет, ланолин) обычно содержат, кроме упомянутых сложных эфиров, некоторое количество свободных высших жирных кислот, спиртов и углеводородов с числом углеродных атомов 21-35.

Фосфолипиды

К этому классу сложных липидов относятся глицерофосфолипиды и сфинголипиды.

Глицерофосфолипиды являются производными фосфатидной кислоты: в их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения. Общая формула глицерофосфолипидов мпредставлена на схеме, где R 1 и R 2 - радикалы высших жирных кислот, a R 3 - радикал азотистого соединения.

Характерным для всех глицерофосфолипидов является то, что одна часть их молекулы (радикалы R 1 и R 2) обнаруживает резко выраженную гидрофобность, тогда как другая часть гидрофильна благодаря отрицательному заряду остатка фосфорной кислоты и положительному заряду радикала R 3 .

Из всех липидов глицерофосфолипиды обладают наиболее выраженными полярными свойствами. При помещении глицерофосфолипидов в воду в истинный раствор переходит лишь небольшая их часть, основная же масса "растворенного" липида находится в водных системах в форме мицелл. Существует несколько групп (подклассов) глицерофосфолипидов.

    [показать] .

    В отличие от триглицеридов в молекуле фосфатидилхолина одна из трех гидроксильных групп глицерина связана не с жирной, а с фосфорной кислотой. Кроме того, фосфорная кислота в свою очередь соединена эфирной связью с азотистым основанием [НО-СН 2 -СН 2 -N+=(СН 3) 3 ] - холином. Таким образом, в молекуле фосфатидилхолина соединены глицерин, высшие жирные кислоты, фосфорная кислота и холин

    [показать] .

    Основное различие между фосфатидилхолинами и фосфатидилэтаноламинами заключается в том, что в состав последних вместо холина входит азотистое основание этаноламин (НО-СН 2 -СН 2 -NH 3 +).

    Из глицерофосфолипидов в организме животных и высших растений в наибольшем количестве встречаются фосфатидилхолины и фосфатидилэтаноламины. Эти две группы глицерофосфолипидов метаболически связаны друг с другом и являются главными липидными компонентами мембран клеток.

  • Фосфатидилсерины [показать] .

    В молекуле фосфатидилсерина азотистым соединением служит остаток аминокислоты серина.

    Фосфатидилсерины распространены гораздо менее широко, чем фосфатидилхолины и фосфатидилэтаноламины, и их значение определяется в основном тем, что они участвуют в синтезе фосфатидилэтаноламинов.

  • Плазмалогены (ацетальфосфатиды) [показать] .

    Отличаются от рассмотренных выше глицерофосфолипидов тем, что вместо одного остатка высшей жирной кислоты они содержат остаток альдегида жирной кислоты, который связан с гидроксильной группой глицерина ненасыщенной эфирной связью:

    Таким образом, плазмалоген при гидролизе распадается на глицерин, альдегид высшей жирной кислоты, жирную кислоту, фосфорную кислоту, холин или этаноламин.

  • [показать] .

    R 3 -радикалом в этой группе глицерофосфолипидов является шестиуглеродный сахароспирт - инозит:

    Фосфатидилинозиты довольно широко распространены в природе. Они обнаружены у животных, растений и микробов. В животном организме они найдены в мозге, печени и легких.

    [показать] .

    Необходимо отметить, что в природе встречается свободная фосфатидная кислота, хотя по сравнению с другими глицерофосфолипидами в относительно небольших количествах.

К глицерофосфолипидам, точнее к полиглицеринфосфатам, относится кардиолилин. Остов молекулы кардиолйпина включает три остатка глицерина, соединенных друг с другом двумя фосфодиэфирными мостиками через положения 1 и 3; гидроксильные группы двух внешних остатков глицерина этерифицированы жирными кислотами. Кардиолипин входит в состав мембран митохондрий. В табл. 29 суммированы данные о строении основных глицерофосфолипидов.

Среди жирных кислот, входящих в состав глицерофосфолипидов, обнаружены как насыщенные, так и ненасыщенные жирные кислоты (чаще стеариновая, пальмитиновая, олеиновая и линолевая).

Установлено также, что большинство фосфатидилхолинов и фосфатидилэтаноламинов содержит одну насыщенную высшую жирную кислоту, этерифицированную в положении 1 (у 1-го углеродного атома глицерина), и одну ненасыщенную высшую жирную кислоту, этерифицированную в положении 2. Гидролиз фосфатидилхолинов и фосфатидилэтаноламинов при участии особых ферментов содержащихся, например, в яде кобры, которые относятся к фосфолипазам А 2 , приводит к отщеплению ненасыщенной жирной кислоты и образованию лизофосфатидилхолинов или лизофосфатидилэтаноламинов, обладающих сильным гемолитическим действием.

Сфинголипиды

Гликолипиды

Сложные липиды, содержащие в составе молекулы углеводные группы (чаще остаток D-галактозы). Гликолипиды играют существенную роль в функционировании биологических мембран. Они содержатся преимущественно в ткани мозга, но имеются также и в кровяных клетках и других тканях. Известны три основные группы гликолипидов:

  • цереброзиды
  • сульфатиды
  • ганглиозиды

Цереброзиды не содержат ни фосфорной кислоты, ни холина. В их состав входит гексоза (обычно это D-галактоза), которая связана эфирной связью с гидроксильной группой аминоспирта сфингозина. Кроме того, в состав цереброзида входит жирная кислота. Среди этих жирных кислот чаще всего встречается лигноцериновая, нервоновая и цереброновая кислоты, т. е. жирные кислоты, имеющие 24 углеродных атома. Структура цереброзидов может быть представлена схемой. Цереброзиды можно относить также к сфинголипидам, поскольку они содержат спирт сфингозин.

Наиболее изученными представителями цереброзидов являются нервон, содержащий нервоновую кислоту, цереброн, в состав которого входит цереброновая кислота, и керазин, содержащий лигноцириновую кислоту. Особенно велико содержание цереброзидов в мембранах нервных клеток (в миелиновой оболочке).

Сульфатиды отличаются от цереброзидов тем, что содержат в молекуле остаток серной кислоты. Иными словами, сульфатид представляет собой цереброзидсульфат, в котором сульфат этерифицирован по третьему углеродному атому гексозы. В мозге млекопитающих сульфатиды, как н цереброзиды, находятся в белом веществе. Однако содержание их в мозге намного ниже, чем цереброзидов.

При гидролизе ганглиозидов можно обнаружить высшую жирную кислоту, спирт сфингозин, D-глюкозу и D-галактозу, а также производные аминосахаров: N-ацетилглюкозамин и N-ацетилнейраминовую кислоту. Последняя синтезируется в организме из глюкозамина.

В структурном отношении ганглиозиды в значительной мере сходны с цереброзидами, с той только разницей, что вместо одного остатка галактозы они содержат сложный олигосахарид. Одним из простейших ганглиозидов является гематозид, выделенный из стромы эритроцитов (схема)

В отличие от цереброзидов и сульфатидов ганглиозиды находятся преимущественно в сером веществе мозга и сосредоточены в плазматических мембранах нервных и глиальных клеток.

Все рассмотренные выше липиды принято называть омыляемыми, поскольку при их гидролизе образуются мыла. Однако имеются липиды, которые не гидролизуются с освобождением жирных кислот. К таким липидам относятся стероиды.

Стероиды - широко распространенные в природе соединения. Они являются производными циклопентанпергидрофенантренового ядра, содержащего три конденсированных циклогексановых и одно циклопентановое кольцо. К стероидам относятся многочисленные вещества гормональной природы, а также холестерин, желчные кислоты и другие соединения.

В организме человека первое место среди стероидов занимают стерины. Наиболее важным представителем стеринов является холестерин:

Он содержит спиртовую гидроксильную группу при С 3 и разветвленную алифатическую цепь из восьми атомов углерода при С 17 . Гидроксильная группа при С 3 может быть этерифицирована высшей жирной кислотой; при этом образуются эфиры холестерина (холестериды):

Холестерин играет роль ключевого промежуточного продукта в синтезе многих других соединений. Холестерином богаты плазматические мембраны многих животных клеток; в значительно меныцем количестве он содержится в мембранах митохондрий и в эндоплазматической сети. Заметим, что в растениях холестерин отсутствует. У растений имеются другие стерины, известные под общим названием фитостеринов.

Липиды (от греч. липос – жир) включают жиры и жироподобные вещества. Содержатся почти во всех клетках - от 3 до 15%, а в клетках подкожной жировой клетчатки их до 50 %.

Особенно много липидов в печени, почках, нервной ткани (до 25 %), крови, семенах и плодах некоторых растений (29-57%). Липиды имеют разную структуру, но общие некоторые свойства. Эти органические вещества не растворяются в воде, но хорошо растворяются в органических растворителях: эфире, бензоле, бензине, хлороформе и др. Это свойство обусловлено тем, что в молекулах липидов преобладают неполярные и гидрофобные структуры. Все липиды можно условно разделить на жиры и липоиды.

Жиры

Наиболее распространенными являются жиры (нейтральные жиры, триглицериды ), представляющие собой сложные соединения трехатомного спирта глицерина и высокомолекулярных жирных кислот. Остаток глицерина - это вещество, хорошо растворимое в воде. Остатки жирных кислот - это углеводородные цепочки, почти нерастворимые в воде. При попадании капли жира в воду к ней обращается глицериновая часть молекул, а цепочки жирных кислот выступают из воды. В состав жирных кислот входит карбоксильная группа (-СООН). Она легко ионизируется. С ее помощью молекулы жирных кислот соединяются с другими молекулами.

Все жирные кислоты делятся на две группы - насыщенные и ненасыщенные . Ненасыщенные жирные кислоты не имеют двойных (ненасыщенных) связей, насыщенные - имеют. К насыщенным жирным кислотам относятся пальмитиновая, масляная, лауриновая, стеариновая и т. п. К ненасыщенным - олеиновая, эруковая, линолевая, линоленовая и т. п. Свойства жиров определяются качественным составом жирных кислот и их количественным соотношением.

Жиры, которые содержат насыщенные жирные кислоты, имеют высокую температуру плавления. По консистенции они, как правило, твердые. Это жиры многих животных, кокосовое масло. Жиры, которые имеют в своем составе ненасыщенные жирные кислоты, имеют низкую температуру плавления. Такие жиры преимущественно жидкие. Растительные жиры жидкой консистенции нарываются маслами . К этим жирам относят рыбий жир, подсолнечное, хлопчатниковое, льняное, конопляное масла и др.

Липоиды

Липоиды могут образовывать сложные комплексы с белками, углеводами и другими веществами. Можно выделить такие соединения:

  1. Фосфолипиды . Они являются сложными соединениями глицерина и жирных кислот и содержат остаток фосфорной кислоты. Молекулы всех фосфолипидов имеют полярную головку и неполярный хвост, образованный двумя молекулами жирных кислот. Основные компоненты клеточных мембран.
  2. Воски . Это сложные липиды, состоящие из более сложных спиртов, чем глицерин, и жирных кислот. Выполняют защитную функцию. Животные и растения используют их как водоотталкивающие и защищающие от высыхания вещества. Воски покрывают поверхность листьев растений, поверхность тела членистоногих, живущих на суше. Воски выделяют сальные железы млекопитающих, копчиковая железа птиц. Из воска пчелы строят соты.
  3. Стероиды (от греч. стереос – твердый). Для этих липидов характерно наличие не углеводных, а более сложных структур. К стероидам относятся важные вещества организма: витамин D, гормоны коры надпочечных желез, половых желез, желчные кислоты, холестерин.
  4. Липoпротеиды и гликолипиды . Липопротеиды состоят из белков и липидов, глюкопротеиды – из липидов и углеводов. Гликолипидов много в составе тканей мозга и нервных волокон. Липопротеиды входят в состав многих клеточных структур, обеспечивают их прочность и стабильность.

Функции липидов

Жиры являются главным типом запасающих веществ. Они запасаются в семени, подкожной жировой клетчатке, жировой ткани, жировом теле насекомых. Запасы жиров значительно превышают запасы углеводов.

Структурная . Липиды входят в состав клеточных мембран всех клеток. Упорядоченное размещение гидрофильных и гидрофобных концов молекул имеет большое значение для избирательной проницаемости мембран.

Энергетическая . Обеспечивают 25-30% всей энергии, необходимой организму. При распаде 1 г жира выделяется 38,9 кДж энергии. Это почти вдвое больше в сравнении с углеводами и белками. У перелетных птиц и животных, впадающих в спячку, липиды – единственный источник энергии.

Защитная . Слой жира защищает нежные внутренние органы от ударов, сотрясений, повреждений.

Теплоизоляционная . Жиры плохо проводят тепло. Под кожей некоторых животных (особенно морских) они откладываются и образуют слои. Например, кит имеет слой подкожного жира около 1 м, что позволяет ему жить в холодной воде.

У многих млекопитающих есть специальная жировая ткань, которая называется бурым жиром. Она имеет такую окраску, потому что богата митохондриями красно-бурой окраски, так как в них содержатся железосодержащие белки. В этой ткани вырабатывается тепловая энергия, необходимая животным в условиях низких

температур. Бурый жир окружает жизненно важные органы (сердце, головной мозг и т. п.) или лежит на пути крови, которая к ним приливает, и, таким образом, направляет тепло к ним.

Поставщики эндогенной воды

При окислении 100 г жиров выделяется 107 мл воды. Благодаря этой воде существует много животных пустынь: верблюды, тушканчики и т. п. Животные во время спячки также вырабатывают эндогенную воду из жиров.

Жирообразное вещество покрывает поверхность листьев, не дает им намокать во время дождей.

Некоторые липиды имеют высокую биологическую активность: ряд витаминов (A, D и т. п.), некоторые гормоны (эстрадиол, тестостерон), простагландины.

Являются органическими соединениями, нерастворимыми в воде. В их состав входят молекулы жирных кислот, соединённых в цепь из водородных и углеродных атомов. Если атомы углерода соединены между собой стойкой связью, то такие жирные кислоты имеют название «насыщенные». Соответственно, если атомы углерода непрочно связаны, то жирные кислоты являются ненасыщенными. Для человеческого организма наиболее важны арахидоновая, линолевая, и олеиновая жирные кислоты.

Разделение по химической формуле на насыщенные и ненасыщенные кислоты было разработано достаточно давно. Ненасыщенные, в свою очередь, подразделяются на полиненасыщенные и мононенасыщенные. На сегодняшний день известно, что насыщенные кислоты в нашей пище можно встретить в паштетах, мясе, молоке, яйцах. А ненасыщенные находятся в оливковом, арахисовом, подсолнечном масле; рыбьем, гусином и утином жире.

Термином «липиды» обозначают весь спектр жироподобных веществ, экстрагируемых растворителями жиров (хлороформ, эфир, бензин).

К липидам относят сложные эфиры триацилглицеролы. Это вещества, в которых глицерол связывается с тремя остатками жирных кислот. К липидам относятся масла и жиры. Масла содержат большое количество ненасыщенных кислот, и имеют жидкую консистенцию (за исключением маргаринов). Жиры, напротив, обладают твёрдой структурой и содержат большое количество насыщенных кислот.

В зависимости от своего происхождения липиды делятся на две главных категории:

  1. Растительные жиры (оливковое масло, ореховое масло, маргарин и т.д.).
  2. Животные жиры (содержатся в рыбе, мясе, сыре, масле, сливках и т.д.).
Липиды очень важны для нашего питания, поскольку в них содержится множество витаминов, а также жирных кислот, без которых невозможно синтезирование многих гормонов. Эти гормоны являются незаменимой частью нервной системы.

Когда жиры соединяются с «плохими» углеводами, то метаболизм нарушается, и в результате этого большая их часть откладывается в организме жировыми прослойками.

Как правило, в нашем рационе избыток жиров - жареная жирная пища, в частности - фаст-фуд, становится все более популярной и привычной. В тоже время пища вполне может быть вкусной, даже если отказаться от подсолнечного и сливочного масел при её приготовлении.

Некоторые из липидов напрямую влияют на повышение в крови уровня холестерина. Холестерин можно условно разделить на «хороший» и «плохой». Цель здорового питания - доминирование «хорошего» холестерина над «плохим». Общий уровень в крови этого вещества должен соответствовать норме. Если же холестерина слишком много, то он откладывается на стенках наших кровеносных сосудов и нарушает кровообращение, из-за чего нарушается трофика органов и тканей. А недостаточность кровяного питания, в свою очередь, приводит к серьезному нарушению функционирования органов. Главная опасность - это возможность отрывания тромба от стенки и разнесения его потоком крови по организму. Его тромб закупорит сосуды сердца, человека ждёт мгновенный летальный исход. Все происходит настолько мгновенно, что шансов помочь и спасти человека просто невозможно.

Далеко не все жиры повышают количество «плохого» холестерина в крови, некоторые из них, наоборот, понижают его уровень.

  • Жиры, которые повышают уровень холестерина, содержатся в сливочном масле, сале, мясе, сыре, копчёных и молочных продуктах, в пальмовом масле. Это насыщенные жиры.
  • Жиры, которые почти не способствуют образованию холестерина, содержатся в яйцах, устрицах, в птичьем мясе (без кожи).
  • Жиры, которые способствуют понижению холестерина, являются растительными маслами: оливковым, рапсовым, кукурузным, подсолнечным.
Рыбий жир предупреждает возникновение сердечнососудистых заболеваний, и при этом не играет никакой роли в холестериновом метаболизме. К тому же он снижает уровень триглицеридов и поэтому препятствует возникновению тромбов. В качестве источника рыбьего жира рекомендуются те сорта рыбы, которые являются наиболее жирными: тунец, селёдка, кета и сёмга, сардины, макрель. В аптеках также можно найти рыбий жир в капсулах, в качестве пищевой биодобавки.

Насыщенные

Частое употребление насыщенных жиров приносит серьёзный вред здоровью. Колбасы, сало, масло и сыр не должны составлять основу рациона. Кстати, насыщенные жирные кислоты содержатся и в пальмовом и кокосовом масле. Покупая в магазине продукты, обращайте внимание на состав входящих в них ингредиентов. Пальмовое масло - частый «гость» в нашем рационе, хотя не всегда мы об этом знаем. Впрочем, некоторые хозяйки применят его для выпечки, вместо маргарина. В мясе содержится стеариновая кислота, которая в большом количестве организму противопоказана. Количество в суточном рационе жиров не должно превышать 50 грамм. Оптимальный баланс питания должен состоять из 50% мононенасыщенных жирных кислот, 25% полиненасыщенных и 25% насыщенных.

Большая часть людей употребляют в ущерб ненасыщенным чересчур много насыщенных жиров. Из них около 70% «невидимых» (колбасные изделия, наборы для аперитива, сыры, чипсы, и, конечно же, мясо), а 30% «видимых» (это всё, что может использоваться для жарки блюд и для намазывания на хлеб).

Те жиры, которые организм не использовал, остаются про запас в организме и при соединении с сахарами становятся основной причиной возникновения избыточного веса. И только лишь физические нагрузки и сбалансированный рацион могут исправить данную ситуацию. Поэтому крайне важно отрегулировать употребление жирных кислот в соответствии с их расходами.

Мононенасыщенные

Эта разновидность жиров содержится в растительных маслах, и основным её компонентом является олеиновая мононенасыщенная кислота. Мононенасыщенные жиры нейтральны по отношению к организму, и не оказывают влияния ни на склонность к тромбозу, ни на уровень холестерина в крови.

Оливковое масло замечательно подходит для готовки, так как выдерживает достаточно высокие температуры (фактически до 210°С), и при этом сохраняет значительную часть своих ценных свойств. Желательно покупать нерафинированное масло первого холодного отжима, и чем более тёмного цвета оно будет, тем лучше. Хранить его надо в тёмном и холодном месте.

Для получения одного литра масла нужно 5кг чёрных оливок. Методика холодного отжима сохраняет в масле большую часть всех витаминов и минеральных солей: медь, фосфор, магний, кальций, калий, медь, железо. Интересный факт: баланс липидов в оливковом масле практически такой же, как и в грудном молоке.

Из всех масел оливковое усваивается лучше всех, к тому же оно замечательно помогает при запорах и печёночной недостаточности. Ещё одно его полезное свойство заключается в том, что оно может нейтрализовать интоксикацию организма после приёма алкоголя. Недавние исследования показали, что оливковое масло повышает уровень усвояемости кальция. А это значит, что оно незаменимо в рационе детей, в том возрасте, когда у них формируется и развивается костный аппарат.

Олеиновая кислота содержится: в оливковом масле (77%), в рапсовом (55%), в арахисовом (55%), в масле из виноградных косточек (41%), в соевом (30%), в подсолнечном (25%), в масле из ростков пшеницы (25%), в масле из грецких орехов (20%).

Полиненасыщенные


Они состоят из двух групп, в которых действующим веществом является так называемая основная жирная кислота. Так как организм самостоятельно не может её производить, то эта кислота должна поступать с едой.


Главные источники: ростки злаковых (до 50% содержания жирных кислот), кукуруза, овсяные хлопья, неочищенный рис, а также масла.

Линолевая кислота (Омега-6) содержится: в подсолнечном масле (57%), соевом (55%), в масле из виноградных косточек (54%), масле из грецких орехов (54%), масле из ростков пшеницы (53%), в тыквенном (45%), кунжутном (41%), арахисовом (20%), рапсовом (20%), оливковом (7%).

Линоленовая кислота (Омега-3): в льняном (55%), в масле из грецких орехов (13%), рапсовом (8%), в масле из ростков пшеницы (6%), соевом (6%), кунжутном (1%), оливковом (0,8%). Также Омега-3 содержится в рыбе.

Льняное масло весьма богато омега-6 и омега-3 ненасыщенными жирными кислотами, которые необходимы для построения клеток. Оно смягчает кожу, помогает организму бороться с аллергиями, защищает мозговые и нервные структуры, стимулирует выработку гормонов. Его нельзя подвергать нагреванию, нельзя готовить на нём. Льняное масло добавляют исключительно в уже готовое остывшее блюдо: супы, каши, салаты, овощи.

Рыба и рыбий жир является ценнейшим источником омега-3 жирных кислот. Именно эти кислоты больше всего нужны нашему организму. Они весьма полезны для мозговой деятельности. Однако нынешняя экология такова, что ребёнку желательно давать морскую рыбу, а не чистый рыбий жир. Его изготавливают из печени трески, а печень имеет свойство накапливать в повышенных дозах разные токсины. К тому же при поедании печени трески высока вероятность передозировки витаминов A и D. Для людей, употребляющих вегетарианскую пищу, хорошей заменой рыбьему жиру станет льняное масло.

Пищевые добавки, являющиеся ценными источниками полиненасыщенных жирных кислот:

  • Цветочная пыльца.
  • Пророщенная пшеница.
  • Пивные дрожжи.
  • Масла ослинника и огуречника (их можно найти в аптеках в виде капсул).
  • Лецитины сои.

В дополнение о некоторых маслах

В таблице представлены данные о критических температурах некоторых масел (в градусах Цельсия), при которых они разлагаются и выделают канцерогенные ядовитые вещества, которые в первую очередь поражают печень.

Масла, чувствительные к свету и нагреванию
  • Масло из грецких орехов.
  • Тыквенное.
  • Льняное.
Таблица содержания витамина E
Масла Мг на 100г масла
Из ростков пшеницы 300
Из грецких орехов 170
Соевое 94
Кукурузное 28
Оливковое 15
Пальмовое масло - это твёрдая масса, в которой содержится почти 50% насыщенных кислот. Масло получают без нагревания, механическим путём, из мякоти плода масляной пальмы. В отличие от маргарина, оно получается твёрдой консистенции без проведённой гидрогенизации. Содержит витамин E. Часто используется вместо маргарина или масла в выпечке. В больших количествах вредит здоровью.

Кокосовое масло лучше не принимать в пищу. В нём содержится слишком много жирных кислот. Тем не менее, многие люди, особенно живущие в местах добывания кокосового масла, считают его буквально панацеей от всех болезней. Это один из старейших видов масел, добываемых людьми. Добывается оно из спрессованных высушенных кокосовых плодов. С другой стороны, плюс кокосового масла состоит в том, что содержащиеся в нём насыщенные жиры имеют совершенно другую структуру, чем насыщенные жиры, употребляемые для приготовления фаст-фуда. Именно поэтому до сих пор спорят о том, вредно это масло или нет.

Сливочное масло является, с одной стороны, отличным источников витаминов A и D, а с другой - холестерола. Но маленьким детям небольшое количество сливочного масла будет полезно, потому что когда организм активно растёт, ему требуются насыщенные жиры для гармоничного и полного развития мозга.

Что следует обязательно знать про сливочное масло: оно совершенно не терпит нагревания выше 120°. Это значит, что жарить на нём продукты нельзя. При контакте с горячей поверхностью сковороды масло начинает моментально выделять канцерогенные вещества, которые поражают кишечник и желудок.

Маргарин является промежуточным продуктом между растительным и сливочным маслом. Его создали как замену сливочного масла. Состав маргаринов может быть разным у разных производителей. Некоторые из них обогащены маслом из ростков пшеницы, а другие содержат только насыщенные жирные кислоты или же подвергнуты гидрогенизации.

Если провести минимум обработок, то есть не гидрогенизировать маргарин, то в нём сохраняются некоторые витамины. Но необходимо помнить, что твёрдость маргарина зависит от количества пальмового и кокосового масел, добавленных в него. Поэтому тем, у кого есть склонность к сердечнососудистым заболеваниям, не рекомендуется употреблять маргарин.

Парафиновое масло является производным нефти, и его следует избегать. При пищевом применении парафинового масла ухудшается усвоение жирорастворимых витаминов. Более того, при выведении масла из кишечника, оно связывается с уже растворёнными витаминами и выходит наружу вместе с ними.

Функции жиров

Липиды в нашем организме выполняют энергетическую и пластическую функции. Ненасыщенные жирные кислоты незаменимы, поскольку не все из них синтезируются в организме. Они являются предшественниками простагландинов. Простагландины - это гормоны, которые поддерживают жидкое состояние клеточных липидов, а также не позволяют развиться атеросклеротическим бляшкам, не дают холестерину и остальным липидам прилипать к стенкам сосудов.

Фосфолипиды являются фундаментальными структурами большинства клеточных мембран. Они входят в состав белого и серого вещества нервной ткани.

Жиры по своей природе являются великолепным растворителем. Те вещества, которые не растворяются в воде, хорошо растворяются в жирах. Большая часть жиров скапливается в клетках жировой ткани, которые являются жировым депо. Депо может составлять до 30% веса тела. Функция жировой ткани состоит в фиксации сосудисто-нервных пучков и внутренних органов. Жир является теплоизолятором, который сохраняет тепло, в частности, в детском возрасте. Липидный обмен тесно взаимосвязан с белковым и углеводным обменом. При избыточном поступлении углеводов в организм, они могут превратиться в жиры. В неблагоприятных для организма условиях, при голодании жиры переходят обратно в углеводы.

Энергетическая функция состоит в том, что липиды из всех питательных веществ отдают организму наибольшее количество энергии. Доказано, что при окислении 1 грамма жира выделяется 9,3 килокалории тепла, что в два раза больше, чем при окислении 1 грамма белков или углеводов. При окислении 1 г белков и углеводов выделяется 4,1 ккал тепла.

Жиры пищи

Среди них преобладают триацилглицерины. Жиры бывают растительные и животные, причем растительные более полноценны, поскольку содержат намного больше ненасыщенных кислот. Вместе с едой внутрь поступает и небольшое количество свободных жирных кислот. В норме, до 40% всех потребляемых нашим организмом калорий приходится на липиды.

Всасывание и переваривание жиров

Переваривание жиров является процессом ферментативного гидролиза, который осуществляется в тонком кишечнике и двенадцатиперстной кишке под влиянием ферментных веществ, находящихся в соках поджелудочной и кишечных желёз.

Чтобы жиры переварились, организм должен выработать желчь. В ней содержатся детергенты (или желчные кислоты), которые эмульгируют липиды, чтобы ферменты их лучше расщепили. Продукты, которые образуются в результате пищеварительного гидролиза - жирные, желчные кислоты и глицерин - всасываются из полости кишечника в клетки слизистой. В этих клетках жир вновь ресинтезируется и образует особые частицы под названием «хиломикроны», которые направляются в лимфу и лимфатические сосуды, а затем через лимфу попадают в кровь. При этом только небольшая часть образовавшихся в процессе гидролиза жирных кислот, которые имеют относительно короткую углеродную цепочку (в частности, это продукты гидролиза жиров молочных продуктов) всасываются и поступают в кровь воротной вены, а затем - в печень.

Роль печени в липидном обмене

Печень ответственна за процессы мобилизации, переработки и биосинтеза липидов. Жирные кислоты с короткой цепью в соединении с желчными кислотами поступают из пищеварительного тракта по воротной вене с током крови в печень. Эти жирные кислоты не участвуют в процессах синтеза липидов и окисляются при содействии ферментных систем печени. У взрослых людей они, в целом, не играют важной роли в метаболизме. Исключение составляют только дети, в их пищевом рационе больше всего жиров молока.

Другие липиды поступают через печёночную артерию в составе липопротеидов или хиломикронов. В печени они окисляются, как и в других тканях. Большая часть из липидов, кроме нескольких ненасыщенных, заново синтезируются в организме. Те же из них, которые не синтезируются, обязательно должны поступать вовнутрь вместе с пищевыми продуктами. Суммарный процесс биосинтеза жирных кислот имеет название «липогенез», и именно печень интенсивнее всего участвует в этом процессе.

В печени осуществляются ферментативные процессы трансформации фосфолипидов и холестерина. Синтез фосфолипидов обеспечивает в печени обновление структурных единиц её клеточных мембран.

Липиды крови

Липиды крови называются липопротеидами. Они связаны с разными белковыми фракциями крови. Собственные их фракции при центрифугировании разделяются по их относительной плотности.

Первая фракция называется «хиломикроны»; они состоят из тонкой белковой оболочки и жиров. Вторая фракция - это липопротеиды с очень низкой плотностью. Они содержат большое количество фосфолипидов. Третья фракция - это липопротеиды, содержащие множество холестерина. Четвертая фракция - это липопротеиды с высокой плотностью, они содержат больше всего фосфолипидов. Пятая фракция — липопротеиды с высокой плотностью и малым содержанием.

Функция липопротеидов в крови заключается в переносе липидов. Хиломикроны синтезируются в слизистых клетках кишечника и разносят жир, который ресинтезировался из продуктов жирового гидролиза. Жиры хиломикронов поступают, в частности, в жировую ткань и печень. Клетки всех тканей организма могут употреблять жирные кислоты хиломикронов, если те имеют необходимые ферменты.

Липопротеиды с очень низкой плотностью переносят исключительно жиры, которые синтезируются в печени. Эти липиды потребляются, как правило, жировой тканью, хотя могут использоваться и другими клетками. Жирные кислоты липопротеидов, обладающих высокой плотностью, являются продуктами ферментного расщепления жира, содержащегося в жировой ткани. Это фракция обладает своеобразной мобильностью. К примеру, при голодовке до 70% всех энергетических затрат организма покрываются за счет жирных кислот именно этой фракции. Фосфолипиды и холестерин фракций липопротеидов с высокой и низкой плотностью, являются источником обмена с соответствующими им компонентами клеточных мембран, с которыми данные липопротеиды могут вступать во взаимодействие.

Трансформация липидов в тканях
В тканях липиды расщепляются под влиянием различных липаз, а образовавшиеся жирные кислоты присоединяются к другим образованиям: фосфолипидам, эфирам холестерина и т. д.; или же они окисляются до конечных продуктов. Процессы окисления совершаются несколькими путями. Одна часть жирных кислот при окислительных процессах в печени, вырабатывает ацетон. При тяжелой форме сахарного диабета, при липоидном нефрозе и некоторых других заболеваниях, в крови резко увеличивается количество ацетоновых тел.

Регуляция обмена жиров

Регуляция липидного обмена осуществляется достаточно сложным нервно-гуморальным путём, при этом в ней преобладают механизмы именно гуморальной регуляции. Если функции половых желёз, гипофиза, щитовидной железы снижаются, то процессы биосинтеза жира усиливаются. Что самое печальное - увеличивается не только синтез липидов, но и их отложение в жировой ткани, а это приводит к ожирению.

Инсулин является гормоном поджелудочной железы и участвует в регуляции липидного обмена. Поскольку существует перекрёстная возможность трансформации углеводов в жиры, а затем жиров в углеводы, то при дефиците инсулина усиливаются процессы синтеза углеводов, что сопровождается ускорением процессов расщепления липидов, в ходе чего образуются промежуточные продукты обмена, используемые для биосинтеза углеводов.

Фосфолипиды по своей структуре близки к триацилглицеролам, только в состав их молекул входят содержащие фосфор группы. Стероиды являются производными холестерина и имеют другую структуру. К липидам также можно отнести большую группу жирорастворимых веществ, в которую входят витамины A, D, K, E. Липиды нужны не только для создания оболочки нашего тела - они необходимы для гормонов, для мозгового развития, для сосудов и нервов, для сердца. Известно, что липиды составляют 60% мозга.

Нарушение нормальной концентрации липидов в крови


Если в крови наблюдается ненормально повышенный уровень липидов, то такое патологическое состояние называется гиперлипемией. При гипотиреозе, нефрозе, диабете и нарушениях врачи сталкиваются с вторичной формой гиперлипемии. При этих заболеваниях наблюдается высокое содержание холестерина и триглицеридов. Первичная гиперлипемия - это достаточно редко встречающаяся наследственная патология, которая способствует развитию артериосклероза и коронарной болезни.


При гипогликемии, голодании, после инъекций гормона роста, адреналина, в организме резко повышается количество свободных жирных кислот и начинается мобилизация ранее депонированного жира. Это форма заболевания называется мобилизационной гиперлипемией.

При гиперхолестеринемии в сыворотке крови наблюдается высокий уровень холестерина и умеренный - жирных кислот. При опрашивании ближайших родственников в анамнезе обязательно выявляются случаи раннего атеросклероза. Гиперхолестеринемия даже в раннем возрасте может способствовать развитию инфаркта миокарда. Как правило, внешних симптомов не наблюдается. При выявлении заболевания лечение проводится диетотерапией. Её суть состоит в замещении ненасыщенными кислотами насыщенных. Правильная коррекция рациона значительно снижает вероятность развития патологий сосудистой системы.

При дислипидемии в крови нарушается баланс различных видов липидов. В частности, основные липиды, содержащиеся в крови - это холестерин и триглицериды в разных соотношениях. Именно нарушения соотношения и приводит к развитию заболеваний.
Высокое содержание в крови липидов с низкой плотностью, а также низкий уровень холестерина с высокой плотностью являются серьёзными факторами риска осложнений сердечнососудистого типа у пациентов с диагностированным сахарным диабетом второго типа. Аномальный уровень липопротеидов в данном случае может являться следствием неправильного контроля гликемии.

Именно дислипидемию считают основной причиной развития атеросклеротических изменений.

Факторы, влияющие на развитие дислипидемии

Наиболее значимыми причинами образования дислипидемии являются генетические нарушения липидного обмена. Они заключаются в мутациях генов, ответственных за синтезирование аполипопротеинов - составляющих липопротеинов.

Вторым немаловажным фактором является здоровый/нездоровый стиль жизни. При неблагоприятных обстоятельствах, при отсутствии физической активности, при употреблении алкоголя, липидный метаболизм нарушается. Ожирение напрямую связано с повышением содержания триглицеридов, с нарушением концентрации холестерина.

Еще один фактор развития дислипидемии - это психоэмоциональный стресс, который посредством нейроэндокринной стимуляции способствует нарушениям липидного метаболизма. Под нейроэндокринной стимуляцией подразумевается усиление активности вегетативной нервной системы.

Клиническая классификация видов дислипидемий предусматривает подразделение их на, так называемые, первичные и вторичные. Среди первичных можно выделить полигенные (приобретённые в течение жизни, но обусловленные наследственной расположенностью), и моногенные (генетически обусловленные семейные заболевания).

Причиной вторичной формы заболевания могут быть: злоупотребление алкоголем, недостаточная функция почек, диабет, цирроз, гипертиреоидизм, медикаментозные препараты, дающие побочные эффекты (антиретровирусные препараты, прогестины, эстрогены, глюкокортикостероиды).

Диагностические методы, применяемые для постановки диагноза «дислипидемия», заключаются в определении показателей липопротеидов (высокой и низкой плотности), общего холестерина, триглицеридов. В течение суточного цикла даже у совершенно здоровых людей наблюдаются колебания уровня холестерина порядка 10%; а колебания уровня триглицеридов - до 25%. Чтобы определить указанные показатели, проводят центрифугирование крови, сданной натощак.

Определение липидного профиля рекомендовано проводить раз в пять лет. При этом желательно выявлять и другие потенциальные факторы риска развития кардиоваскулярных патологий (курение, сахарный диабет, ишемия в анамнезе у ближайших родственников).

Атеросклероз


Основной фактор появления ишемии - это образование множества мелких атеросклеротических бляшек, постепенно увеличивающихся в просветах коронарных артерий и ссужающих просвет этих сосудов. На первых стадиях развития болезни бляшки не ухудшают кровоток, и процесс не проявляется клинически. Постепенный рост бляшки и одновременное сужение протока сосуда может спровоцировать проявление признаков ишемии.
Сначала они начнут проявляться при интенсивном физическом напряжении, когда миокарду требуется больше кислорода и эту потребность не может обеспечить увеличение коронарного кровотока.

Клиническое проявление ишемического состояния миокарда - это резко возникающий приступ стенокардии. Он сопровождается такими явлениями как боль и чувство сжимания за грудиной. Приступ проходит, как только прекращается нагрузка эмоционального или физического характера.

Основной (но не единственно главной) причиной ишемии врачи считают нарушение обмена липидов, но кроме этого, существенными факторами являются курение, ожирение, нарушение углеводного обмена и генетическая предрасположенность. Уровень холестерина напрямую влияет на появление осложнений заболеваний сердечной системы.

Лечение данного заболевания состоит в нормализации уровня холестерина. Для этого недостаточно одной только коррекции рациона. Необходимо также бороться с остальными факторами риска развития: снизить вес, повысить физическую активность, бросить курить. Коррекция питания подразумевает не только снижение общей калорийности еды, но и замещение в рационе животных жиров растительными: снижение
потребления животных жиров и одновременное увеличение потребления растительных жиров, клетчатки. Надо помнить, что значительная часть холестерина в нашем организме не поступает вместе с пищей, а образуется в печени. Поэтому диета не является панацеей.

Для снижения холестеринового уровня применяют и медикаментозные средства - никотиновую кислоту, эстроген, декстротироксин. Из этих средств наиболее эффективно против ишемии действует никотиновая кислота, однако её применение ограничено из-за сопутствующих побочных явлений. То же самое касается и остальных медикаментозных средств.

В 80-х годах прошлого столетия в гиполипидемической терапии стали применять ноу-хау - препараты из группы статинов. В настоящее время на фармацевтическом рынке доступно 6 препаратов, относящихся к этой группе. Правастатин и ловастатин - препараты, основой которых являются продукты жизнедеятельности грибков. Розувастатин, аторвастатин, флувастатин являются синтетическими препаратами, а симвастатин - полусинтетическим.

Эти средства помогают снизить уровень липопротеидов с низкой плотностью, снизить общее содержание холестерина, и в меньшей степени - триглицеридов. Несколько исследований также показали снижение общей смертности среди ишемических больных.

Кардиосклероз

Это заболевание является осложнением атеросклероза и заключается в замещении соединительной тканью миокарда. Соединительная ткань не эластична, в отличие от миокарда, соответственно, эластичность всего органа, на котором появилась неэластичная «заплатка» страдает, а сердечные клапаны - деформируются.

Кардиосклероз (или миокардиосклероз) является логическим следствием не вылеченного заболевания: миокардита, атеросклероза, ревматизма. Острое развитие этого заболевания происходит при инфаркте миокарда и ишемической болезни. Когда атеросклеротические бляшки возникают повсеместно в коронарных артериях в сердце, то страдает кровоснабжение миокарда, ему не хватает кислорода, разносящегося с током крови.

Острая форма ишемического заболевания - это инфаркт миокарда. Так что неправильный образ жизни, несбалансированное питание и курение могут стать неявной причиной инфаркта, а острое психоэмоциональное напряжение, на фоне которого появляется инфаркт - это видимая, но далеко не главная причина.

Помимо острой формы, выделяют ещё и хроническую. Она проявляется регулярно возникающими приступами стенокардии (то есть загрудинной боли). Снять боль во время приступа можно нитроглицерином.

Организм устроен так, что любое нарушение он старается декомпенсировать. Рубцы из соединительной ткани не позволяют сердцу эластично растягиваться и сжиматься. Постепенно сердце адаптируется к рубцам и просто увеличивается в размерах, что приводит к нарушению циркуляции крови по сосудам, к нарушению сократительной деятельности мышцы, к расширению сердечных полостей. Всё это в совокупности является причиной недостаточности функции сердца.

Кардиосклероз осложняется нарушением сердечного ритма (экстрасистолия, аритмия), выпячиванием фрагмента стенки сердца (аневризма). Опасность аневризмы в том, что малейшее напряжение может вызвать её разрыв, который приводит к мгновенной смерти.

Диагностика заболевания проводится с помощью электрокардиограммы и УЗИ сердца.

Лечение заключается в следующем: выявление и лечение именно того заболевания, которое являлось главной причиной развития кардиосклероза; соблюдение постельного режима в том случае, если болезнь привела к инфаркту миокарда (в состоянии покоя рубцевание и заживление происходит без образования опасной аневризмы); нормализация ритма; стимулирование обменных процессов в мышце сердца, ограничение любых нагрузок; соблюдение правильно сбалансированного диетического питания, в частности, снижение количества липидов в рационе.

Диета даёт хороший противоаллергический и противовоспалительный эффект, а также считается отличной превентивной мерой для предупреждения заболеваний сердца.

Основное правило питания - это умеренность в количестве еды. Полезно также сбросить лишние килограммы, которые дают нагрузку на сердце. Подбор продуктов питания должен осуществляться с точки зрения ценности их в качестве энергетических и пластических материалов для сердца. Нужно обязательным образом исключить из пищи острое, сладкое, жирное, солёное. Употребление алкогольных напитков пациентам с сосудистыми нарушениями противопоказано. Еда должна быть обогащена минеральными веществами и витаминами. Рыба, отварное мясо, овощи, фрукты, молочные продукты должны являться основой рациона.

Loading...Loading...